Seeing Through Themida’s Code Mutation

Erwan Grelet
June 29th, 2024

REcon 2024

. . Contacts
Security researcher at Ubisoft @
¥ Qergrelet
Interests: @ Qergrelet@mastodon.social

= Reverse Engineering

= Vulnerability Research
= Software Development
= Software Obfuscation

Disclaimer: this is the result of a personal research project and is not linked to my employer.

REcon 2024

https://twitter.com/ergrelet
https://mastodon.social/@ergrelet

= Commercial software protector

= Developed by Oreans Technologies®

= Binary-to-binary workflow

Supports x86 and .NET Windows executables (EXEs and DLLs)

https://www.oreans.com/

REcon 2024 3

https://www.oreans.com/

Advanced Anti-Cracking Techniques
Added to Executable

= Code protection engine used by Themida
= Shared with other Oreans products?
= Contains the code mutation engine

2Code Virtualizer and WinLicense

REcon 2024 4

Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

= No interpreter or virtual machine (VM) involved

REcon 2024 b

Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

= No interpreter or virtual machine (VM) involved
= Light obfuscation of the code

REcon 2024 b

Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

= No interpreter or virtual machine (VM) involved
= Light obfuscation of the code
= Adds and modifies machine code, preserves original behavior

REcon 2024 b

Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

= No interpreter or virtual machine (VM) involved

= Light obfuscation of the code

= Adds and modifies machine code, preserves original behavior
= Can modify the control flow graph

REcon 2024 b

Initial Motivation

The goal

= Develop a deobfuscator for the mutation engine

REcon 2024 6

Initial Plan of Action

The plan

= Fully understand the features of Themida's mutation engine
= Find potential weaknesses we can leverage to deobfuscate the code

REcon 2024 7

Obtaining Themida

Research done on the demo version of Themida (v3.1.1)

= Available on Oreans's web site3
= Contains the same mutation engine as the paid version
= We can use the demo as a black box to infer features and behaviors

*https://www.oreans.com /download.php

REcon 2024 8

What Mutation Looks Like

.

L —0

]

Figure 1: Original CFG (6 basic blocks) Figure 2: CFG after mutation (74 basic

blocks)
REcon 2024

What Mutation Looks Like

5 aes_encrypt_che_mutated:
aes_encrypt_cbc: 149074d9c 08 sub rsp, 0x8
1400011b0 4157 push r15 {__saved_r15} 140874dab push @x5ff3ch7a
1400811b2 4156 push r14 {__saved_r14} [hn i sub rsp,d6>[<8 ar 18, s
29 4893024 mov quord [rsp {var o

1400811b4 4155 push r13 {__saved_r13} 140074dad 8f0424 pop quord [rsp {var_18_1} {var_18}]
1400011b6 4154 push r12 {__saved_r12} 140674db8 87424 pop auord [rsp {var_10}] {ex5ff3cb7a)
1400811b8 56 push rei {_ saved rsi} 140674db3 ©93chSTFFT Jnp €x146076274
1400011b9 57 push rdi {__saved_rdi} L
1400011ba 55 push rbp {__saved_rbp}

1400702f4 push Bx4e9bedbc
1400011bb 53 push rbx {__saved_rbx} 14087029 push @x77b79d5c
1400011bc 4883ec48 sub rsp, 0x48 1400762fe push 6x77:5?69c< W

140070303 4 mov qword [rsp {var_28_1}], rbx
1400011c0 31c0 xor eax, eax {0x@} 149070307 80424 pop qword [rsp {var_28_2} {var_28_1}]
1400011c2 f6c20f test dl, exf 14007030a 80424 pop qword [rsp] {Bx77b79d5c}
1400011¢5 0f85cc000000 jne Ox140001297 Mvufeaad 6891e61c25 push 0x251ce691 {var_18_2}

140870312 51 push rex {var_20_3}

T 1490970313 80424 pop qword [rsp {var_28_4} {var_28_3}]

