
Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Vanilla Skype part 2

Fabrice DESCLAUX Kostya KORTCHINSKY

serpilliere(at)droids-corp.org - fabrice.desclaux(at)eads.net

recca(at)rstack.org - kostya.kortchinsky(at)eads.net

EADS Corporate Research Center — DCR/STI/C
SSI Lab

Suresnes, FRANCE

RECON2006, June 17th 2006

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 1/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 2/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Introduction

Reverse engineering Skype

Skype is a gold mine for reverse engineers

Binary protected against static and dynamic analysis
Almost everything is proprietary
Heavy use of cryptography
Binary loaded with hidden and undocumented features

The work to carry out is far from easy

What to look for ?

Find some ways to divert Skype from its original usage

Fun things to do with Skype

Clarify some common beliefs

Identify cryptographic flaws

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 3/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Skype versions

A large variety of flavours...

Skype v2.0.0.*
PChome-Skype v2.0.1.*
TOM-Skype v2.0.4.*
livedoor-Skype v2.0.6.*
Buffalo-Skype v2.0.7.*
Daum-Skype v1.4.9.*
HGC-Skype v2.0.10.*
Onet-Skype v2.0.11.*
Jubii-Skype v2.0.12.*
eBay-Skype v2.0.13.*
U3-Skype v1.4.14.*

Maktoob-Skype v2.0.15.*
Chinagate-Skype v2.0.16.*
PacNet-Skype v2.0.17.*
eBay.es-Skype v2.0.18.*
eBay.it-Skype v2.0.19.*
eBay.co.uk-Skype v2.0.20.*
eBay.de-Skype v2.0.21.*
eBay.fr-Skype v2.0.22.*
Bebo-Skype v2.0.24.*
eBay.nl-Skype v2.0.26.*
eBay.cn-Skype v2.0.29.*

Downloading a particular version

http://www.skype.com/go/getskype-〈keyword〉
Example: http://www.skype.com/go/getskype-ebay-fr

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 4/74

http://www.eads.net
http://www.skype.com/go/getskype-<keyword>
http://www.skype.com/go/getskype-ebay-fr

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Disclaimer

What Skype, Inc. does not tell you

A lot of ”features” are silently fixed by Skype, Inc. with the
numerous subversion updates that are published almost weekly.
Since it is rather difficult to follow everything, some of the stuff
described hereafter might not be totally accurate in the latest
versions.

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 5/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 6/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

For P in packets: zip P

Packet compression

Each packet can be compressed

The algorithm used: arithmetic compression

Zip would have been too easy ©

Principle

Close to Huffman algorithm

Reals are used instead of bits

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 7/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Arithmetic compression
Example

[0, 1] is splited in subintervals for each symbol according to
their frequency
First symbol is A. We subdivise its interval
Then comes C
Then A again
Then B
Each real enclosed into this small interval can encode ACAB

B CA0 0.5 0.625 1

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 8/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Arithmetic compression
Example

[0, 1] is splited in subintervals for each symbol according to
their frequency
First symbol is A. We subdivise its interval
Then comes C
Then A again
Then B
Each real enclosed into this small interval can encode ACAB

A

B CA0 0.5 0.625 1

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 8/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Arithmetic compression
Example

[0, 1] is splited in subintervals for each symbol according to
their frequency
First symbol is A. We subdivise its interval
Then comes C
Then A again
Then B
Each real enclosed into this small interval can encode ACAB

C

A

B CA0 0.5 0.625 1

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 8/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Arithmetic compression
Example

[0, 1] is splited in subintervals for each symbol according to
their frequency
First symbol is A. We subdivise its interval
Then comes C
Then A again
Then B
Each real enclosed into this small interval can encode ACAB

C

A

A

B CA0 0.5 0.625 1

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 8/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Arithmetic compression
Example

[0, 1] is splited in subintervals for each symbol according to
their frequency
First symbol is A. We subdivise its interval
Then comes C
Then A again
Then B
Each real enclosed into this small interval can encode ACAB

C

A

A

B CA0 0.5 0.625 1

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 8/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Arithmetic compression
Example

[0, 1] is splited in subintervals for each symbol according to
their frequency
First symbol is A. We subdivise its interval
Then comes C
Then A again
Then B
Each real enclosed into this small interval can encode ACAB

C

A

A

B CA0 0.5 0.625 1

Reals here encode ACAB
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 8/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 9/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Trusted data

Embedded trusted data

In order to recognize Skype authority, the binary has 14 moduli.

