
The The

binary analysis frameworkbinary analysis framework

2

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/1
https://pad.rev.ng/#/1
https://pad.rev.ng/#/1

This presentation is available at:

All the demos are available at:

3

https://rev.ng/presentation
https://rev.ng/presentation
https://github.com/revng/demos
https://github.com/revng/demos
https://pad.rev.ng/#/2
https://pad.rev.ng/#/2
https://pad.rev.ng/#/2

1. 10 people

2. Partly in Milan, Italy, partly in rest of Europe

3. Compiler engineers/security researchers

4. We worked with

4

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/3
https://pad.rev.ng/#/3
https://pad.rev.ng/#/3

OutlineOutline
1. rev.ng overview

2. Demo: with rev.ng

3. Let’s put our hands into

4. Demo: automatic bug finding

5. Automated recovery

6. The

5

https://pad.rev.ng/#/4
https://pad.rev.ng/#/4
https://pad.rev.ng/#/4

revrev.ng .ng

6 . 1

https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5

revrev.ng is an .ng is an

binary analysis frameworkbinary analysis framework

and and decompiler decompiler

for native codefor native code

6 . 2

https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1

This is a This is a
LLVMLLVM

C

LLVM IR

clang

C++
clang++

rust

rustc

-O2
ARM

MIPS

x86-64

6 . 3

https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2

This is a This is a
QEMUQEMU

ARM

Tiny codeMIPS

x86-64

-O2
ARM

MIPS

x86-64

6 . 4

https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3

This is a This is a
revrev.ng.ng

C

ARM

Tiny codeMIPS

x86-64

LLVM IR

-O2

6 . 5

https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4

Using Using

7

https://pad.rev.ng/#/6
https://pad.rev.ng/#/6
https://pad.rev.ng/#/6

We use QEMU butWe use QEMU but

we we run any code run any code
We just use it as a lifterWe just use it as a lifter

8

https://pad.rev.ng/#/7
https://pad.rev.ng/#/7
https://pad.rev.ng/#/7

Writing an Writing an is hard is hard

9

https://pad.rev.ng/#/8
https://pad.rev.ng/#/8
https://pad.rev.ng/#/8

QEMU Advent Calendar
10 . 1

https://qemu-advent-calendar.org/
https://qemu-advent-calendar.org/
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9

Supporting Supporting is hard is hard
QEMU supports:

Alpha, , CRIS, HPPA, ,

Hexagon, LatticeMico32, 68K, MicroBlaze, ,

Moxie, Nios2, OpenRISC, PowerPC, RISC-V, SH4,

Sparc, , TileGX, TriCore, Unicore32, Xtensa

10 . 2

https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1

QEMU is QEMU is for: for:
• accuracy

• supporting many architectures

• lifting

• dynamic binary translation

10 . 3

https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2

QEMU is QEMU is for: for:
• anything else

10 . 4

https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3

Tiny code LLVM IR

10 . 5

https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4

Here be dragonsHere be dragons

10 . 6

https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5

• Enable us to focus on building a ,

not a compiler framework

• Well known and big community

• Well defined semantics

• Many tools build on top of it (KLEE, Phasar, …)

• High performance (C++)

10 . 7

https://klee-se.org/
https://klee-se.org/
https://phasar.org/
https://phasar.org/
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6

A note on A note on
We do not use symbolic execution in the pipeline.

However, we deem it appropriate for bug hunting!

10 . 8

https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7

A note on A note on
We’ve done it.

We’re no longer focused on it.

There are a lot of effective alternative approaches.

10 . 9

https://rev.ng/blog/fuzzing-binaries
https://rev.ng/blog/fuzzing-binaries
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8

How do I How do I

with revwith rev.ng?.ng?

11 . 1

https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10

The The
• basically rev.ng’s project file

• a YAML document

• contains everything the user can customize

11 . 2

https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1

ExampleExample
Architecture: x86_64

DefaultABI: SystemV_x86_64

Segments:

- StartOffset: 0

FileSize: 7

StartAddress: "0x400000:Generic64"

Functions:

- Entry: "0x400000:Code_x86_64"

Types:

- Kind: StructType

ID: 1

Size: 8

Fields:

- Offset: 4

Type: ...

