The
binary analysis framework

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/1
https://pad.rev.ng/#/1
https://pad.rev.ng/#/1

This presentation is available at:

rev.ng/presentation

All the demos are available at:

github.com/revng/demos

https://rev.ng/presentation
https://rev.ng/presentation
https://github.com/revng/demos
https://github.com/revng/demos
https://pad.rev.ng/#/2
https://pad.rev.ng/#/2
https://pad.rev.ng/#/2

rev.n

== w.-y‘ e

v
e *Wﬁr# Y s g e o

M\\\ - e \ -\ \ﬁq \‘,# W g Y e'.'y, ;-' o | & , N S

S e e " - P s o A il e S s e . 79\.
‘. T ’.; '-. % ',"_‘-:_ . :'; S ;'_‘," e ..--. ;- ‘. R, o "‘(,r ~ y . v N b _"v" @*

. v -~ . TR - ' J
. g \ .“ 1 4 <, . /

oo AP o i . ! : |) -

1.10 people
2. Partly in Milan, Italy, partly in rest of Europe
3. Compiler engineers/security researchers

4. We worked with

Qualcommn HUAWEI

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/3
https://pad.rev.ng/#/3
https://pad.rev.ng/#/3

Outline

1. rev.ng overview

2. Demo: with rev.ng
3. Let’s put our hands into

4. Demo: automatic bug finding

5. Automated recovery

6. The

https://pad.rev.ng/#/4
https://pad.rev.ng/#/4
https://pad.rev.ng/#/4

rev.ng design over

https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5
https://pad.rev.ng/#/5

rev.ng is an
binary analysis framework
and decompiler
for native code

https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1
https://pad.rev.ng/#/5/1

Thisis a
HAYY

e at

C clang
C++ _Eléﬂﬂij>.

rust

LLVM IR —»

N

ARM

MIPS

x86-64

6.

https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2
https://pad.rev.ng/#/5/2

Thisis a
QEMU

ARM ARM

~ (v

MIPS —» Tiny code —» MIPS

el S

x86-64 x86-64

https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3
https://pad.rev.ng/#/5/3

Thisis a

rev.ng
ARM .\\\~ 02
MIPS —» Tiny code —» LLVM IR —>» C

e

x86-64

https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4
https://pad.rev.ng/#/5/4

e

Using QEMU as =

https://pad.rev.ng/#/6
https://pad.rev.ng/#/6
https://pad.rev.ng/#/6

We use QEMU but
we run any code

We just use it as a lifter

https://pad.rev.ng/#/7
https://pad.rev.ng/#/7
https://pad.rev.ng/#/7

Writing an is hard

https://pad.rev.ng/#/8
https://pad.rev.ng/#/8
https://pad.rev.ng/#/8

QEMU Advent Calendar 2023~ Finalday Jumptoday ~ About Contact

| 'FLORDLE V1.6 BY MIHAIL SZABOLCS.

QAT ZDIZ
Day 1 - TinyCore Linux Day 2 - Bootable PDF holiday card Day 3 - Bootable Assembly word
TinyCore linux Bootable PDF holiday card game: FLORDLE
Size of download is 22M bytes. Size of download is 8M bytes. Bootable Assembly word game: FLORDLE

- - Size of download is 2.5k bytes.

QEMU Advent Calendar

10.

https://qemu-advent-calendar.org/
https://qemu-advent-calendar.org/
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9
https://pad.rev.ng/#/9

Supporting is hard
QEMU supports:

Alpha, , CRIS, HPPA, ,
Hexagon, LatticeMico32, 68K, MicroBlaze,

Moxie, Nios2, OpenRISC, PowerPC, RISC-V, SH4
Sparc, , TileGX, TriCore, Unicore32, Xtensa

10.

https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1
https://pad.rev.ng/#/9/1

QEMU is for:

accuracy

supporting many architectures
lifting

dynamic binary translation

10.

https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2
https://pad.rev.ng/#/9/2

QEMU is for:

e anything else

https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3
https://pad.rev.ng/#/9/3

Tiny code —» LLVM IR

10.

https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4
https://pad.rev.ng/#/9/4

Here be dragons

https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5
https://pad.rev.ng/#/9/5

e Enable us to focus on building a ,
not a compiler framework

o Well known and big community

o Well defined semantics

e Many tools build on top of it (KLEE, Phasar, ...)

e High performance (C++)

10.

https://klee-se.org/
https://klee-se.org/
https://phasar.org/
https://phasar.org/
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6
https://pad.rev.ng/#/9/6

A note on

We do not use symbolic execution in the pipeline.
However, we deem it appropriate for bug hunting!