Moduli

Two 4096 bits moduli

Nine 2048 bits moduli

Three 1536 bits moduli

RSA moduli example

0xba7463f3. . . c4aa7b63

. . .

0xc095de9e. . . 73df2ea7

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 10/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Finding friends

Embedded data

For the very first connection, IP/PORT are stored in the binary

Login servers

push o f f s e t aL ibConnect ionL ; "* Lib/ Connection/ LoginServers "

push 45h

push o f f s e t a195 215 8 1413 ; "195 .215.8.141 :33033 212 .72.49.141

mov ecx , eax

c a l l sub 7B8440

Supernodes

A list of 200 supernodes is hardcoded in the binary
It changes in every version and subversion of Skype

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 11/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Phase 0: Hypothesis

Trusted data

Each message signed by one of the Skype modulus is trusted

The client and the Login server have a shared secret

A MD5 hash of the user’s information

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 12/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Phase 1: Key generation

Session parameters

When a client logs in, Skype will generate two 512 bits length
primes

This will give 1024 bits length RSA private/public keys

Those keys represent the user for the time of his connection

Or longer if the user chooses to save them

The client generates a symetric session key K

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 13/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Phase 2: Authentication

Key exchange

The client hashes its login‖\nskyper\n‖password with MD5

The client ciphers its public modulus and the resulting hash
with K

The client encrypts K using RSA with one of the trusted
Skype modulus

He sends the encrypted session key K and the ciphered data
to the login server

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 14/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Phase 2: Authentication

Login \nskyper\n PasswordSkype modulus

RSA 1536 bits

Rand 192 bits

Session key

256 bits key

Shared secretHash (SHA160 based) User modulus

Cipher (AES 256 based)

Encrypted session key Encrypted shared secret

MD5

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 15/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Phase 3: Running

Session behavior

If the hash of the password matches, the login associated with
the public key is dispatched to the supernodes

This information is signed by the Skype server

Note that private informations are signed by each user

Search for buddy

If you search for a login name, a supernode will send back his
couple

You receive the public key of the desired buddy

The whole packet is signed by a Skype modulus

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 16/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Example of encrypted stuff

Public blob
0 |4bbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb| K...............

10 |bbba4104 03007265 63636137 37000003| ..A...recca77...

20 |00040180 01d3e860 164f8a1b 0a771e5b|‘.O...w.[

30 |d74e1548 b96fa8bb 712167c9 0273003b| .N.H.o..q!g..s.;

40 |e201d464 d92d2d13 073a6622 5aae2c28| ...d.--..:f"Z.,(

50 |f80640ff 40b9327e 98781fe5 9b6dadfa| ..@.@.2~.x...m..

60 |b7fbcbf7 84a4bf66 051682fc 4dadae53|f....M..S

70 |3317c5bf 5be61f2f 7458a133 faa61731| 3...[../tX.3...1

80 |ed910a83 abc70cd1 cf7c2876 e23f60bc||(v.¿.

90 |667d0533 8ce755a8 c66e463b 6d60b13a| f}.3..U..nF;m‘.:

a0 |2d0a107c 2900048c 84950926 5fb26626| -..|)......&_.f&

b0 |4ea8968c 6a7a6d2c 97c78ae4 ed967fbc| N...jzm,........

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 17/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Phase 4: Communicating

Inter client session

Both clients’ public keys are exchanged
Those keys are signed by Skype authority
Each client sends a 8 bytes challenge to sign
Clients are then authenticated and can choose a session key

Some strings to guide you

db ’session_manager : [%04x] remote party sent wrong identity ’ ,0Ah , 0
db ’session_manager : [%04x] remote party failed challenge ’ ,0Ah , 0
db ’session_manager : [%04x] missing challenge response ’ ,0Ah , 0
db ’session_manager : [%04x] remote UIC has expired ’ ,0Ah , 0
db ’session_manager : [%04x] no encryption key in reply ’ ,0Ah , 0

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 18/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 19/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Detecting Skype Traffic

Some ideas to detect Skype traffic without deobfuscation

Most of the traffic is crypted . . . But not all.

UDP communications imply clear traffic to learn the public IP

TCP communications use the same RC4 stream twice !

