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binary analysis frameworkbinary analysis framework
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This presentation is available at:

All the demos are available at:
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1. 10 people

2. Partly in Milan, Italy, partly in rest of Europe

3. Compiler engineers/security researchers

4. We worked with
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OutlineOutline
1. rev.ng  overview

2. Demo:  with rev.ng

3. Let’s put our hands into 

4. Demo: automatic bug finding

5. Automated  recovery

6. The 
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revrev.ng .ng 
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revrev.ng is an .ng is an 

binary analysis frameworkbinary analysis framework

and and  decompiler decompiler

for native codefor native code
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This is a This is a 
LLVMLLVM

C

LLVM IR

clang

C++
clang++

rust

rustc

-O2
ARM

MIPS

x86-64
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This is a This is a 
QEMUQEMU

ARM

Tiny codeMIPS

x86-64

-O2
ARM

MIPS

x86-64
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This is a This is a 
revrev.ng.ng

C

ARM

Tiny codeMIPS

x86-64

LLVM IR

-O2
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Using Using 
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We use QEMU butWe use QEMU but

we we  run any code run any code
We just use it as a lifterWe just use it as a lifter
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Writing an Writing an  is hard is hard
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QEMU Advent Calendar
10 . 1
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Supporting Supporting  is hard is hard
QEMU supports:

Alpha,  ,  CRIS,  HPPA,  ,

Hexagon,  LatticeMico32,  68K,  MicroBlaze,  ,

Moxie,  Nios2,  OpenRISC,  PowerPC,  RISC-V,  SH4,

Sparc, , TileGX, TriCore, Unicore32, Xtensa
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QEMU is QEMU is  for: for:
• accuracy

• supporting many architectures

• lifting

• dynamic binary translation
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QEMU is QEMU is  for: for:
• anything else
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Tiny code LLVM IR
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Here be dragonsHere be dragons
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• Enable us to focus on building a ,

not a compiler framework

• Well known and big community

• Well defined semantics

• Many tools build on top of it (KLEE, Phasar, …)

• High performance (C++)
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A note on A note on 
We do not use symbolic execution in the pipeline.

However, we deem it appropriate for bug hunting!
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A note on A note on 
We’ve done it.

We’re no longer focused on it.

There are a lot of effective alternative approaches.
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How do I How do I 

with revwith rev.ng?.ng?
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The The 
• basically rev.ng’s project file

• a YAML document

• contains everything the user can customize
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ExampleExample
Architecture: x86_64

DefaultABI: SystemV_x86_64

Segments:

- StartOffset: 0

FileSize: 7

StartAddress: "0x400000:Generic64"

Functions:

- Entry: "0x400000:Code_x86_64"

Types:

- Kind: StructType

ID: 1

Size: 8

Fields:

- Offset: 4

Type: ...
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Interaction option #1: the 

Interaction option #2: the 

revng \

  artifact \

  --analyze \

  decompile-to-single-file \

  /bin/df

revng-daemon

TypeScript

API
HTTP

Python

... rev.ng core

UI
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tl;dr: tl;dr:  stay  stay 
They can:

• use any language having YAML + HTTP/system

• use any version of the language they want

• use a different version of LLVM

• be on a different machine

• crash independently from rev.ng
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No moreNo more
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WrappersWrappers
In practice, we make things easier for

 and  users with wrappers.
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 stay  stay 
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 stay  stay 
They have to buy into our dev stack (docs)
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Demo time!Demo time!
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tl;dr there are only two types of actions:

1. Request an  (LLVM IR, valid C, …)

2. Run an /make changes to the model
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It’s It’s  time! time!
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Example programExample program
long myfunction(long value) {

long result = value;

  result = result * 2;

return result;

}
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DisassemblyDisassembly
myfunction:

push rbp

mov rbp,rsp

mov QWORD PTR [rbp-0x8],rdi

mov rax,QWORD PTR [rbp-0x8]

mov QWORD PTR [rbp-0x10],rax

mov rax,QWORD PTR [rbp-0x10]

shl rax,0x1

mov QWORD PTR [rbp-0x10],rax

mov rax,QWORD PTR [rbp-0x10]

pop rbp

ret

1

2

3

4

5

6

7

8

9

10

11

12
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A couple of demosA couple of demos
1. Write a small  ( )

2. Collect some information about  ( )
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-ENOTIME-ENOTIME

You can check them out atYou can check them out at
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Things you can do in LLVMThings you can do in LLVM
• Graph theory

▪ Build the 

▪ Identify 

▪ Perform  (depth first, topological…)

• Manipulate functions

▪ Inline

▪ Outline

▪ Specialize
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Let’s find some bugs!Let’s find some bugs!
• Use revng for 

• With static analysis tools for  or 

• Demo on LLVM IR: 

• We’ve got offline demos on C with

▪ Clang Static Analyzer

▪ CodeQL
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What is What is 
•  engine for LLVM

• Works on vanilla LLVM IR

• Has a builtin set of states known as bugs:

▪  fail

▪ various classes of 

• Regular use from source code
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Demo time!Demo time!
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Bug-finding Bug-finding ??
• Take the same input program

• Decompile it with revng

• Feed it into source-level static analysis tools

▪ Clang Static Analyzer

▪ CodeQL

• Profit!
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Clang static analyzer Clang static analyzer (( ))

