
Seeing Through Themida’s Code Mutation

Erwan Grelet
June 29th, 2024

REcon 2024 1



About Me

Security researcher at Ubisoft

Interests:
• Reverse Engineering
• Vulnerability Research
• Software Development
• Software Obfuscation

Contacts
� @ergrelet
ø @ergrelet@mastodon.social

0Disclaimer: this is the result of a personal research project and is not linked to my employer.

REcon 2024 2

https://twitter.com/ergrelet
https://mastodon.social/@ergrelet


Themida

• Commercial software protector
• Developed by Oreans Technologies1

• Binary-to-binary workflow
• Supports x86 and .NET Windows executables (EXEs and DLLs)

1https://www.oreans.com/

REcon 2024 3

https://www.oreans.com/


SecureEngine

• Code protection engine used by Themida
• Shared with other Oreans products2

• Contains the code mutation engine

2Code Virtualizer and WinLicense

REcon 2024 4



Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

• No interpreter or virtual machine (VM) involved

• Light obfuscation of the code
• Adds and modifies machine code, preserves original behavior
• Can modify the control flow graph

REcon 2024 5



Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

• No interpreter or virtual machine (VM) involved
• Light obfuscation of the code

• Adds and modifies machine code, preserves original behavior
• Can modify the control flow graph

REcon 2024 5



Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

• No interpreter or virtual machine (VM) involved
• Light obfuscation of the code
• Adds and modifies machine code, preserves original behavior

• Can modify the control flow graph

REcon 2024 5



Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

• No interpreter or virtual machine (VM) involved
• Light obfuscation of the code
• Adds and modifies machine code, preserves original behavior
• Can modify the control flow graph

REcon 2024 5



Initial Motivation

The goal

• Develop a deobfuscator for the mutation engine

REcon 2024 6



Initial Plan of Action

The plan

• Fully understand the features of Themida’s mutation engine
• Find potential weaknesses we can leverage to deobfuscate the code

REcon 2024 7



Obtaining Themida

Research done on the demo version of Themida (v3.1.1)

• Available on Oreans’s web site3

• Contains the same mutation engine as the paid version
• We can use the demo as a black box to infer features and behaviors

3https://www.oreans.com/download.php

REcon 2024 8



What Mutation Looks Like

Figure 1: Original CFG (6 basic blocks) Figure 2: CFG after mutation (74 basic
blocks)

REcon 2024 9



What Mutation Looks Like

Figure 3: Original code (71 instructions)
Figure 4: Code after mutation
(2160 instructions)

REcon 2024 10



Initial Approach

REcon 2024 11



uops.info

uops.infoa to the rescue!
• Provides descriptions of all(?) x86 instructions

• Contained in a single XML “database”
• Provides a script to generate assembly code

ahttps://uops.info/xml.html

Figure 5: Assembly file generated
from uops.info’s database

REcon 2024 12



Input Generation

Figure 6: Input generation pipeline

REcon 2024 13



Difficulties

Ended up testing the SecureEngine’s instruction handling logic as well:

Figure 7: Crash while protecting a function with Themida

Figure 8: Stack corruption viewed in WinDbg

(Haven’t tried to root cause these)
REcon 2024 14



Difficulties

Figure 9: Infinite loop while protecting a function with Themida
REcon 2024 15



Features

SecureEngine’s code mutation engine features:

• Opaque function/code entry
• Junk code insertion
• Instruction substitution

• Constant unfolding
• Register-to-stack spilling

REcon 2024 16



Opaque Code Entry

• Original code is redirected to a trampoline
• Trampoline is used to hinder static analysis

• Equivalent to obfuscated push ADDR; ret
• Redirects to the actual obfuscated code

REcon 2024 17



Opaque Code Entry

Figure 10: Entry of a protected function

REcon 2024 18



Opaque Code Entry

Figure 11: CFG of trampolines generated by Themida to wrap codeREcon 2024 19



Opaque Code Entry

Figure 12: Part of the CFG which computes the obfuscated code’s addressREcon 2024 20



Junk Code Insertion

• Junk code insertion is triggered randomly, for 75% of all instructions
• Junk code can be inserted before original instructions or after or both
• Junk code cancels itself out within a single basic block

REcon 2024 21



Junk Code Insertion

Example of MOV instruction with junk code inserted around:
1 push eax
2 add ax , 42
3 sh l eax , 12
4 mov ebx , ecx ; O r i g i n a l i n s t r u c t i o n
5 pop eax

REcon 2024 22



Instruction Substitution

The SecureEngine’s code mutation engine can substitute the 14 following x86
instruction classes4:

AND, DEC, INC, JMP, MOV, MOVZX, NEG, NOT, OR, POP, PUSH, SUB,
XCHG, XOR

The instruction substitution pass is always applied to supported instructions.

4In XED, an instruction class is “what is typically thought of as the instruction mnemonic.”

REcon 2024 23



Instruction Substitution

Example of XCHG instruction substitution:

Figure 13: Original instruction
Figure 14: Mutated instruction

REcon 2024 24



Constant Unfolding

Example of constant unfolding on MOV:

Figure 15: Original instruction

Figure 16: Mutated instruction

REcon 2024 25



FLAGS Register

To preserve FLAGS register, the engine disables code mutation locally when needed:

Figure 17: “Mutated” intructions when FLAGS are used
REcon 2024 26



Broken Instructions

Interestingly, some instructions can be randomly transformed into broken machine code.