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 20/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Detecting Skype Traffic
TCP traffic

TCP stream begin with a 14 byte long payload

From which we can recover 10 bytes of RC4 stream

RC4 stream is used twice and we know 10 of the 14 first bytes

crypted stream 2

known cleartext

Seed crypted stream 1

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 21/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Detecting Skype Traffic
TCP traffic

TCP stream begin with a 14 byte long payload

From which we can recover 10 bytes of RC4 stream

RC4 stream is used twice and we know 10 of the 14 first bytes

crypted stream 2

known cleartext

Seed crypted stream 1

RC4 stream (10 bytes)

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 21/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Detecting Skype Traffic
TCP traffic

TCP stream begin with a 14 byte long payload

From which we can recover 10 bytes of RC4 stream

RC4 stream is used twice and we know 10 of the 14 first bytes

crypted stream 2

RC4 stream (10 bytes)

known cleartext

Seed crypted stream 1

Recovered Skype traffic

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 21/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Detecting Skype Traffic
UDP traffic

Skype NAck packet characteristics

28+11=39 byte long packet

Function & 0x8f = 7

Bytes 31-34 are (one of) the public IP of the network

Skype SoF
7f 4e

id 0x7f4e

77

func 0x77

Skype NAck

52 7c 48 33

src 82.124.72.51

83 b0 86 56

dst 131.176.134.86

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 22/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Detecting Skype Traffic
Blocking UDP traffic

On the use of NAck packets. . .

The very first UDP packet received by a Skype client will be a
NAck

This packet is not crypted

This packet is used to set up the obfuscation layer

Skype can’t communicate on UDP without receiving this one

How to block Skype UDP traffic with one rule

i p t a b l e s −I FORWARD −p udp −m length −−l eng th 39 −m u32 \
−−u32 ’27&0 x8 f =7’ −−u32 ’31=0x527c4833 ’ − j DROP

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 23/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

How to generate traffic without the seed to RC4 key engine

Get the RC4 key for a
given seed for once
Always use this key to
encrypt
Calculate the CRC stuff
Use IV = seed ⊕ crc

CRC32

\x00\x00IDDestination IPSource IP

IV

seed

RC4 key (128 bytes)

seed to RC4 key engine

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 24/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 25/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Firewall testing (a.k.a remote scan)

Let’s TCP ping Slashdot

>>> send(IP(src="1.2.3.4",dst="172.16.72.19")/UDP(sport=1234,dport=1146)

/Skype_SoF(id=RandShort())/Skype_Enc()/Skype_Cmd(cmd=41, is_req=0,

is_b0=1, val=Skype_Encod(encod=0x41)/Skype_Objects_Set(objnb=1)

/Skype_Obj_INET(id=0x11, ip="slashdot.org", port=80)))

A TCP connect scan from the inside
>>> send(IP(src="1.2.3.4",dst="172.16.72.19")/UDP(sport=1234,dport=1146)

/Skype_SoF(id=RandShort())/Skype_Enc()/Skype_Cmd(cmd=41, is_req=0,

is_b0=1, val=Skype_Encod(encod=0x41)/Skype_Objects_Set(objnb=1)

/Skype_Obj_INET(id=0x11, ip="172.16.72.1", port=(0,1024))))

A look for MS SQL from the inside
>>> send(IP(src="1.2.3.4",dst="172.16.72.19")/UDP(sport=1234,dport=1146)

/Skype_SoF(id=RandShort())/Skype_Enc()/Skype_Cmd(cmd=41, is_req=0,

is_b0=1, val=Skype_Encod(encod=0x41)/Skype_Objects_Set(objnb=1)

/Skype_Obj_INET(id=0x11, ip="172.16.72.*", port=1433)))

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 26/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Firewall testing (a.k.a remote scan)

Me: Say hello to slashdot.org:80
IP 1.2.3.4.1234 > 172.16.72.19.1146: UDP, length: 24

Skype: Yes, master
IP 172.16.72.19.1146 > 1.2.3.4.1234: UDP, length: 11

Skype: Hello! (in UDP)
IP 172.16.72.19.1146 > 66.35.250.151.80: UDP, length: 20

Skype: connecting to slashdot in TCP
IP 172.16.72.19.3776 > 66.35.250.151.80: S 0:0(0)

IP 66.35.250.151.80 > 172.16.72.19.3776: S 0:1(0) ack 0

IP 172.16.72.19.3776 > 66.35.250.151.80: . ack 1

Skype: Hello! (in TCP). Do you speak Skype ?
IP 172.16.72.19.3776 > 66.35.250.151.80: P 1:15(14) ack 1

