Manipulating Android
Malware to Self-Unpack

Laurie Kirk

o3 %% N L ¢ %
"i}’v B ;s‘i:\, Y
Wi e s ¢80, &

g 35t !N

Bne: T 5

b

* 3 . n
Ay W Oa I
g I | Im
s t‘

A% -

tiy e Laurie Kirk

* Reverse Engineer -

e Specialize in cross-
platform malware with a
focus on mobile threats

» p T
- D 2 ." »
- - - X 14 /
3 ey’ /
" =i n /.
N ol /.
i y d
R e’ /
S - > J Y
ek /AW
4 W&, A4

-

* Run YouTube channel @lauriewired ‘

@lauriewired o X O . .

SLIDES AND MATERIALS

https://github.com/LaurieWired/RECon2024

attacks on mobile devices in 2023

SOLUTION

DEX FILES PROVIDE UNIQUE OPPORTUNITIES

» Dalvik bytecode is decompiled into Java
» Android builds heavily on common Java APIs
» Custom Android decryptors are written in Java

Opportunity?

Goal:
Defeat Android packers

OUTCOME

» Automate analysis of 1000s of Android samples
* Eliminate reliance on Android emulators
« Remain packer-agnostic

CKERS

Phase 1

FIND A LARGE SAMPLE SET

* Need many examples of packers
» Make the unpacking process family-agnostic
» Good candidate: Banking Trojans

ANDROID BANKING TROJANS

» Highly prevalent type of Android malware
» Targets banking / crypto apps to exfiltrate

credentials \
» Each sample has a unique, custom-generated /% ’
packing stub . Vll4

jz.
e

Hands On:

Cerberus Example

PROCESS SUMMARIZATION

Manifest classes not defined on disk

Application subclass contains packing stub

Dynamic file written to disk / memory

Stub code calls a ClassLoader

Dynamic code loaded via Java reflection

= 8 e

Account for Packer Differences

Files can be and
loaded INn nuMerous ways.

REMAINING PACKER AGNOSTIC

» Account for all standard ClasslLoaders
* Handle various techniques for file loading
* Fill anti-debug checks with dummy data

How can | for all of
these techniques?

OBSERVE COMMON PACKER SOURCE CODE

» Bangcle Android protector source is on Github
* Older, but methodologies still widely used today
» Multiple *configurable* techniques

= Filter symbols
func native_attachBaseContext
func native onCreate
func write_mix_dex

func jniRegisterNativeMethods

DIFFERENT TECHNIQUES ==

func make_dex_elements
I N BA N G c LE SU U R c E func replace_cookie N
func replace_cookie M
func load_dex fromfile
func write file
func replace_cookie
func hook_load_dex_internally
func mem_loadDex
func native attachBaseContext
func native onCreate
func init

func JNI_OnlLoad

RELEVANT API CALLS

» ClassLoaders
 Dexfile

* OpenMemory
« ZIpEntry

ol

Automate the Unpacking Process

ldea:
Patch the APK

S50002=40 22 00 T& 00 new_inst...
UP I ION 1 = 500 : f= 1 invoks V...
| oo 02 00

Mmove ESSe«.

Patching S

new insSteo

Bytes in
classes.dex

.method public constructor <init>()V
.registers 1

.line 38
invoke-direct {p@}, Landroid/app/Application;-><init>()V

i o return-void
15 .end method
m 16

17 .method public static AOADuMLMIp(Ljava/lang/String;)Ljava/lang/String;
[] [] [J
Editing Smali s et
20 const-string

const/4 , Bxe

.line 571
:goto_3
invoke-virtual {p@}, Ljava/lang/String;->length()I

APK MODS

S — (e

DRAWBACKS

« Smali editing is tedious
* Apps must be re-signed prior to dynamic analysis
* Both still require an Android emulator

Generate Unpacker Code from Decompiled Code

/|
A
\/4 .

LOCATING THE RELEVANT CODE

Decompile the stub app

S eR=iia M Grab the Application subclass

PINi2ld=lalel=ls0 | Find references to other classes

U[g]oL:[¢ CI@ Generate the custom unpacker in Java

THAT'S A LOT OF ERRORS...

int var_i2 OMbnA6sx = this.field BWyrwDWjhGrxfLNWsDZ_156484 OD6AeRrc;
this.field_rHXXjgDOqlSfjQYiuUE_177062_RmapQWSu = ((var_i2_OMbnA6sx / var_i_907DbKlw) - @) - (this.field_rHXXjgDOqlSfjQYiuUE_177@62_RmapQWSu / var_i2_OMbnAésx);

Application.class.getSigners();
this.field BWyrwDWjhGrxfLNWsDZ_156484_OD6AeRrc = ((this.field rkCxuRLLDoaaOufkYaT_554894_@qwp7H5q + 1616) - this.field_rHXXjgDOqlSfjQYiuUE_177062_RmapQWSu) - 9: .