10.

https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7
https://pad.rev.ng/#/9/7

A note on

We've done it.
We're no longer focused on it.
There are a lot of effective alternative approaches.

10.

https://rev.ng/blog/fuzzing-binaries
https://rev.ng/blog/fuzzing-binaries
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8
https://pad.rev.ng/#/9/8

How do |
with rev.ng?

https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10
https://pad.rev.ng/#/10

The

e basically rev.ng’s project file
e a YAML document
e contains everything the user can customize

11.

https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1
https://pad.rev.ng/#/10/1

Example

DefaultABI: SystemV_x86_64
Segments:
— StartOffset: O
FileSize: 7
StartAddress: "0x400000:Genericod"
Functions:
— Entry: "0x400000:Code_x86_64"
Types:
— Kind: StructType
ID: 1
Size: 8
Fields:
— Offset: 4

Type:

11.

https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2
https://pad.rev.ng/#/10/2

Interaction option #1: the

revng \
artifact \
——analyze \

decompile-to-single—-file \

/bin/df

Interaction option #2: the

Python

Ul —» TypeScript

API

revng-daemon

————» rev.ng core

11.

https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3
https://pad.rev.ng/#/10/3

tl;dr: stay
They can:

use any language having YAML + HTTP/system

use any version of the language they want
use a different version of LLVM

be on a different machine

crash independently from rev.ng

11.

https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4
https://pad.rev.ng/#/10/4

No more

hex rays Products > Solutions Partners Shop Support > Company >

As of now (IDA version 7.3), IDA ships with an IDAPython plugin, that is compiled against, and compatible with Python 2.7.

The Python authors that Python 3 has been available for long enough, to drop support for Python 2.x.

That effectively means that since Python 2.x will be unmaintained, it will gradually disappear from the landscape.

Work has begun (in fact, work is even finished) here at Hex-Rays to make IDAPython compilable, and compatible with Python 3.

https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5
https://pad.rev.ng/#/10/5

Wrappers

In practice, we make things easier for
and users with wrappers.

11.

https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6
https://pad.rev.ng/#/10/6

users stay out-of-process

https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7
https://pad.rev.ng/#/10/7

stay

They have to buy into our dev stack (docs)

11.

https://docs.rev.ng/user-manual/working-environment/#installing-revng-as-a-developer
https://docs.rev.ng/user-manual/working-environment/#installing-revng-as-a-developer
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8
https://pad.rev.ng/#/10/8

Demo time!

https://github.com/revng/demos/tree/master/1-model
https://github.com/revng/demos/tree/master/1-model
https://pad.rev.ng/#/11
https://pad.rev.ng/#/11
https://pad.rev.ng/#/11

tl;dr there are only two types of actions:

1. Request an (LLVM IR, valid C, ...)
2. Run an /make changes to the model

13

https://pad.rev.ng/#/12
https://pad.rev.ng/#/12
https://pad.rev.ng/#/12

It’'s |- time!

https://pad.rev.ng/#/13
https://pad.rev.ng/#/13
https://pad.rev.ng/#/13

Example program

my function (value) {
result = value;
result = result * 2;
result;

15.