IP 66.35.250.151.80 > 172.16.72.19.3776: . ack 15

Skype: Mmmh, no. Goodbye.
IP 172.16.72.19.3776 > 66.35.250.151.80: F 15:15(0) ack 1

IP 66.35.250.151.80 > 172.16.72.19.3776: F 1:1(0) ack 16

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 27/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Skype Network

Supernodes

Each skype client can relay communications to help
unfortunates behind a firewall

When a skype client has a good score (bandwidth+no
firewall+good cpu) he can be promoted to supernode

Slots and blocks

Supernodes are grouped by slots

You usually find 9 or 10 supernodes by slot

You have 8 slots per block

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 28/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Who are the supernodes ?

Just ask

Each supernode knows almost all other supernodes

This command actually ask for at most 100 supernodes from
slot 201

>>> sr1(IP(dst="67.172.146.158")/UDP(sport=31337,dport=4344)/Skype_SoF(

id=RandShort())/Skype_Enc()/Skype_Cmd(cmd=6, reqid=RandShort(),

val=Skype_Encod(encod=0x41)/Skype_Objects_Set(objnb=2)

/Skype_Obj_Num(id=0,val=201)/Skype_Obj_Num(id=5,val=100)))

Nowadays there are ∼ 2050 slots

That means ∼ 20k supernodes in the world

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 29/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

More commands

Related to supernodes

Promote any client to a supernode

Ask for supernode clients information

Bandwidth
Memory
OS version
Skype version

Ban any supernode for one hour

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 30/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 31/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Object lists

An object can be a number, a
string, an IP:port, or even another
object list

Each object has an ID

Skype knows which object
corresponds to which command’s
parameter from its ID

Object List

List size Number

IP:port

List of numbers

String

RSA key

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 32/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Space allocation

Algorithm

l e a ecx , [esp+arg 4]
push ecx

c a l l g e t u i n t

add esp , 0Ch

t e s t a l , a l

j z pa r se end

mov edx , [esp+arg 4]
l e a eax , ds : 0 [edx ∗4]
push eax

mov [e s i +10h] , eax

c a l l L o c a lA l l o c

mov ecx , [esp+arg 4]
mov [e s i+0Ch] , eax

1 Read an unsigned int NUM
from the packet

2 This integer is the number
of unsigned int to read next

3 malloc 4*NUM for storing
those data

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 33/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Data reading

Algorithm

r e a d i n t l o o p :
push ebx

push ed i

push ebp

c a l l g e t u i n t

add esp , 0Ch

t e s t a l , a l

j z pa r se end

mov eax , [esp+arg 4]
i n c e s i

add ebp , 4
cmp es i , eax

jb r e a d i n t l o o p

1 For each NUM we read an
unsigned int

2 And we store it in the array
freshly allocated

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 34/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Heap overflow

How to exploit that?

If NUM = 0x80000001

The multiplication by 4 will overflow :

0x80000001 ∗ 4 = 0x00000004

So Skype will allocate 0x00000004 bytes

But it will read NUM integers

=⇒ Skype will overflow the heap

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 35/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Exploiting

Reliability

In theory, exploiting a heap on Windows XP SP2 is not very
stable

But Skype has some Oriented Object parts

It has some structures with functions pointers in the heap

If the allocation of the heap is close from this structure, the
overflow can smash function pointers

And those functions are often called

=⇒ Even on XP SP2, the exploit is possible ©

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 36/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Remote code execution

Loving OOP

Here is the code responsible for the function pointer call

push e s i

push ed i

l e a ecx , [ebx+eax]
c a l l ebp

mov eax , [ecx]
jmp dword p t r [eax+8]

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 37/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

Skype patch

Code

cmp edi , 3FFFFFFFh

jbe sho r t loc 72F52B

push o f f s e t aA l i s t S e t s i z eA l ; "alist :: SetSize (): alloc size ove

About the patch

The same piece of code is present about 60 times

Each time a comparison with 0x3FFFFFFF is done

Sometimes, the register is not multiplied by 4, but by 5 or
more

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 38/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Filtering
AP2AP

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 39/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Filtering
AP2AP

