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= Vulnerability Research
= Software Development
= Software Obfuscation

Disclaimer: this is the result of a personal research project and is not linked to my employer.
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https://twitter.com/ergrelet
https://mastodon.social/@ergrelet

= Commercial software protector

= Developed by Oreans Technologies®

= Binary-to-binary workflow

Supports x86 and .NET Windows executables (EXEs and DLLs)

https://www.oreans.com/
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https://www.oreans.com/

Advanced Anti-Cracking Techniques
Added to Executable

= Code protection engine used by Themida
= Shared with other Oreans products?
= Contains the code mutation engine

2Code Virtualizer and WinLicense
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Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

= No interpreter or virtual machine (VM) involved
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Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

= No interpreter or virtual machine (VM) involved

= Light obfuscation of the code

= Adds and modifies machine code, preserves original behavior
= Can modify the control flow graph

REcon 2024 b



Initial Motivation

The goal

= Develop a deobfuscator for the mutation engine
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Initial Plan of Action

The plan

= Fully understand the features of Themida's mutation engine
= Find potential weaknesses we can leverage to deobfuscate the code
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Obtaining Themida

Research done on the demo version of Themida (v3.1.1)

= Available on Oreans's web site3
= Contains the same mutation engine as the paid version
= We can use the demo as a black box to infer features and behaviors

*https://www.oreans.com /download.php
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What Mutation Looks Like

.

L —0

]

Figure 1: Original CFG (6 basic blocks) Figure 2: CFG after mutation (74 basic

blocks)
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What Mutation Looks Like

5 aes_encrypt_che_mutated:
aes_encrypt_cbc: 149074d9c 08 sub rsp, 0x8
1400011b0 4157 push r15 {__saved_r15} 140874dab push  @x5ff3ch7a
1400811b2 4156 push r14 {__saved_r14} [hn i sub rsp,d6>[<8 ar 18, s
29 4893024 mov quord [rsp {var o

1400811b4 4155 push r13 {__saved_r13} 140074dad  8f0424 pop quord [rsp {var_18_1} {var_18}]
1400011b6 4154 push r12 {__saved_r12} 140674db8 87424 pop auord [rsp {var_10}] {ex5ff3cb7a)
1400811b8 56 push rei {_ saved rsi} 140674db3  ©93chSTFFT Jnp €x146076274
1400011b9 57 push rdi {__saved_rdi} L
1400011ba 55 push rbp {__saved_rbp}

1400702f4 push Bx4e9bedbc
1400011bb 53 push rbx {__saved_rbx} 14087029 push  @x77b79d5c
1400011bc  4883ec48 sub rsp, 0x48 1400762fe push 6x77:5?69c< W

140070303 4 mov qword [rsp {var_28_1}], rbx
1400011c0  31c0 xor eax, eax {0x@} 149070307 80424 pop qword [rsp {var_28_2} {var_28_1}]
1400011c2 f6c20f test dl, exf 14007030a 80424 pop qword [rsp] {Bx77b79d5c}
1400011¢5 0f85cc000000 jne Ox140001297 Mvufeaad 6891e61c25 push 0x251ce691 {var_18_2}

140870312 51 push rex {var_20_3}

T 1490970313 80424 pop qword [rsp {var_28_4} {var_28_3}]

140070316 57 push rdi {var_20_5}

140076317 bfobef9767 mov edi, @x6797eféb

14007031 0172408 add dword [rsp+0x8 {var_18.2}], edi {6x8cb4ds9c}

1400011cb 48clead4 shr rdx, ox4 140070328 S pop rdi {var_20_5}
1400011cf bB801000000 mov eax, 0x1

Figure 4: Code after mutation
Figure 3: Original code (71 instructions) (2160 instructions)
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Initial Approach

Compare |

Mutated machine

Machine code —> Themida
code
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uops.info

LOCK ADD ptr [RAX],

LOCK ADD ptr [RAX],

. LOCK ADD ptr [RAX],
uops.info? to the rescue! LocK ADD ptr [RAX],

q 0. .ng Q q RET
= Provides descriptions of all(?) x86 instructions AT e, GOV, ) (GEY CRER
instruction_coverage_AND proc EXPORT
AND ptr [ 1, e

= Contained in a single XML “database”

AND ptr [ In 2
AND

= Provides a script to generate assembly code

AND
?https:/ /uops.info/xml.html AND
AND
AND
AND
AND

Figure 5: Assembly file generated
from uops.info's database
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Input Generation

_’ . —l
uops.info XML g Python Script g Assembly File w_*m

Figure 6: Input generation pipeline
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Difficulties

Ended up testing the SecureEngine’s instruction handling logic as well:

Themida64.exe X
@ An error occurred in the applcation, ¥ <Ontnue application
restart application
[ send bug report showbugreport 3¢  dose application

Figure 7: Crash while protecting a function with Themida

(584.176): Security check failure or stack buffer overrun - code c8000409 (!!! second chance !!!)