11 . 3

https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2

Interaction option #1: the

Interaction option #2: the

revng \

 artifact \

 --analyze \

 decompile-to-single-file \

 /bin/df

revng-daemon

TypeScript

API
HTTP

Python

... rev.ng core

UI

11 . 4

https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3

tl;dr: tl;dr: stay stay
They can:

• use any language having YAML + HTTP/system

• use any version of the language they want

• use a different version of LLVM

• be on a different machine

• crash independently from rev.ng

11 . 5

https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4

No moreNo more

11 . 6

https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5

WrappersWrappers
In practice, we make things easier for

 and users with wrappers.

11 . 7

https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6

 stay stay

11 . 8

https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7

 stay stay
They have to buy into our dev stack (docs)

11 . 9

https://docs.rev.ng/user-manual/working-environment/#installing-revng-as-a-developer
https://docs.rev.ng/user-manual/working-environment/#installing-revng-as-a-developer
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8

Demo time!Demo time!

12

https://github.com/revng/demos/tree/master/1-model
https://github.com/revng/demos/tree/master/1-model
https://pad.rev.ng/#/11
https://pad.rev.ng/#/11
https://pad.rev.ng/#/11

tl;dr there are only two types of actions:

1. Request an (LLVM IR, valid C, …)

2. Run an /make changes to the model

13

https://pad.rev.ng/#/12
https://pad.rev.ng/#/12
https://pad.rev.ng/#/12

It’s It’s time! time!

14

https://pad.rev.ng/#/13
https://pad.rev.ng/#/13
https://pad.rev.ng/#/13

Example programExample program
long myfunction(long value) {

long result = value;

 result = result * 2;

return result;

}

15 . 1

https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14

DisassemblyDisassembly
myfunction:

push rbp

mov rbp,rsp

mov QWORD PTR [rbp-0x8],rdi

mov rax,QWORD PTR [rbp-0x8]

mov QWORD PTR [rbp-0x10],rax

mov rax,QWORD PTR [rbp-0x10]

shl rax,0x1

mov QWORD PTR [rbp-0x10],rax

mov rax,QWORD PTR [rbp-0x10]

pop rbp

ret

1

2

3

4

5

6

7

8

9

10

11

12

15 . 2

https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1

15 . 3

https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2

15 . 4

https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3

15 . 5

https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4

15 . 6

https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5

15 . 7

https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6

A couple of demosA couple of demos
1. Write a small ()

2. Collect some information about ()

16 . 1

https://github.com/revng/demos/tree/master/4-taint-example
https://github.com/revng/demos/tree/master/4-taint-example
https://github.com/revng/demos/tree/master/5-loop-example
https://github.com/revng/demos/tree/master/5-loop-example
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15

-ENOTIME-ENOTIME

You can check them out atYou can check them out at

16 . 2

https://github.com/revng/demos
https://github.com/revng/demos
https://github.com/revng/demos
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1

Things you can do in LLVMThings you can do in LLVM
• Graph theory

▪ Build the

▪ Identify

▪ Perform (depth first, topological…)

• Manipulate functions

▪ Inline

▪ Outline

▪ Specialize

17

https://pad.rev.ng/#/16
https://pad.rev.ng/#/16
https://pad.rev.ng/#/16

Let’s find some bugs!Let’s find some bugs!
• Use revng for

• With static analysis tools for or

• Demo on LLVM IR:

• We’ve got offline demos on C with

▪ Clang Static Analyzer

▪ CodeQL

18

https://pad.rev.ng/#/17
https://pad.rev.ng/#/17
https://pad.rev.ng/#/17

What is What is
• engine for LLVM

• Works on vanilla LLVM IR

• Has a builtin set of states known as bugs:

▪ fail

▪ various classes of

• Regular use from source code

19

https://pad.rev.ng/#/18
https://pad.rev.ng/#/18
https://pad.rev.ng/#/18

Demo time!Demo time!