Chat filtering

Chinese censorship

TOM-Skype and eBay.cn-Skype censor incoming text
messages on behalf of the Chinese government
Both versions are shipped with a ContentFilter.exe binary
It is a plugin that is verified and loaded automatically by
Skype
Words are matched against an encrypted list of simplified
chinese expressions

Undocumented API

A filtering API is activated in those Skype versions

FILTERING ON will start a message redirection mechanism
FILTER n OK or FILTER n BLOCK will allow or block a
message submitted to the filtering plugin

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 40/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Filtering
AP2AP

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 41/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Filtering
AP2AP

Hiding behind Skype

AP2AP

An interesting feature of the API is the Application to Application
protocol, which allows two applications to communicate through
Skype

They benefit from Skype NAT and Proxy bypassing abilities
The data is encrypted by Skype itself
The remote endpoint is only identified by a login and not an
IP address

Uses

Exfiltration
Discrete remote control of the machine
File transfers
Network connections tunneling

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 42/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Filtering
AP2AP

Encrypted tunnels

Sample applications

AP2AP remote cmd.exe

AP2AP socks v4, v4a and v5 proxy

AP2AP key logging

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 43/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 44/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Random number generator (1/2)

Code

uns igned i n t 6 4 Skype 8ByteRandom (vo id)
{

BYTE pbBuf fe r [1 1 2 4] ;
SHA1 CTX SHA1Context ;

memcpy(&pbBuf fe r [1 6] , Skype RandomSeed , SHA1 DIGLEN) ;
GlobalMemoryStatus ((LPMEMORYSTATUS)(& pbBuf fe r [3 6])) ;
UuidCreate ((UUID ∗)(& pbBuf fe r [6 4])) ;
GetCursorPos ((LPPOINT)(& pbBuf fe r [7 6])) ;
∗(DWORD ∗)(& pbBuf fe r [8 0]) = GetTickCount () ;
∗(DWORD ∗)(& pbBuf fe r [8 4]) = GetMessageTime () ;
∗(DWORD ∗)(& pbBuf fe r [8 8]) = GetCurrentThreadId () ;
∗(DWORD ∗)(& pbBuf fe r [9 2]) = GetCur rentProcess Id () ;
QueryPerformanceCounter ((LARGE INTEGER ∗)(& pbBuf fe r [9 6])) ;
SHA1 Init (&SHA1Context) ;
SHA1 Update(&SHA1Context , &pbBuf fe r [0] , 1124) ;
SHA1 Update(&SHA1Context , "additional salt ..." , 1 9) ;
SHA1 Final (Skype RandomSeed , &SHA1Context) ;

r e t u r n Skype 8ByteSHA1(&pbBuf fe r [0] , 1124) ;
}

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 45/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Random number generator (2/2)

Code

s t a t i c BYTE Skype RandomSeed [SHA1 DIGLEN] ;

uns igned i n t 6 4 Skype 8ByteSHA1 (BYTE ∗pbData , DWORD dwLength)
{

SHA1 CTX SHA1Context ;
BYTE pbHash [SHA1 DIGLEN] ;

SHA1 Init (&SHA1Context) ;
SHA1 Update(&SHA1Context , &pbData [0] , dwLength) ;
SHA1 Final (pbHash , &SHA1Context) ;

r e t u r n ∗(uns igned i n t 6 4 ∗)(&pbHash [0]) ;
}

My 2 cents

The random number generator implementation is quite strong,
thus giving a good base to all the overlying cryptography
Surprisingly, some parts of the structures used are overwritten

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 46/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 47/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Eggy

Easter egg in the chat module

Removed in version 2.0.0.103 and later

Skype people do read our slides !

Triggered by a command in a chat window

/eggy <secret>

Decrypts and displays one of two texts given <secret>

1st if (length == 6 && crc32 == 0xb836ac79)
2nd if (length == 14 && crc32 == 0x0407aac1)

Decryption algorithm

f o r (i = 0 , x = 0 ; i < (s t r l e n (s z I npu t) >> 1) ; i++) {
szOutput [i] = ((s z I npu t [(i << 1) + 1] << 4) |

(s z I npu t [i << 1] & 0 xbf)) ˆ x ˆ szKey [i % s t r l e n (szKey)] ;
x ˆ= szOutput [i] ;

}

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 48/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Breaking the egg