Subcode: ©x2 FAST_FAIL_STACK_COOKIE_CHECK_FAILURE
©ax=00008001 ebx=00000000 ecx=00000002 edx=000001e9 esi=lac@e79c edi=08000101

eip=1019669e esp=lac@ccb4 ebp=lacOcfd8 iopl=0 nv up ei pl nz na po nc
€s=0023 ss5=002b ds=002b es=002b fs=0853 gs=002b ef1=00000202
1019669e cd29 int 29h

Figure 8: Stack corruption viewed in WinDbg

(Haven't tried to root cause these)
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@ Themida

ADVANCED WINDOWS SOFTWARE PROTECTION

Figure 9: Infinite loop while protecting a function with Themida
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Features

SecureEngine's code mutation engine features:

= Opaque function/code entry
= Junk code insertion

= Instruction substitution
= Constant unfolding
= Register-to-stack spilling
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Opaque Code Entry

= Original code is redirected to a trampoline

= Trampoline is used to hinder static analysis
= Equivalent to obfuscated push ADDR; ret
= Redirects to the actual obfuscated code

REcon 2024 17



Opaque Code Entry

aes_encrypt_chc:
1400011b0 e€96d681868 jmp aes_encrypt_cbc_trampoline

Figure 10: Entry of a protected function
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Opaque Code Entry

REcon 2024 Figure 11: CFG of trampolines generated by Themida to wrap code 19



Opaque Code Entry

LT

L
T T L

REcon 2024 Figure 12: Part of the CFG which computes the obfuscated code’s address 20



Junk Code Insertion

= Junk code insertion is triggered randomly, for 75% of all instructions
= Junk code can be inserted before original instructions or after or both
= Junk code cancels itself out within a single basic block
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Junk Code Insertion

Example of MOV instruction with junk code inserted around:

1 push eax

2 add ax, 42

3 shl eax, 12

4 mov ebx, ecx ; Original instruction
5 pop eax
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Instruction Substitution

The SecureEngine's code mutation engine can substitute the 14 following x86

instruction classes®:

AND, DEC, INC, JMP, MOV, MOVZX, NEG, NOT, OR, POP, PUSH, SUB,
XCHG, XOR

The instruction substitution pass is always applied to supported instructions.

“In XED, an instruction class is “what is typically thought of as the instruction mnemonic."
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Instruction Substitution

Example of XCHG instruction substitution:

xchg bl, dh

Figure 13: Original instruction

Figure 14: Mutated instruction
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Constant Unfolding

Example of constant unfolding on MOV:

push r13 {var_8}
push rbx {var_1e}

.. | mov rbx, @x5aftb935

.. | mov r13, ex2fe39267
Xor r13, rbx

mov rdx, ©0x539 pop rbx {var_1e}
or r13, @x7/b59f878
Xor r13, Ox6e7f9195
Figure 15: Original instruction XOr r13, Ox11826F¥d6 {6x539}

mov rdx, r13 {@x539}
pop r1s {var_o}

Figure 16: Mutated instruction
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FLAGS Register

To preserve FLAGS register, the engine disables code mutation locally when needed:

eax, 0x90
data_1400f3f73

esi, [esitBx1]
data_1400f3f7c

esi, [esi+dx1]
data_1460eb38c

data_148354ead

Figure 17: "Mutated"” intructions when FLAGS are used
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Broken Instructions

Interestingly, some instructions can be randomly transformed into broken machine code.

Example of a broken FCMOVNB instruction:

instruction_coverage FCMOVNB:

14081c299 dword [rax], eax
14081c29b 0x4802004b {var_8}
14881c2ab al, Oxdf
14881c2a2

instruction_coverage FCMOVNB:

14881¢299 femovnb st@,

Figure 18: Original instruction
Figure 19: “Mutated"” instruction
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Broken Semantics

But also, semantics can be broken sometimes:

xchg dh, dh

Figure 20: Original instruction (NOP)

Figure 21: Mutated instruction (MOV DH, 0)
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Weaknesses

The obfuscation is annoying enough, but there are some weaknesses:

= Each basic block is created from one original instruction
= Each basic block is mutated independently
= The original function's CFG is preserved

This means we can deobfuscate each basic block individually to recover original
instructions.
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Simplifying The Code

To simplify the code, a couple of ideas came to mind too, but both involve an IR:

= Code Optimization
= Program Synthesis
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Simplifying The Code