1

https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14
https://pad.rev.ng/#/14

O J o U b W N

e
N R O W

Disassembly

myfunction:
push rbp
mov rbp, rsp
mov QWORD PTR [rbp-0x8], rdi
mov rax, QWORD PTR [rbp-0x8]
mowv QWORD PTR [rbp-0x10], rax
mov rax, QWORD PTR [rbp-0x10]
shl rax, Ox1
mowv QWORD PTR [rbp-0x10], rax
mowv rax, QWORD PTR [rbp-0x10]
pop rbp
ret

15.

https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1
https://pad.rev.ng/#/14/1

15.

https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2
https://pad.rev.ng/#/14/2

COLL P pr memeall BT reeny
otr il gt L)

CHll Prenpcdpts soneull §*rewng conat . Sesdiisl
otr sl ptr L)
Toed 164, ptr Brop
Weee 144 L par e
UL P (Pt sl §reeny [T
ptr il ptr wll)

coll Prewac(ptr sonmull §reeg il
otr il ptr L)
Load 144, ptr Priw
e
IATTapts 164 100 Be par
Lead dae, ptr 0
wtorw 144 V10, per e
oLl Prespciptr sonmull ' reeng conat fesiililc
”ir AL ptr L)
. Tond 164, otr rte
-y e
Lead 16d, p1r prus
_ inttoptr 484 V14 ta per
wtore 144 W15, per %
Hl1 Pranpciptr senmyll 9 reeny
e AL ptr L)

s pur

€L Prrnae (ptr semeell §7rweny conat
PP AL, e mt)
. Tead 1hd. ptr prue
, PRI
atorw 144 per frax
sherw 144 W10 phr Ber dnt
€1 Prewr (ptr semeell §7rweny comat
PP AL, e mt)
. Lead 1ad. ptr ooy
herw
COLL Prani (DU maall BT rweny nat
PP AL, e mt)
. Load 184, ptr frop
o Lee
Inttopte 404 00 e par
Toed 46, ptr &
Stere Lad e pras
COLL e (PUr MLl B rweng Genat
otr il ptr L)
. Load 184, ptr frep
. Inttoptr 404 &
. Toed 406, ptr &
. -oe daa 115, 0
L e
wtorw 144 W10, per prop
oLl Proociptr sonmull §'reeng conat. feedlis]
" AL ptr L)
. Toed 16e. ptr e
L Iattepts 404 100 B par
. Lead dae, prr 0
. e 144 005 0
wtore 144 W00, per rep
Shere 144 11T phe Bee
.t

15.4

https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3
https://pad.rev.ng/#/14/3

define 164 @local_myfunction(isé Srdi_xB6_64) {

%0 = call 164 @_init_rop()

call @nenpe(ptr nonnull @ reveg.const, Bx481130:

ptr null, ptr null)

%1 = load 164, ptr @rsp

%2 = add 64 %1, -0

%5 = inttoptr 164 %2 to ptr

store 164 %0, pte WO

store 164 %2, ptr @rsp

call @nenpc(ptr nonnull @"revng.
ptr null, pte null)

%4 = load 164, ptr @rsp

call @nespc(ptr nonnull @ revng.
ptr null, pte null)

A5 = add 164 %4,

%6+ inttoptr 164 %5 to ptr

store 164 “rdi_x86_64, ptr W

call @nespc(ptr nonnull @"revny.
ptr null, pte mull)

%7 = load 164, ptr %4

call @nespc(ptr nonnull @"revng.
ptr null, ptr null)

%8 = add 164 %4, -16

%90 » inttoptr 164 %5 to ptr

store 64 %7, pte %0

call @nenpc(ptr nonnull @"revng.c

pte null, pte null)

%10 = load 164, ptr %9

call @nespc(ptr nonnull @ revng.
ptr null, pte null)

%11 = shl 164 %10, 1

coll @nenpc(ptr nonnull @"reveg.
ptr null, pte aull)

store 164 %11, ptr %9

call @nenpe(ptr nonnull @"revey.
ptr null, ptr null)

%12 = load 164, ptr W9

call @nenpc(ptr nonnull @"revng.
ptr null, ptr null)

%13+ load i64, ptr @rsp

14 = pdd S84 %13, 0

store 164 %14, ptr @rsp

call @nenpc(ptr nonnull @ revey.
ptr null, ptr null)

%15 = load 164, ptr Prsp

16 = add 464 W15, ¥

store 164 %14, ptr @rsp

ret $64 %10
}

const.

const.

const.

const.

const.

const,

const,

const

const,

onst.,

Bx481131:

Bx401134:

Bx481138:

Bx48113¢c:

Bx401140:

Bx401144:

0x401148:

0x48114c:

.0x401150:

0x481151:

Code_x86_64",

Code_x86_64",

Code_x286_64",

Code_x86_64",

Code_x386_64",

Code_x86_64",

Code_x86_64",

Code_x86_64",

Code_x86_64",

Code_x86_064",

Code_x86_64",

15.

https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4
https://pad.rev.ng/#/14/4

i64 @local_myfunction(ié4 %0) {
call i64 @revng_stack_frame(ié4 24)

= call i64 @EAddressOf(ptr nonnull
.const.cl0déafb753dc601da714646784a7e4040e86F7b, ib64 %1)
add i64 %2, 8
inttoptr 164 %3 to ptr

call ptr @stack_offset(ptr %4, 164 -16, 164 -7)
store 164 %0, ptr %5
%6 = inttoptr 164 %2 to ptr
%7 = shl 164 %0, 1
%8 = call ptr @stack_offset(ptr %6, i64 -24, i64 -15)
store 164 %7, ptr %8
ret 164 %7

15.

https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5
https://pad.rev.ng/#/14/5

define 164 (@local_myfunction(ié4 %0) {

%1 = shl 164 %0, 1
ret 164 %1

15.

https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6
https://pad.rev.ng/#/14/6

A couple of demos

1. Write a small ()
2. Collect some information about ()

https://github.com/revng/demos/tree/master/4-taint-example
https://github.com/revng/demos/tree/master/4-taint-example
https://github.com/revng/demos/tree/master/5-loop-example
https://github.com/revng/demos/tree/master/5-loop-example
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15
https://pad.rev.ng/#/15

-ENOTIME

You can check them out at

https://github.com/revng/demos
https://github.com/revng/demos
https://github.com/revng/demos
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1
https://pad.rev.ng/#/15/1

Things you can do in LLVM

e Graph theory

= Build the

» |dentify

= Perform (depth first, topological...)
e Manipulate functions

= |nline

= Qutline

= Specialize

https://pad.rev.ng/#/16
https://pad.rev.ng/#/16
https://pad.rev.ng/#/16

Let's find some bugs!

e Use revng for

e With static analysis tools for or
e Demo on LLVM IR:
e We've got offline demos on C with

» Clang Static Analyzer

= CodeQL

18

https://pad.rev.ng/#/17
https://pad.rev.ng/#/17
https://pad.rev.ng/#/17

What is

engine for LLVM
Works on vanilla LLVM IR
Has a builtin set of states known as bugs:
2 fail
= various classes of
Regular use from source code

19

https://pad.rev.ng/#/18
https://pad.rev.ng/#/18
https://pad.rev.ng/#/18

Demo time!

https://github.com/revng/demos/tree/master/6-klee
https://github.com/revng/demos/tree/master/6-klee
https://pad.rev.ng/#/19
https://pad.rev.ng/#/19
https://pad.rev.ng/#/19

Bug-finding ?

e Take the same input program
e Decompile it with revng

e Feed it into source-level static analysis tools

» Clang Static Analyzer

= CodeQL
e Profit!

21

https://pad.rev.ng/#/20
https://pad.rev.ng/#/20
https://pad.rev.ng/#/20

Clang static analyzer

Original C Clang Static Analyzer Report

my_free (*p) |
free(p); _ABI(SystemV x86 64)
generic64 t do stuff(generic64 t argument0) {
void * var 0;
do_stuff (condition) { ~var_0 = malloc ((size t) 4);
*p = malloc (()) ;
(condition > 4) 2 « Calling 'malloc_' — '
my_free (p) ;
o= 3; 4 < Returned allocated memory — l
result = *p;
my_free (p) ; if ((int32_t) (generic32_t) _argument® > (int32 t) 2) {
result;

5 <« Assuming' _argument0'is >2 — l

6 <« Taking true branch — '

my free((generic32 t *) var 0);

7 < Calling 'my_free' — '

11 < Returning; memory was released via 1st parameter —

}

*(generic32 t *) var 0 = 3;