Original C Clang Static Analyzer Report

void my_free(void *p) {

free(p); 

}

    

int do_stuff(int condition) {

int *p = malloc(sizeof(int));

if (condition > 4)

    my_free(p);

  *p = 3;

int result = *p;

  my_free(p);

return result;

}
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CodeQL CodeQL (( ))
Original C CodeQL Report

int do_stuff(int condition) {

int *p = malloc(sizeof(int));

if (condition > 4)

free(p);

  *p = 3;

int result = *p;

free(p);

return result;

}

_ABI(SystemV_x86_64)

generic64_t do_stuff(generic64_t _argument0) {

void *_var_0;

  _var_0 = malloc((size_t) 4);

if ((int32_t) (generic32_t) _argument0 > (int32_t) 4) {

// BUG 1: call to free

// BUG 2: call to free

free((generic32_t *) _var_0); // line 69

  }

// BUG 1: Potential use after free

// An allocated memory block is used after it has been freed.

// Behavior in such cases is undefined and can cause memory corruption.

// Memory may have been previously freed by call to free at line 69.

  *(generic32_t *) _var_0 = 3;

// BUG 2: Potential double free

// Behavior in such cases is undefined and can cause memory corruption.

// Memory may already have been freed by call to free at line 69.

free((generic32_t *) _var_0);

return 3;

}
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Automated bug-finding with Automated bug-finding with 
• revng output quality plays well with tooling

• Different levels of abstraction: LLVM IR or C

• LLVM: crossroad of project for static analysis

• C: has a huge base of analysis tools
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No type recoveryNo type recovery
    

    

    

generic64_t sum(generic64_t _argument0) {

generic64_t _var_0 = 0, _var_1 = 0;

do {

    _var_1 = _var_1 + *(generic64_t *) ((_var_0 << 3) + _argument0);

    _var_0 = _var_0 + 1;

  } while (_var_0 != 5);

return _var_1;

}

generic64_t compute(generic64_t _argument0) {

generic64_t _var_0 = _argument0, _var_1 = 0;

generic64_t _var_2;

do {

    gen_var_2 = sum(_var_0);

    _var_1 = _var_1 + _var_2;

    _var_0 = *(generic64_t *) (_var_0 + 40);

  } while (_var_0);

return _var_1;

}
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With automated type recoveryWith automated type recovery
typedef struct _PACKED _struct_61 {

generic64_t _offset_0[5];

  _struct_61 *_offset_40;

} _struct_61;

generic64_t sum(_struct_61 *_argument0) {

generic64_t _var_0 = 0, _var_1 = 0

do {

    _var_0 = _var_0 + _argument0->_offset_0[_var_1];

    _var_1 = _var_1 + 1;

  } while (_var_1 != 5);

return _var_0;

}

generic64_t compute(_struct_61 *_argument0) {

  _struct_61 *_var_0 = _argument0

generic64_t _var_1 = 0, _var_2;

do {

    _var_2 = sum(_var_0);

    _var_1 = _var_1 + _var_2;

    _var_0 = _var_0->_offset_40;

  } while (_var_0);

return _var_1;

}
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The The  of rev of rev.ng.ng
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Supported Supported 
• x86

• x86-64

• ARM

• AArch64

• MIPS

• SystemZ
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• ELF

• DWARF

• PE/COFF

• CodeView (.pdb)

• Mach-O

• IDA Pro
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 does rev does rev.ng run?.ng run?
• Daemon

▪ Linux x86-64 natively

▪ macOS via Docker

▪ Windows via WSL

• Clients can run anywhere
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Recently, we released the pipeline as open source.Recently, we released the pipeline as open source.

We’re now focusingWe’re now focusing

on on  and  and ..
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We currently produce IR for GCC in 18 minutes.

• New argument detection analysis: 2.1x

• Reduce invalidation: ~1.7x (10min expected)

• Other low effort fixes: ~2x (5min expected)
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Goal: Goal:  with with
Ghidra and IDAGhidra and IDA

1min 30sec and 40sec
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Next up: Next up: 
• Decompile all binaries on:

▪ Ubuntu x86-64

▪ Windows x86-64

▪ Android AArch64

• Focus on:

▪ optimizing performance of bottlenecks

▪ squashing bugs
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In short, 

• is FLOSS

• is declarative in user interactions

• has a modern design

• uses a “standard” IR and emits valid C

• interacts with existing tools

• has a nice (commercial) UI

35

http://rev.ng/
http://rev.ng/
https://pad.rev.ng/#/34
https://pad.rev.ng/#/34
https://pad.rev.ng/#/34


• Based on , mostly a plugin

• Connects to 

• Runs as a  app or in the 

•  just works out of the box

• Also,  (think GitHub for reversers)

• Cloud version will be 
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Final noteFinal note
We’re  and we do 
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Backup slidesBackup slides
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 frontends? frontends?
???

LLVM IR C

ARM

Tiny codeMIPS

x86-64

-O2

39 . 2

https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1
https://pad.rev.ng/#/38/1




IdeaIdea

WIP, particularly interesting for WebAssembly

typedef struct {

uint32_t rax;

uint32_t rdi;

// ...

} CPUState;

void add(CPUState *state) {

  state->rax = state->rax + state->rdi;

}
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