To simplify the code, a couple of ideas came to mind too, but both involve an IR:

= Code Optimization

= Program Synthesis
= Symbolic Execution
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The Big Picture

Resolve Simplify basic Reassemble &

trampoline blocks relocate code

Figure 22: Deobfuscation process, the big picture
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The Big Picture

Resolve Simplify basic Reassemble &

trampoline blocks relocate code

Figure 23: Deobfuscation process, the big picture
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Defeating Trampolines

To defeat opaque code entry, we can symbolically execute trampolines

= Trampolines contains 2 conditional branches
= Trampoline logic is always the same
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Defeating Trampolines

<- Start symbolic execution

REcon 2024 Figure 24: Symbolic Execution Path 33



Defeating Trampolines

<- Redirect execution to
the right branch

REcon 2024 Figure 25: Symbolic Execution Path 33



Defeating Trampolines

<- Redirect execution to
the left branch

REcon 2024 Figure 26: Symbolic Execution Path 33



Defeating Trampolines

<- Extract mutated code's start address

REcon 2024 Figure 27: Symbolic Execution Path 33



Instruction Synthesis

We can differentiate 3 cases for the instruction synthesis process.
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Instruction Synthesis (case #1)

148091832 Xorps Xmme, Xxmm®

140091835 jmp Ox14007ed1d

Figure 28: Case #1 (no junk code, no substitution)
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Instruction Synthesis (case #2)

14087ed67
14@87edbb
146087ed72
146087ed76
14007ed7a
14007ed7e
14007ed7T
14007ed83
14007ed88
14007ed8¢
14007ed8d
14007ed8f
14007ed93
14007ed9%a

add
add
Xor
Xor
Xor
pop
movups
push
mov
push
pop
add
sub
xchg

rdx, ©x8

rdx, Ox8

rdx, qgword [rsp]
qword [rsp], rdx
rdx, qgword [rsp]
rsp

xmmword [rdi+8x28], xmmo
Ox7fff59¢c1

qword [rsp], ri1@
rsp

ri1e

r160, Ox8

r160, Ox8

qword [rsp], ri1@

Figure 29: Case #2 (junk code inserted, no substitution)
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Instruction Synthesis (case #2)

ExprId('zf', 1): ExprOp('==", ExprId('RSP', 64), ExprInt(exe, 64)),

ExprId('af', 1): ExprSlice(ExprOp('~', ExprId('RSP', 64), ExprOp('+', ExprId('RSP', &
ExprId('cf', 1): ExprSlice(ExprOp('~', ExprId('RSP', 64), ExprOp('&', ExprOp('~r',
ExprId('of', 1): ExprSlice(ExprOp('&', ExprOp('~', ExprId('RSP', 64), ExprOp('+',
ExprId('nf', 1): ExprSlice(ExprId('RSP', 64), 63, 64),

ExprMem(ExprOp('+', ExprId('RDI', 64), ExprInt(ex2e, 64)), 128): ExprId('XMMe’,
ExprId('IRDst', 64): ExprInt(exA2, 64),

ExprId('pf', 1): ExprOp('parity', ExprOp('&', ExprId('RSP', 64), ExprInt(@xFF, 64)))

Figure 30: Basic block’s symbolic execution

ExprId('IRDst', 64): ExprInt(ex4, 64)J
ExprMem(ExprOp('+', ExprId('RDI', 64), ExprInt(@x2e, 64)), 128): ExprId('XMMe', 128)

REcon 2024 Figure 31: MOVUPS instruction’s symbolic execution




Instruction Synthesis (case #2)

REcon 2024

[y
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64), ExprInt(ex20, 64)), 128): ExprId('XMMe', 128)

ExprId('IRDst', 64): ExprInt(ex4, 64)4
ExprMem(ExprOp('+', ExprId('RDI', 64), ExprInt(@x2e, 64)), 128): ExprId('XMMe', 128)

Figure 33: MOVUPS instruction’s symbolic execution



Instruction Synthesis (case #2)

[y
CRETCEN
CAPIVP 3 CAPILU| RIr , O4), CAPIVP\ T , CApPI
tnent ra ran
S < e

64), ExprInt(ex20, 64)), 128): ExprId('XMMe', 128)

Figure 34: Basic block's symbolic execution (FLAGS removed)

T RO POy o MRRERT SR
ExprMem(ExprOp( '+", ExprId('RDI', 64), ExprInt(ex2e, 64)), 128): ExprId('XMMe', 128)
h

REcon 2024 Figure 35: MOVUPS instruction’s symbolic execution




Instruction Synthesis (case #3)

For instructions which the mutation engine can substitute:

= We only have to manually synthesize 14 instruction classes

= Development effort is thus symmetric between attack and defense
= We can use pattern matching