Example of a broken FCMOVNB instruction:

Figure 18: Original instruction
Figure 19: “Mutated” instruction

REcon 2024 27



Broken Semantics

But also, semantics can be broken sometimes:

Figure 20: Original instruction (NOP)
Figure 21: Mutated instruction (MOV DH, 0)

REcon 2024 28



Weaknesses

The obfuscation is annoying enough, but there are some weaknesses:

• Each basic block is created from one original instruction
• Each basic block is mutated independently
• The original function’s CFG is preserved

This means we can deobfuscate each basic block individually to recover original
instructions.

REcon 2024 29



Simplifying The Code

To simplify the code, a couple of ideas came to mind too, but both involve an IR:

• Code Optimization
• Program Synthesis

REcon 2024 30



Simplifying The Code

To simplify the code, a couple of ideas came to mind too, but both involve an IR:

• Code Optimization
• Program Synthesis

• Symbolic Execution

REcon 2024 30



The Big Picture

Figure 22: Deobfuscation process, the big picture

REcon 2024 31



The Big Picture

Figure 23: Deobfuscation process, the big picture

REcon 2024 31



Defeating Trampolines

To defeat opaque code entry, we can symbolically execute trampolines

• Trampolines contains 2 conditional branches
• Trampoline logic is always the same

REcon 2024 32



Defeating Trampolines

Figure 24: Symbolic Execution PathREcon 2024 33



Defeating Trampolines

Figure 25: Symbolic Execution PathREcon 2024 33



Defeating Trampolines

Figure 26: Symbolic Execution PathREcon 2024 33



Defeating Trampolines

Figure 27: Symbolic Execution PathREcon 2024 33



Instruction Synthesis

We can differentiate 3 cases for the instruction synthesis process.

REcon 2024 34



Instruction Synthesis (case #1)

Figure 28: Case #1 (no junk code, no substitution)

REcon 2024 35



Instruction Synthesis (case #2)

Figure 29: Case #2 (junk code inserted, no substitution)

REcon 2024 36



Instruction Synthesis (case #2)

Figure 30: Basic block’s symbolic execution

Figure 31: MOVUPS instruction’s symbolic executionREcon 2024 37



Instruction Synthesis (case #2)

Figure 32: Basic block’s symbolic execution (FLAGS removed)

Figure 33: MOVUPS instruction’s symbolic executionREcon 2024 37



Instruction Synthesis (case #2)

Figure 34: Basic block’s symbolic execution (FLAGS removed)

Figure 35: MOVUPS instruction’s symbolic executionREcon 2024 37



Instruction Synthesis (case #3)

For instructions which the mutation engine can substitute:

• We only have to manually synthesize 14 instruction classes
• Development effort is thus symmetric between attack and defense
• We can use pattern matching

REcon 2024 38



Instruction Synthesis (case #3)

Figure 36: Basic block’s symbolic execution

REcon 2024 38



Instruction Synthesis (case #3)

Figure 37: Basic block’s symbolic execution (FLAGS removed)

REcon 2024 38



Instruction Synthesis (case #3)

Figure 38: Instruction “synthesized” via pattern matching

REcon 2024 38



Result

Figure 39: Simplified binaries can be run
REcon 2024 39



Result

Figure 40: Original (6 BBs) Figure 41: Obfuscated
(74 BBs)

Figure 42: Deobfuscated
(7 BBs)

REcon 2024 40



Result

Figure 43: Original (71 instructions)
Figure 44: Deobfuscated (74 instructions)

REcon 2024 41



Recap

To recap:

• A few weaknesses facilitated the work

• Static symbolic execution was very effective
• The attack scales and works seemlessly on complex functions

• Time complexity is roughly linear to the number of basic blocks
• It can be parallelized

• We’re able to recover very close-to-original machine code
• Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!

REcon 2024 42



Recap

To recap:

• A few weaknesses facilitated the work
• Static symbolic execution was very effective

• The attack scales and works seemlessly on complex functions
• Time complexity is roughly linear to the number of basic blocks
• It can be parallelized

• We’re able to recover very close-to-original machine code
• Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!

REcon 2024 42



Recap

To recap:

• A few weaknesses facilitated the work
• Static symbolic execution was very effective
• The attack scales and works seemlessly on complex functions

• Time complexity is roughly linear to the number of basic blocks
• It can be parallelized

• We’re able to recover very close-to-original machine code
• Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!

REcon 2024 42



Recap

To recap:

• A few weaknesses facilitated the work
• Static symbolic execution was very effective
• The attack scales and works seemlessly on complex functions

• Time complexity is roughly linear to the number of basic blocks
• It can be parallelized

• We’re able to recover very close-to-original machine code

• Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!

REcon 2024 42



Recap

To recap:

• A few weaknesses facilitated the work
• Static symbolic execution was very effective
• The attack scales and works seemlessly on complex functions

• Time complexity is roughly linear to the number of basic blocks
• It can be parallelized

• We’re able to recover very close-to-original machine code
• Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!

REcon 2024 42



Recap

To recap:

• A few weaknesses facilitated the work
• Static symbolic execution was very effective
• The attack scales and works seemlessly on complex functions

• Time complexity is roughly linear to the number of basic blocks
• It can be parallelized

• We’re able to recover very close-to-original machine code
• Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!

REcon 2024 42



Questions?

Code is available here (GPL-3.0): https://github.com/ergrelet/themida-unmutate

Figure 45: QR Code for the link above

REcon 2024 43