Dictionnary and bruteforce attack

Based on length and crc32 values

Decrypted text will allow to settle in the event of collisions

1st secret found : prayer

Cryptanalysis

Model the cipher like a usual one time pad with a known key
length

c ′

i = ci ⊕ ci−1 with c ′

1 = c1

k ′

i = ki ⊕ ki−1 with k ′

1 = k1

Carry on with a usual statistical cryptanalysis attack

2nd secret found : indrek@mare.ee

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 49/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Example

Crypted text

MCBEMCK@LF@ADENA@FBAHFND@FBANCKEDCJDDCDEKAFANFEAGFL

@NB@DHCJEBBJELBNDEDOALGMAAFCDFFA@NGIELCLDKGFBFFBCND

HCO@GBD@EFMAFCLAIFFAMGCCLFCAABLCNCKAOGA@CFB@DCNFA@D

DM@CGE@BCAEKBBAIBGAMCF@ACLDCAGEGCHDOGEEBGKAAFC@FCI@

Key

indrek@mare.ee

Decrypted text

The programmer behind the internal workings of Skype chat,
cheers! Indrek Mandre (1979 - still alive?)

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 50/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Example

Crypted text

MCBEMCK@LF@ADENA@FBAHFND@FBANCKEDCJDDCDEKAFANFEAGFL

@NB@DHCJEBBJELBNDEDOALGMAAFCDFFA@NGIELCLDKGFBFFBCND

HCO@GBD@EFMAFCLAIFFAMGCCLFCAABLCNCKAOGA@CFB@DCNFA@D

DM@CGE@BCAEKBBAIBGAMCF@ACLDCAGEGCHDOGEEBGKAAFC@FCI@

Key

indrek@mare.ee

Decrypted text

The programmer behind the internal workings of Skype chat,
cheers! Indrek Mandre (1979 - still alive?)

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 50/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Example

Crypted text

MCBEMCK@LF@ADENA@FBAHFND@FBANCKEDCJDDCDEKAFANFEAGFL

@NB@DHCJEBBJELBNDEDOALGMAAFCDFFA@NGIELCLDKGFBFFBCND

HCO@GBD@EFMAFCLAIFFAMGCCLFCAABLCNCKAOGA@CFB@DCNFA@D

DM@CGE@BCAEKBBAIBGAMCF@ACLDCAGEGCHDOGEEBGKAAFC@FCI@

Key

indrek@mare.ee

Decrypted text

The programmer behind the internal workings of Skype chat,
cheers! Indrek Mandre (1979 - still alive?)

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 50/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 51/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Logs

Debug logs

Skype can generate debug logs if some registry keys are set to
the correct values in
HKCU\Software\Skype\Phone\UI\General

Logging for encrypted log files
Logging2 for clear text log files

Only the MD5 hashes of the correct values appear in the
Windows binary

Enabling logs

Patch the binary

One needs to get rid of all the integrity checks first

Recover the correct values, which are out of bruteforcing range

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 52/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Log encryption

Cipher

Skype generates a 128 bit RC4 key to encrypt logs on the fly

It is formated, then encrypted using a 1024 bit RSA public key
(e = 3), and stored at the beginning of the log file

Encrypted data format

’BLOG’ 0x00000002 time(NULL)

0x01000000

0x00000000128 bit RC4 key

...

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 53/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

RC4 key

Key format

time(NULL) time(NULL)GetTickCount()
GetTickCount()

* 1000

Recovering the key

The clear text log file format is known

The log file name already contains the year, month and day

The only things remaining are

The seconds (0 to 59)
The value of GetTickCount() (usually < 224)

If Skype is automatically launched at Windows startup,
recovery is instantaneous

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 54/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

RC4 key

Key format

time(NULL) time(NULL)GetTickCount()
GetTickCount()

* 1000

Recovering the key

The clear text log file format is known

The log file name already contains the year, month and day

The only things remaining are

The seconds (0 to 59)
The value of GetTickCount() (usually < 224)

If Skype is automatically launched at Windows startup,
recovery is instantaneous

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 54/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

”Logging”

Hint

http://download.skype.com/logging-on-off.zip

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 55/74

http://www.eads.net
http://download.skype.com/logging-on-off.zip

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Traces

Trace file

Skype voice engine can generate encrypted trace files if
Logging and Logging2 are set
Encryption is much simpler, a basic XOR with a 31 byte key

Decryption algorithm

f o r (i = 0 , j = 0 ; i < s t r l e n (pBuf fe r) ; i ++, j++, k = (k + 1) % 31) {
i f (pBuf fe r [i] == 1) {

pBuf fe r [j] = (127 − pBuf fe r [i + 1]) ˆ pXORTable [k] ;
i ++;