REcon 2024
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Instruction Synthesis (case #3)

Exprop( ', ExprId('RSP", 64), ExprInt(exe, 64)),

ExprSlice(Exprop(‘~", ExprId('RSP', 64), ExprOp('+’
ExprOp('parity', ExprOp('&', ExprId('RSP', 64), Exp
ExprSlice(ExprOp('&', ExprOp('~', ExprId('RSP', 6&4)

ExprSlice
: ExprSlice A", ExprId('RSP', 64), ExprOp('&’
ExprId('IRDst', 64): ExprInt(exl2e, 64)

Figure 36: Basic block’s symbolic execution
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Instruction Synthesis (case #3)

B, 2%y Savm TikiGesy 89905
= - = = — — e - oo = - s s
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- =
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Figure 37: Basic block's symbolic execution (FLAGS removed)
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Instruction Synthesis (case #3)

Topen Gl Tem " g B CREE T, 82y Bopn BiniEeS, 390%;

:4'\|JI SJ.LLEW_::I\P\GP .-l, :4'\|JI:U;(.-‘-‘ Ty :I‘;P\CJP('T'

&
C

Figure 38: Instruction “synthesized” via pattern matching
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Result

$ ./sha256_test_protected.exe
SHA-256 tests: SUCCEEDED
$ themida-unmutate ./sha256_test_protected.exe -a 0x1400011d0 6x140001000 Ox140001200 BOx140EO1270
-0 sha256_test_simplified.exe

Resolving mutated's functions' addresses...

Function at 0x1400011d@® jumps to 0x14031f2da

Function at ©x140001000 jumps to 0x140028532

Function at ©x140001200 jumps to ©x140211875

Function at 0x140001270 jumps to 0x1U400760b7

Deobfuscating mutated functions...

Simplifying function at 0x14031f24a...

Simplifying function at ©x140028532...

Simplifying function at Ox140211875...

Simplifying function at 0x1400760b7...

Rebuilding binary file.

Done! You can find your deobFuscated binary at 'sha256_test_simplified.exe'
$ ./sha256_test_simplified.exe
SHA-256 tests: SUCCEEDED

$ |

Figure 39: Simplified binaries can be run
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| S

. [—

:
Figure 40: Original (6 BBs) Figure 41: Obfuscated Figure 42: Deobfuscated

(74 BBs) (7 BBs)
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Result

aes_encrypt_cbc:
aes_encrypt_cbe: 1400011b8 e94bec6600 jmp data_148670000
1400011b68 4157 push r15 {__saved_r15}
1400011b2 4156 push r14 {__saved_r14} J
1400011b4 4155 push r13 {__saved_r13}
140001106 4154 push r12 {__saved_r12} 148670000 4157 push r15 {__saved_r15}
1400011b8 56 push rsi {__saved_rsi} 148670002 4156 push r14 {__saved_r14}
1400011b9 57 push rdi {__saved_rdi} 140670004 4155 push r13 {__saved_r13}
1400011ba 55 push rbp {__saved_rbp} 148670006 4154 push r12 {__saved_r12}
1400011bb 53 push rbx {__saved_rbx} 140670008 56 push rsi {__saved_rsi}
1400011bc  4883ec48 sub rsp, 9x48 140670009 57 push rdi {__saved_rdi}
1400011c® 31c0 xor eax, eax {0x@} 14067000a 55 push rbp {__saved_rbp}
1400011c2  f6c20f test dl, exf 14067000b 53 push rbx {__saved_rbx}
1490011c5 Bf85cc009000 jne 0x148081297 14067000c  4883c4b8 add rsp, OxfFFFFFFfffFfffbe

140670010 31cO xor eax, eax {0x@}
|J 140670012 40f6c20f test d1, exf
140670016 0f85d6000000 jne 0x14067008F2
1400011ch 48clead4 shr rdx, ox4 |
1400011cf b8B1000000 mov eax, 0x1 J
14067001c 48cleadsd shr rdx, ox4 I
140670028 b881000000 mov eax. 0x1

Figure 43: Original (71 instructions)
Figure 44: Deobfuscated (74 instructions)
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To recap:

= A few weaknesses facilitated the work
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To recap:
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Static symbolic execution was very effective
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To recap:

= A few weaknesses facilitated the work

Static symbolic execution was very effective

The attack scales and works seemlessly on complex functions
= Time complexity is roughly linear to the number of basic blocks
= |t can be parallelized

= We're able to recover very close-to-original machine code
= Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!
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Questions?

Code is available here (GPL-3.0): https://github.com/ergrelet/themida-unmutate

Figure 45: QR Code for the link above
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