
Manipulating Android
Malware to Self-Unpack
Laurie Kirk

whoami
• Laurie Kirk
• Reverse Engineer
• Specialize in cross-

platform malware with a
focus on mobile threats

• Run YouTube channel
@lauriewired

@lauriewired

Slides and Materials

https://github.com/LaurieWired/RECon2024

attacks on mobile devices in 2023

33 million

Solution

Payload

DEX files provide unique opportunities

• Dalvik bytecode is decompiled into Java

• Android builds heavily on common Java APIs

• Custom Android decryptors are written in Java

Goal:
Defeat Android packers

Outcome

• Automate analysis of 1000s of Android samples

• Eliminate reliance on Android emulators

• Remain packer-agnostic

Automated Custom Android Unpackers

Phase 1

Record a Standard Packer Flow

Find a Large Sample Set

• Need many examples of packers

• Make the unpacking process family-agnostic

• Good candidate: Banking Trojans

Android Banking Trojans

• Highly prevalent type of Android malware

• Targets banking / crypto apps to exfiltrate
credentials

• Each sample has a unique, custom-generated
packing stub

Hands On:
Cerberus Example

Process Summarization

Manifest classes not defined on disk

Application subclass contains packing stub

Dynamic file written to disk / memory

Stub code calls a ClassLoader

Dynamic code loaded via Java reflection

Phase 2

Account for Packer Differences

Files can be dropped and
 in numerous ways.

Remaining Packer Agnostic

• Account for all standard ClassLoaders

• Handle various techniques for file loading

• Fill anti-debug checks with dummy data

How can I for all of
these techniques?

Observe Common Packer Source Code

• Bangcle Android protector source is on Github

• Older, but methodologies still widely used today

• Multiple *configurable* techniques

Different Techniques
in Bangcle Source

Relevant API Calls

• ClassLoaders

• Dexfile

• OpenMemory

• ZipEntry

Phase 3

Automate the Unpacking Process

Idea:
Patch the APK

Option 1:
Patching
Bytes in
classes.dex

Option 2:
Editing Smali

APK Mods

Smali
Mods

Recompile

Drawbacks

• Smali editing is tedious

• Apps must be re-signed prior to dynamic analysis

• Both still require an Android emulator

the wayNOTThis is

Idea:
Generate Unpacker Code from Decompiled Code

Decompile Generate

Locating the Relevant Code

Unpacker Generate the custom unpacker in Java

References Find references to other classes

Find Entry Grab the Application subclass

Decompile Decompile the stub app

That’s a lot of errors…

Plan:

Hardcoding Common Android Strings

getPackageName() “com.example.app”

Important:
Leave in Generic Decryption Code

Example:
Replacing Android File Calls with Current Directory

Reflection is not specific to
Android.

Reflection

• Feature in both plain Java and Android

• Allows programs to introspect themselves

• Enables dynamic code loading

I need to remove reflective
calls and calls to reflective

calls.

Let’s get

Removing Reflective Java Calls

Process list of
reflective calls

Remove
methods
returning
reflection

Add
reflective

methods to
list

Remove lines
containing
reflection

Add reflective
variables to

list

Remove reflective method

Add method name to
reflection keyword list

Process Summarization So Far

• App subclass becomes Java app

• Decompile dependencies from APK

• Remove Android imports

• Replace Android APIs with Java

• Remove reflection calls

Phase 4

Perform these processes by hand

Phase 4

Perform these processes by hand

Phase 4

Write a tool to perform this process

Introducing

BadUnboxing Features

Detect
packing

1

Extract and
decompile
relevant
code

2

Replace
Android API
calls

3

Eliminate
reflective
calls

4

Generate
custom Java
unpacker

5

DEMO:
Auto Unpacking
Android Malware
with BadUnboxing

Shift
Towards Native Packing

Native Packing

M
an

ag
ed

 C
od

e

Android App

private native void doSomethingNative()

doSomething() {

 doSomethingNative();

void Java_com_MyClass_doSomethingNative() {

std::string hello = "Hello from C++";

 …

MyClass.java

libnative-lib.so

JNI

N
at

iv
e

C
od

e

Native Packing

Stub.java libunpacker.so DexClassLoader

Android

The JNI is also a standard
Java construct.

Native code without Android
APIs can be called directly.

Plan:

Native Packing

Stub.java libunpacker.so DexClassLoader

DummyLib.java

Thank You!

https://github.com/LaurieWired/BadUnboxing

	Slide 1: Manipulating Android Malware to Self-Unpack
	Slide 2: whoami
	Slide 3: Slides and Materials
	Slide 4
	Slide 5: attacks on mobile devices in 2023
	Slide 6: Solution
	Slide 7: Payload
	Slide 8
	Slide 9: DEX files provide unique opportunities
	Slide 10: Opportunity?
	Slide 11: Goal: Defeat Android packers
	Slide 12: Outcome
	Slide 13: Automated Custom Android Unpackers
	Slide 14: Phase 1
	Slide 15: Find a Large Sample Set
	Slide 16: Android Banking Trojans
	Slide 17: Hands On: Cerberus Example
	Slide 18: Repeat that process on a hundred different samples…
	Slide 19: Process Summarization
	Slide 20: Phase 2
	Slide 21: Files can be dropped and loaded in numerous ways.
	Slide 22: Remaining Packer Agnostic
	Slide 23: How can I account for all of these techniques?
	Slide 24: Observe Common Packer Source Code
	Slide 26: Different Techniques in Bangcle Source
	Slide 27: Relevant API Calls
	Slide 28: Phase 3
	Slide 29: Idea: Patch the APK
	Slide 30: Option 1: Patching Bytes in classes.dex
	Slide 31: Option 2: Editing Smali
	Slide 32: APK Mods
	Slide 33: Drawbacks
	Slide 34: the way
	Slide 35: Idea: Generate Unpacker Code from Decompiled Code
	Slide 36
	Slide 37: Locating the Relevant Code
	Slide 38: That’s a lot of errors…
	Slide 39: Problem!
	Slide 40: Plan:
	Slide 41: Hardcoding Common Android Strings
	Slide 42: Important: Leave in Generic Decryption Code
	Slide 43: Example: Replacing Android File Calls with Current Directory
	Slide 44: Reflection is not specific to Android.
	Slide 45: Reflection
	Slide 46: I need to remove reflective calls and calls to reflective calls.
	Slide 47: Let’s get
	Slide 48: Removing Reflective Java Calls
	Slide 49: Remove reflective method
	Slide 50: Add method name to reflection keyword list
	Slide 51: Process Summarization So Far
	Slide 52: Phase 4
	Slide 53: Phase 4
	Slide 54: Phase 4
	Slide 55: Introducing
	Slide 56: BadUnboxing Features
	Slide 57: DEMO: Auto Unpacking Android Malware with BadUnboxing
	Slide 58: Shift
	Slide 59: Native Packing
	Slide 60: Native Packing
	Slide 61: The JNI is also a standard Java construct.
	Slide 62: Native code without Android APIs can be called directly.
	Slide 63: Problem!
	Slide 64: Plan:
	Slide 65: Native Packing
	Slide 66
	Slide 67: Thank You!