20

https://github.com/revng/demos/tree/master/6-klee
https://github.com/revng/demos/tree/master/6-klee
https://pad.rev.ng/#/19
https://pad.rev.ng/#/19
https://pad.rev.ng/#/19

Bug-finding Bug-finding ??
• Take the same input program

• Decompile it with revng

• Feed it into source-level static analysis tools

▪ Clang Static Analyzer

▪ CodeQL

• Profit!

21

https://pad.rev.ng/#/20
https://pad.rev.ng/#/20
https://pad.rev.ng/#/20

Clang static analyzer Clang static analyzer (())

Original C Clang Static Analyzer Report

void my_free(void *p) {

free(p);

}

int do_stuff(int condition) {

int *p = malloc(sizeof(int));

if (condition > 4)

 my_free(p);

 *p = 3;

int result = *p;

 my_free(p);

return result;

}

22

https://github.com/revng/demos/tree/master/7-clang-static-analyzer
https://github.com/revng/demos/tree/master/7-clang-static-analyzer
https://pad.rev.ng/#/21
https://pad.rev.ng/#/21
https://pad.rev.ng/#/21

CodeQL CodeQL (())
Original C CodeQL Report

int do_stuff(int condition) {

int *p = malloc(sizeof(int));

if (condition > 4)

free(p);

 *p = 3;

int result = *p;

free(p);

return result;

}

_ABI(SystemV_x86_64)

generic64_t do_stuff(generic64_t _argument0) {

void *_var_0;

 _var_0 = malloc((size_t) 4);

if ((int32_t) (generic32_t) _argument0 > (int32_t) 4) {

// BUG 1: call to free

// BUG 2: call to free

free((generic32_t *) _var_0); // line 69

 }

// BUG 1: Potential use after free

// An allocated memory block is used after it has been freed.

// Behavior in such cases is undefined and can cause memory corruption.

// Memory may have been previously freed by call to free at line 69.

 *(generic32_t *) _var_0 = 3;

// BUG 2: Potential double free

// Behavior in such cases is undefined and can cause memory corruption.

// Memory may already have been freed by call to free at line 69.

free((generic32_t *) _var_0);

return 3;

}

23

https://github.com/revng/demos/tree/master/8-codeql
https://github.com/revng/demos/tree/master/8-codeql
https://pad.rev.ng/#/22
https://pad.rev.ng/#/22
https://pad.rev.ng/#/22

Automated bug-finding with Automated bug-finding with
• revng output quality plays well with tooling

• Different levels of abstraction: LLVM IR or C

• LLVM: crossroad of project for static analysis

• C: has a huge base of analysis tools

24

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/23
https://pad.rev.ng/#/23
https://pad.rev.ng/#/23

25

https://pad.rev.ng/#/24
https://pad.rev.ng/#/24
https://pad.rev.ng/#/24

No type recoveryNo type recovery

generic64_t sum(generic64_t _argument0) {

generic64_t _var_0 = 0, _var_1 = 0;

do {

 _var_1 = _var_1 + *(generic64_t *) ((_var_0 << 3) + _argument0);

 _var_0 = _var_0 + 1;

 } while (_var_0 != 5);

return _var_1;

}

generic64_t compute(generic64_t _argument0) {

generic64_t _var_0 = _argument0, _var_1 = 0;

generic64_t _var_2;

do {

 gen_var_2 = sum(_var_0);

 _var_1 = _var_1 + _var_2;

 _var_0 = *(generic64_t *) (_var_0 + 40);

 } while (_var_0);

return _var_1;

}

26

https://pad.rev.ng/#/25
https://pad.rev.ng/#/25
https://pad.rev.ng/#/25

With automated type recoveryWith automated type recovery
typedef struct _PACKED _struct_61 {

generic64_t _offset_0[5];

 _struct_61 *_offset_40;