}

//super.attachBaseContext(context); // BadUnboxing: Remove superclass reference
int var_i3_QDW81xa6 = this.field BWyrwDWjhGrxfLNWsDZ_156484_ OD6AeRrc;
int var_i4_ikE235YV = this.field_rkCxuRLLDoaaOufkYaT_554894_@qwp7H5q;
this.field rHXXjgDOqlSfjQYiuUE_177@62 RmapQWSu = (((var_i3_QDW81lxaé / 82998) - var_i4 ikE235YV) + 36553) - var_i3_QDW81xaé;
this.field PNcOkPgSqEeZgNmIrHoHdDzZiIoRgJoMkEyZyQiOjTrHx_GD1aAsIN = new Context();
this.field_BWyrwDWjhGrxfLNWsDZ_156484_OD6AeRrc = 182874 / var_i4_ ikE235YV;
this.field_rHXXjgDOqlSfjQYiuUE_177@62_RmapQWSu = (var_i4 ikE235YV * this.field BWyrwDWjhGrxfLNWsDZ_156484_0D6AeRrc) + 978373;
String var_method_tryfriend_IgkqNzqv_3ZeDk1CC = method_tryFriend_ququqv(method_broccolicook_jglIFGjA(Eﬂi&.field_PNcOkPgSqEeZgNmIrHoHdDzZiIoRgJoMkEyZyQinTer_GDliH
int var_i5_zyafVWMv = this.field_rHXXjgDOqlSfjQYiuUE_177062_RmapQWSu;
if (var_i5_zyafViWMv == 43382) {
this.field BWyrwDWjhGrxfLNWsDZ_156484_OD6AeRrc = (var_i5_zyafVWMv - (85 / this.field_rkCxuRLLDoaaOufkYaT_554894_eqwp7H5q)) + 43;

Problem!

PLAN:

Replace Android APIs with equivalent Java

HARDCODING COMMON ANDROID STRINGS

—

IMPORTANT:
LEAVE IN GENERIC DECRYPTION CODE

public static byte[] method_elJUjQHHFE_oHi7vrbO(String arg_str_c9U1lvHKI, String arg_str2_IwxnS9kP,

new IvParameterSpec(arg_str2_IwxnS9kP.getBytes());
SecretKeySpec var_secretKeySpec_qg8saysuA = new SecretKeySpec(arg_str_cSUlvHKI.getBytes(), metho

Cipher var_cipher_vHk8KXYg = Cipher.getInstance(arg_str3_enBVzuMi);
var_cipher_vHk8KXYg.init(2, var_secretKeySpec_qg8saysuA);
return var_cipher_vHk8KXYg.doFinal(arg_bArr_joX8Ecic);

EXAMPLE:
REPLACING ANDROID FILE CALLS WITH CURRENT DIRECTORY

public static void main(String[] args) {
//super.attachBaseContext(context); // Remove superclass reference
try {

File var_dir_@UyLTolu = new File(System.getProperty(key:"user.dir") + "/Unpacker_387341d743_dynamic"”, method_AOADuMLMIp
if (!var_dir_@UyLTolu.exists()) { var_dir_@UyLTolu.mkdirs(); } // Change to current directory;

File var_dir2_D9b50yVg = new File(System.getProperty(key:"user.dir") + "/Unpacker_387341d743_dynamic", method_AOADUMLMIp
if (!var_dir2_D9b50yVg.exists()) { var_dir2_D9b50yVg.mkdirs(); } // Change to current directory;
if (var_dir2_DSb50yVg.listFiles().length == @) {
method_EFgYPprFZe_g3ckenXp(method_lnYkkBUITT_rAca6Fee(), var_dir2_D9b50yVg.getAbsolutePath());

Reflection is not specific to
Android.

REFLECTION

 Feature in both plain Java and Android
 Allows programs to introspect themselves
* Enables dynamic code loading

| need to remove reflective
calls and calls to reflective

calls.

REMOVING REFLECTIVE JAVA CALLS

Add reflective
variables to
list

Process list of
reflective calls

Remove lines Remove
s methods

containing 4
reflection returning
reflection

Add
reflective
methods to
list

REMOVE REFLECTIVE METHOD

public static byte[] method_elJUjQHHFE_fybpZNAw(String arg_str_N89UfoTG, String arg_str2_sTrzk
new IvParameterSpec(arg_str2_sTrzkkgT.getBytes());
SecretKeySpec var_secretKeySpec_Wan8jFZs = new SecretKeySpec(arg_str_N89UfoTG.getBytes(),
Cipher var_cipher_nted3Ccw = Cipher.getInstance(arg_str3_xstdceas);
var_cipher_nted3Ccw.init(2, var_secretKeySpec_Wan8jFZs);
return var_cipher_nted3Ccw.doFinal(arg_bArr_pHblg72Z);

/* renamed from: hMCyXCNhRr #*/

BadUnboxing public static Object method_hMCyXCNhRr_Y4fgR9kw(String arg_str_ycVgMB8K, String

BadUnboxing
BadUnboxing
BadUnboxing
BadUnboxing
BadUnboxing
BadUnboxing
BadUnboxing }

try {

return Class.forName(arg_str_ycVgMB8K).getMethod(arg_str2_PS5ysJiSe, arg
} catch (Exception e) {

e.printStackTrace();

return null;