12 < Use of memory after it is freed

my_free((generic32_t *) _var 0);
return 3;

22

https://github.com/revng/demos/tree/master/7-clang-static-analyzer
https://github.com/revng/demos/tree/master/7-clang-static-analyzer
https://pad.rev.ng/#/21
https://pad.rev.ng/#/21
https://pad.rev.ng/#/21

CodeQL (ir

Original C CodeQL Report

int do_stuff (int condition) { _ABI (SystemV_x86_64)
int *p = malloc(sizeof (int)) ; generic64_t do_stuff (generic64_t _argumentO) {
if (condition > 4) void *_var_0;
free(p) ; _var_0 = malloc((size_t) 4);
*p = 3; if ((int32_t) (generic32_t) _argument0 > (int32_t) 4) {
int result = *p; // BUG 1l: call to free
free(p) ; // BUG 2: call to free
return result; free ((generic32_t *) _var_0); // line 69

} }
// BUG 1: Potential use after free
// An allocated memory block is used after it has been freed.
// Behavior in such cases is undefined and can cause memory corruption.
// Memory may have been previously freed by call to free at line 69.
* (generic32_t *) _var_0 = 3;
// BUG 2: Potential double free
// Behavior in such cases is undefined and can cause memory corruption.
// Memory may already have been freed by call to free at line 69.
free ((generic32_t *) _wvar_0);
return 3;

https://github.com/revng/demos/tree/master/8-codeql
https://github.com/revng/demos/tree/master/8-codeql
https://pad.rev.ng/#/22
https://pad.rev.ng/#/22
https://pad.rev.ng/#/22

Automated bug-finding with

revng output quality plays well with tooling

Different levels of abstraction: LLVM IR or C
LLVM: crossroad of project for static analysis
C: has a huge base of analysis tools

24

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/23
https://pad.rev.ng/#/23
https://pad.rev.ng/#/23

Automated type recovery

https://pad.rev.ng/#/24
https://pad.rev.ng/#/24
https://pad.rev.ng/#/24

No type recovery

generic64_t sum(generic64_t _argumentO) {

generico4d_t _var_0 = 0, _var_1 = 0;

do {
_var_1 = _var_1 + *(generic6d_t *) ((_var_0 << 3)
_var_0 = _var_0 + 1;

} while (_var_0 != 5);

return _var_1;

generic64_t compute (generic64_t _argumentO) {
generico4d_t _var_0 = _argumentO, _var_1 = 0;
generic64d_t _var_2;
do {
gen_var_2 = sum(_var_0);
_var_1 = _var_ 1 + _var_2;
_var_0 = *(generic6d4d_t *) (_var_0 + 40);
} while (_wvar_0);

return _var_1;

+ _argument0) ;

26

https://pad.rev.ng/#/25
https://pad.rev.ng/#/25
https://pad.rev.ng/#/25

With automated type recovery

typedef struct _PACKED _struct_61 {
generic64_t _offset_0[5];
_struct_61 *_offset 40;

} _struct_61;

generic64_t sum(_struct_61 *_argumentO) {

generico4_t _var_ 0 = 0, _var_1 = 0

do {
_var_0 = _var_0 4+ _argumentO->_offset 0[_var_17;
_var_1 = _var_1 + 1;

} while (_var_1 != 5);

return _var_0;

generic64_t compute(_struct_61 *_argumentO) {

_struct_61 *_var_0 = _argumentO
generic64_t _var_1 = 0, _var_2;
do {

_var_2 = sum(_var_0) ;

_var_1 = _var_ 1 + _var_2;

var 0 = _var O0->_ offset 40;
} while (_wvar_0);

return _var_1;

https://pad.rev.ng/#/26
https://pad.rev.ng/#/26
https://pad.rev.ng/#/26

sum() compute ()

Prototype Prototype

_cabifunction_78 _cabifunction_79

' '

_cabifunction_78 (size: 0) _cabifunction_79 (size: 0)
Return Types Arguments Return Types Arguments

generic64_t * struct_o6l generic64_t * struct_o61l

| ad
\ -~
S Pointer (8 bytes) . - Pointer (8 bytes)