} _struct_61;

generic64_t sum(_struct_61 *_argument0) {

generic64_t _var_0 = 0, _var_1 = 0

do {

 _var_0 = _var_0 + _argument0->_offset_0[_var_1];

 _var_1 = _var_1 + 1;

 } while (_var_1 != 5);

return _var_0;

}

generic64_t compute(_struct_61 *_argument0) {

 _struct_61 *_var_0 = _argument0

generic64_t _var_1 = 0, _var_2;

do {

 _var_2 = sum(_var_0);

 _var_1 = _var_1 + _var_2;

 _var_0 = _var_0->_offset_40;

 } while (_var_0);

return _var_1;

}

27

https://pad.rev.ng/#/26
https://pad.rev.ng/#/26
https://pad.rev.ng/#/26

28

https://pad.rev.ng/#/27
https://pad.rev.ng/#/27
https://pad.rev.ng/#/27

The The of rev of rev.ng.ng

29 . 1

https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28

Supported Supported
• x86

• x86-64

• ARM

• AArch64

• MIPS

• SystemZ

29 . 2

https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1

• ELF

• DWARF

• PE/COFF

• CodeView (.pdb)

• Mach-O

• IDA Pro

29 . 3

https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2

 does rev does rev.ng run?.ng run?
• Daemon

▪ Linux x86-64 natively

▪ macOS via Docker

▪ Windows via WSL

• Clients can run anywhere

30

https://pad.rev.ng/#/29
https://pad.rev.ng/#/29
https://pad.rev.ng/#/29

Recently, we released the pipeline as open source.Recently, we released the pipeline as open source.

We’re now focusingWe’re now focusing

on on and and ..

31

https://pad.rev.ng/#/30
https://pad.rev.ng/#/30
https://pad.rev.ng/#/30

We currently produce IR for GCC in 18 minutes.

• New argument detection analysis: 2.1x

• Reduce invalidation: ~1.7x (10min expected)

• Other low effort fixes: ~2x (5min expected)

32

https://pad.rev.ng/#/31
https://pad.rev.ng/#/31
https://pad.rev.ng/#/31

Goal: Goal: with with
Ghidra and IDAGhidra and IDA

1min 30sec and 40sec

33

https://pad.rev.ng/#/32
https://pad.rev.ng/#/32
https://pad.rev.ng/#/32

Next up: Next up:
• Decompile all binaries on:

▪ Ubuntu x86-64

▪ Windows x86-64

▪ Android AArch64

• Focus on:

▪ optimizing performance of bottlenecks

▪ squashing bugs

34

https://pad.rev.ng/#/33
https://pad.rev.ng/#/33
https://pad.rev.ng/#/33

In short,

• is FLOSS

• is declarative in user interactions

• has a modern design

• uses a “standard” IR and emits valid C

• interacts with existing tools

• has a nice (commercial) UI

35

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/34
https://pad.rev.ng/#/34
https://pad.rev.ng/#/34

• Based on , mostly a plugin

• Connects to

• Runs as a app or in the

• just works out of the box

• Also, (think GitHub for reversers)

• Cloud version will be

36

http://rev.ng/
http://rev.ng/
http://hub.rev.ng/
http://hub.rev.ng/
https://pad.rev.ng/#/35
https://pad.rev.ng/#/35
https://pad.rev.ng/#/35

Final noteFinal note
We’re and we do

37

https://pad.rev.ng/#/36
https://pad.rev.ng/#/36
https://pad.rev.ng/#/36

0:00 / 2:03

38

https://pad.rev.ng/#/37
https://pad.rev.ng/#/37
https://pad.rev.ng/#/37

Backup slidesBackup slides

39 . 1

https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38

 frontends? frontends?
???

LLVM IR C

ARM

Tiny codeMIPS

x86-64

-O2

39 . 2

https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1

IdeaIdea

WIP, particularly interesting for WebAssembly

typedef struct {

uint32_t rax;

uint32_t rdi;

// ...

} CPUState;

void add(CPUState *state) {

 state->rax = state->rax + state->rdi;

}

39 . 3

https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2