Method contains reflection in return statement and was commented out

ADD METHOD NAMETO
REFLECTION KEYWORD LIST

if (!var_dir2_PYCc5UjU.exists()) { var_dir2_ PYCc5UjU.mkdirs(); } // Change to current directory;
if (var_dir2_PYCc5UjU.listFiles().length == 8) {
method_EFgYPprFZe_rvHuSW8s(method_lnYkkBUITT_oIOoRzwI(), var_dir2_PYCc5UjU.getAbsolutePath());

// Object var_method_hMCyXCNhRr_Y4fqR9kw_V7xkvGMB = method hMCyXCNhRr_Y4fgR9kw(method AOADUMLMIp_Fp
// Line contains reflection and was commented out

String var_packageName ZODVDKRS = "com"; // Hardcode package name
if (3@ < 19) { // Hardcode build SDK_INT

/ var weakReference UN2UuDl5 = (WeakReference HashMap) method yEHASERAR] TPbabfiC(method AOA
// Line contains reflection and was commented out

Loty €lse {

// var_weakReference_UN2UuDl5 = (WeakReference) ((HashMap) method_yEHAsSERdRI_TPbabfiC(method_AOA
// Line contains reflection and was commented out

PROCESS SUMMARIZATION SO FAR

* App subclass becomes Java app

* Decompile dependencies from APK
 Remove Android imports

» Replace Android APIs with Java

* Remove reflection calls

Perform these processes by hand

Y
v
oo

Perform these processes by hand

o=
T 1 v=
t =2 vV —

Write a tool to perform this process

Introducing

BADUNDoXING

BADUNBOXING FEATURES

Generate
custom Java
unpacker

Detect Extract and Replace Eliminate

packing decompile Android API reflective
relevant calls calls
code

DEMO:

Auto Unpacking
Android Malware
with BadUnboxing

Towards Native Packing

NATIVE PACKING

NATIVE PACKING

The IS also a standard
Java construct.

Native code without Android
APIs can be called directly.

Problem!

PLAN:

Implement Dummy Android APIs in Java

NATIVE PACKING

1

Now go unpack some Android
Applications!

You should be able to solve this.

THANK YOU!

https://github.com/LaurieWired/BadUnboxing

	Slide 1: Manipulating Android Malware to Self-Unpack
	Slide 2: whoami
	Slide 3: Slides and Materials
	Slide 4
	Slide 5: attacks on mobile devices in 2023
	Slide 6: Solution
	Slide 7: Payload
	Slide 8
	Slide 9: DEX files provide unique opportunities
	Slide 10: Opportunity?
	Slide 11: Goal: Defeat Android packers
	Slide 12: Outcome
	Slide 13: Automated Custom Android Unpackers
	Slide 14: Phase 1
	Slide 15: Find a Large Sample Set
	Slide 16: Android Banking Trojans
	Slide 17: Hands On: Cerberus Example
	Slide 18: Repeat that process on a hundred different samples…
	Slide 19: Process Summarization
	Slide 20: Phase 2
	Slide 21: Files can be dropped and loaded in numerous ways.
	Slide 22: Remaining Packer Agnostic
	Slide 23: How can I account for all of these techniques?
	Slide 24: Observe Common Packer Source Code
	Slide 26: Different Techniques in Bangcle Source
	Slide 27: Relevant API Calls
	Slide 28: Phase 3
	Slide 29: Idea: Patch the APK
	Slide 30: Option 1: Patching Bytes in classes.dex
	Slide 31: Option 2: Editing Smali
	Slide 32: APK Mods
	Slide 33: Drawbacks
	Slide 34: the way
	Slide 35: Idea: Generate Unpacker Code from Decompiled Code
	Slide 36
	Slide 37: Locating the Relevant Code
	Slide 38: That’s a lot of errors…
	Slide 39: Problem!
	Slide 40: Plan:
	Slide 41: Hardcoding Common Android Strings
	Slide 42: Important: Leave in Generic Decryption Code
	Slide 43: Example: Replacing Android File Calls with Current Directory
	Slide 44: Reflection is not specific to Android.
	Slide 45: Reflection
	Slide 46: I need to remove reflective calls and calls to reflective calls.
	Slide 47: Let’s get
	Slide 48: Removing Reflective Java Calls
	Slide 49: Remove reflective method
	Slide 50: Add method name to reflection keyword list
	Slide 51: Process Summarization So Far
	Slide 52: Phase 4
	Slide 53: Phase 4
	Slide 54: Phase 4
	Slide 55: Introducing
	Slide 56: BadUnboxing Features
	Slide 57: DEMO: Auto Unpacking Android Malware with BadUnboxing
	Slide 58: Shift
	Slide 59: Native Packing
	Slide 60: Native Packing
	Slide 61: The JNI is also a standard Java construct.
	Slide 62: Native code without Android APIs can be called directly.
	Slide 63: Problem!
	Slide 64: Plan:
	Slide 65: Native Packing
	Slide 66
	Slide 67: Thank You!