_
~
'\
\

-

_struct_61 (size: 48)

Offset Size Name

Pointer (8 bytes)
40 generic64_t [5]

|
|
|
|
|
|
|
|
|

* struct_61

https://pad.rev.ng/#/27
https://pad.rev.ng/#/27
https://pad.rev.ng/#/27

The of rev.ng

https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28
https://pad.rev.ng/#/28

Supported

o X86

o X86-64
e ARM

e AArch64
e MIPS

e SystemZ

https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1
https://pad.rev.ng/#/28/1

=

DWARF
PE/COFF
CodeView (. pdb)
Mach-O

IDA Pro

29.

https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2
https://pad.rev.ng/#/28/2

does rev.ng run?

e Daemon
= Linux x86-64 natively
= macOS via Docker

= Windows via WSL
e Clients can run anywhere

30

https://pad.rev.ng/#/29
https://pad.rev.ng/#/29
https://pad.rev.ng/#/29

Recently, we released the pipeline as open source.

We're now focusing
on and

https://pad.rev.ng/#/30
https://pad.rev.ng/#/30
https://pad.rev.ng/#/30

We currently produce IR for GCC in 18 minutes.

e New argument detection analysis: 2.1x
e Reduce invalidation: ~1.7x (10min expected)
e Other low effort fixes: ~2x (5min expected)

32

https://pad.rev.ng/#/31
https://pad.rev.ng/#/31
https://pad.rev.ng/#/31

Goal: with
Ghidra and IDA

1min 30sec and 40sec

https://pad.rev.ng/#/32
https://pad.rev.ng/#/32
https://pad.rev.ng/#/32

Next up:

e Decompile all binaries on:
= Ubuntu x86-64
= Windows x86-64
= Android AArch64
e Focus on:
= optimizing performance of bottlenecks
= squashing bugs

34

https://pad.rev.ng/#/33
https://pad.rev.ng/#/33
https://pad.rev.ng/#/33

In short,

is FLOSS

is declarative in user interactions

has a modern design

uses a “standard” IR and emits valid C
interacts with existing tools

has a nice (commercial) Ul

35

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/34
https://pad.rev.ng/#/34
https://pad.rev.ng/#/34

e Based on , mostly a plugin
e Connects to

e Runs as a app or in the
e just works out of the box
e Also, (think GitHub for reversers)

e Cloud version will be

36

http://rev.ng/
http://rev.ng/
http://hub.rev.ng/
http://hub.rev.ng/
https://pad.rev.ng/#/35
https://pad.rev.ng/#/35
https://pad.rev.ng/#/35

Final note

We're and we do

https://pad.rev.ng/#/36
https://pad.rev.ng/#/36
https://pad.rev.ng/#/36

@ EXPLORER

~~ UNTITLED (WORKSPACE)
+ linked_list (on rev.ng cloud)
\/] ked_ g
> binary
> function
> type

I' model.yml

% OUTLINE

Questio

- Untitled (Workspace)

= Overview: linked_list (on rev.ng cloud) X

Upload Binary
No file chosen

@ Upload & Analyze Binary

Segments:

Start address End address

> 0x400000 0x400b98

> 0x401d98 9

>

D8 o0
(0
Information
Architecture: x86_64
DefaultABI: SystemV_x86_64
Entrypoint: unreserved_ start (0x4007c0:Code_x86_64)
Size File Offset ;i_'allmg Zeos Permissions
ize
2968 0 0 r-x
657 3480 1 rw-
c . K2
0:00/2:03 ¢ g3

https://pad.rev.ng/#/37
https://pad.rev.ng/#/37
https://pad.rev.ng/#/37

Backup slides

https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38
https://pad.rev.ng/#/38

frontends?

-02
ARM 227 "
I LLVM IR —»] C

/'
MIPS —» Tiny code

e

X86-64

https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1

ldea

typedef struct |
uint3Z2_t rax;
uint32_t rdi;
/] ...

} CPUState;
vold add (CPUState *state) {

state—->rax = state->rax + state—->rdi;

}

WIP, particularly interesting for WebAssembly

39.

https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2
https://pad.rev.ng/#/38/2