} e l s e i f (pBuf fe r [i] == 2) {
pBuf fe r [j] = pBuf fe r [i + 1] ;
i ++;

} e l s e

pBuf fe r [j] = pBuf fe r [i] ˆ pXORTable [k] ;
}
pBuf fe r [j] = ’\0’ ;

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 56/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Some things you can find in logs

Stack dumps
11:35:40 Mutex::Acquire: possible deadlock. Stack dump:

11:35:40 0012fb8c: 00aebaa4 02057030 001e1d63 0012fc54 0074861b 0012fb8c 0012fd8c

11:35:40 0012fbac: 02057030 001e1d63 0012fc00 009eb048 ffffffff 0072fa98 0000003a

11:35:40 0012fbcc: 0012fbe4 03ce2540 007274ad 000000f5 0012fbe4 0043d7e8 00000000

...

Assert failures
10:21:38 Call #2: StartPlayout (1 1)

10:21:38 Call #2: setting audio bandwidth to 2625 pkt 60ms

10:21:38 ASSERTFAILURE(Channel && VE->EngineInited && Recording) in D:\Src\GI\Skyper\VoiceEngine\VoiceEngine.cpp(463)

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 57/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 58/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Plugin ”signing”

Skype plugins ACL

Skype implements an ACL-like system to allow or disallow
plugins to attach themselves to a runnning instance
A plugin ”signature” is added to the configuration file based
on the user reply to a warning dialog

Example entry

<Ac c e s sC o n t r o l L i s t>
<C l i e n t 1>

<Key1>623 df12b13d8dea5e32ea1f8467f3d2f040f662d0e604032a08cca9cd243

<Key2>31823 a73a63c38a2e7ead0a2408a7f2a</Key2>
<Key3>263594</Key3>
<Path>D:\Skype\P lug i n s \ p lug i n mas t e r . exe</Path>

</ C l i e n t 1>

</ A c c e s s C o n t r o l L i s t>

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 59/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Warning dialog

Figure: ”Permit”, ”Ask” or ”Ban” a plugin

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 60/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

”Signing” plugins

Hashes to hashes

The ”signature” mechanism is just about MD5 hashes of the
full path, the binary, and the ACL specified by the user

Nothing much can stop us from writing our own and add it to
the configuration file !

Pseudo-code (’.’ is concatenation)

s z S a l t = "Element ’ry!penguiNs;-) SingingHareKrishna_ "

szKey1 = Str (Md5(Str (Md5(Upr (szPath) . s z S a l t))))
. Str (Md5(Str (Md5(pBinary)) . s z S a l t))

szKey2 = Str (Md5("Per" . Upr (szPath) . "mit"))
szKey3 = "0" // Last HWND of the plugin

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 61/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 62/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

Encrypted blacklist

Keyfile

On startup, TOM-Skype ContentFilter.exe fetches an
encrypted keywords list file at
http://skypetools.tom.com/agent/keyfile

Each line is an AES encrypted regular expression

A 32 character key is hardcoded in unicode in the binary

Only the 1st 32 bytes are used

Extract
[\.*\ \,*\;]*t[\.*\ \,*\;]*e[\.*\ \,*\;]*s[\.*\ \,*\;]*t[\.*\ \,*\;]*i[\.*\ \,*\;]*n[\.*\

[\.*\ \,*\;]*f[\.*\ \,*\;]*u[\.*\ \,*\;]*c[\.*\ \,*\;]*k[\.*\ \,*\;]*

[\.*\ \,*\;]*6[\.*\ \,*\;]*2[\.*\ \,*\;]*7[\.*\ \,*\;]*9[\.*\ \,*\;]*7[\.*\ \,*\;]*0[\.*\

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 63/74

http://www.eads.net
http://skypetools.tom.com/agent/keyfile

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

More networking
Credentials

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 64/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

More networking
Credentials

Session half key exchange

How does it work ?

Each peer generates a 128 bit random nonce, extends it to
1024 bits by repeating it
The extend nonce is encrypted using the RSA public key of
the other peer
Each peer decrypts the received data and computes 128 bits
of the 256 bit AES session key

Some maths

C = 1 + 2128 + 2256 + 2384 + 2512 + 2640 + 2768 + 2896

m = x ∗ C and m′ = me mod n, so m′ = xe ∗ C e mod n
m′′ = xe mod n with m′′ = m′ ∗ C−e mod n

The ”weakness”

Best known attack is in 264

http://citeseer.ist.psu.edu/boneh00why.html

NSA can probably do better ©

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 65/74

http://www.eads.net
http://citeseer.ist.psu.edu/boneh00why.html

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

More networking
Credentials

Outline
1 Introduction
2 Networking

Compression
Analysis of the login phase
Playing with Skype Traffic
Nice commands
Remote exploit

3 Skype API
Filtering
AP2AP

4 Skype cryptography fun
Randomness
Easter eggs
Debug logs
Plugins
Chinese Blacklist

5 Credentials
More networking
Credentials

6 Conclusion
Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 66/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

More networking
Credentials

Saved credentials

What does Skype save ?

If told to, Skype will save in the config.xml file

The login MD5 hash (username\nskyper\npassword)
The generated RSA private key
The Skype encrypted corresponding RSA public key

Everything is heavily encrypted, but in a symmetric way :)

The following algorithms are used

CryptProtectData(), CryptUnprotectData()
SHA-1
AES-256
”FastTrack cipher”
1024+ bit RSA

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 67/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

More networking
Credentials

Credentials structure

Version 1

16 bytes for login MD5 hash
128 bytes for user RSA private key (D) (1024 bits)
4 bytes for Skype RSA key ID
192+ bytes for RSA block encrypted with Skype RSA key

Padding
Skype encoded data

User name
1 dword
User RSA public key (N) (1024 bits)
1 dword

SHA-1 hash of Skype encoded data
1 byte = 0xbc

2 bytes for CRC32 (reduced to 16 bits)

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 68/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

More networking
Credentials

Decrypting the credentials 1/2

Recovering the AES 256 bit key

Unprotect the token from
HKCU\Software\Skype\ProtectedStorage
Use incremental counter mode SHA-1 to create a 32 byte key
from the token

Decrypting the 1st layer

Use icremental counter mode AES to decrypt the credentials
Login MD5 hash is now decrypted

Decrypting the 2nd layer

Use the login MD5 hash as key for the ”FastTrack cipher”
Decrypt the rest of credentials data
RSA private key is now decrypted

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 69/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

More networking
Credentials

Decrypting the credentials 2/2

Decrypting the 3rd layer

Use the correct Skype public key to decrypt the remaining
RSA block
RSA public key is now decrypted

Graphical summary

AES encrypted
data

MD5 hash

"FastTrack cipher"
encrypted data

RSA private key

MD5 hash

RSA encrypted
data

RSA private key

Login
RSA public key

MD5 hash

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 70/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

More networking
Credentials

Saved credentials usage

Login MD5 hash

Skype password recovery

Dictionnary attack
Bruteforce attack

RSA private key

Sniffed session half key recovery

Decrypt the 128 bit random nonce exchanged
Compute half of the AES-256 session key

Complete sniffed session key recovery

If both RSA private keys are recovered

=⇒ Sniffed conversation decryption

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 71/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Conclusion

Auditing a software

Auditing a binary in its complete form is much more accurate
that auditing a portion of the sources

Skype, Inc. clearly doesn’t tell you everything

Skype v2.5

The developpers have silently modified the behaviour of Skype
carefully following the BlackHat talk points

Most of the sensitive commands are now TCP only
Some very sensitive commands are only accepted when coming
from the currently-connected-to supernode only
Some features have simply been trashed

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 72/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Acknowledgements

Shouts to

Phil, Imad, Dave, Halvar, Gera, Team Rstack, Microsoft

MD5ed props to (from a former life)

17f063b9c9f793dc841c7fee0f76eede

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 73/74

http://www.eads.net

Introduction
Networking
Skype API

Skype cryptography fun
Credentials
Conclusion

Questions ?

Fabrice DESCLAUX, Kostya KORTCHINSKY Vanilla Skype part 2 74/74

http://www.eads.net

	Introduction
	Networking
	Compression
	Analysis of the login phase
	Playing with Skype Traffic
	Nice commands
	Remote exploit

	Skype API
	Filtering
	AP2AP

	Skype cryptography fun
	Randomness
	Easter eggs
	Debug logs
	Plugins
	Chinese Blacklist

	Credentials
	More networking
	Credentials

	Conclusion