140070316 57 push rdi {var_20_5}

140076317 bfobef9767 mov edi, @x6797eféb

14007031 0172408 add dword [rsp+0x8 {var_18.2}], edi {6x8cb4ds9c}

1400011cb 48clead4 shr rdx, ox4 140070328 S pop rdi {var_20_5}
1400011cf bB801000000 mov eax, 0x1

Figure 4: Code after mutation
Figure 3: Original code (71 instructions) (2160 instructions)

REcon 2024 10

Initial Approach

Compare |

Mutated machine

Machine code —> Themida
code

REcon 2024 11

uops.info

LOCK ADD ptr [RAX],

LOCK ADD ptr [RAX],

. LOCK ADD ptr [RAX],
uops.info? to the rescue! LocK ADD ptr [RAX],

q 0. .ng Q q RET
= Provides descriptions of all(?) x86 instructions AT e, GOV,) (GEY CRER
instruction_coverage_AND proc EXPORT
AND ptr [1, e

= Contained in a single XML “database”

AND ptr [In 2
AND

= Provides a script to generate assembly code

AND
?https:/ /uops.info/xml.html AND
AND
AND
AND
AND

Figure 5: Assembly file generated
from uops.info's database

REcon 2024 12

Input Generation

_’ . —l
uops.info XML g Python Script g Assembly File w_*m

Figure 6: Input generation pipeline

REcon 2024 13

Difficulties

Ended up testing the SecureEngine’s instruction handling logic as well:

Themida64.exe X
@ An error occurred in the applcation, ¥ <Ontnue application
restart application
[send bug report showbugreport 3¢ dose application

Figure 7: Crash while protecting a function with Themida

(584.176): Security check failure or stack buffer overrun - code c8000409 (!!! second chance !!!)

Subcode: ©x2 FAST_FAIL_STACK_COOKIE_CHECK_FAILURE
©ax=00008001 ebx=00000000 ecx=00000002 edx=000001e9 esi=lac@e79c edi=08000101

eip=1019669e esp=lac@ccb4 ebp=lacOcfd8 iopl=0 nv up ei pl nz na po nc
€s=0023 ss5=002b ds=002b es=002b fs=0853 gs=002b ef1=00000202
1019669e cd29 int 29h

Figure 8: Stack corruption viewed in WinDbg

(Haven't tried to root cause these)

REcon 2024 14

@ Themida

ADVANCED WINDOWS SOFTWARE PROTECTION

Figure 9: Infinite loop while protecting a function with Themida
REcon 2024 15

Features

SecureEngine's code mutation engine features:

= Opaque function/code entry
= Junk code insertion

= Instruction substitution
= Constant unfolding
= Register-to-stack spilling

REcon 2024 16

Opaque Code Entry

= Original code is redirected to a trampoline

= Trampoline is used to hinder static analysis
= Equivalent to obfuscated push ADDR; ret
= Redirects to the actual obfuscated code

REcon 2024 17

Opaque Code Entry

aes_encrypt_chc:
1400011b0 e€96d681868 jmp aes_encrypt_cbc_trampoline

Figure 10: Entry of a protected function

REcon 2024 18

Opaque Code Entry

REcon 2024 Figure 11: CFG of trampolines generated by Themida to wrap code 19

Opaque Code Entry

LT

L
T T L

REcon 2024 Figure 12: Part of the CFG which computes the obfuscated code’s address 20

Junk Code Insertion

= Junk code insertion is triggered randomly, for 75% of all instructions
= Junk code can be inserted before original instructions or after or both
= Junk code cancels itself out within a single basic block

REcon 2024 21

Junk Code Insertion

Example of MOV instruction with junk code inserted around:

1 push eax

2 add ax, 42

3 shl eax, 12

4 mov ebx, ecx ; Original instruction
5 pop eax

REcon 2024 22

Instruction Substitution

The SecureEngine's code mutation engine can substitute the 14 following x86

instruction classes®:

AND, DEC, INC, JMP, MOV, MOVZX, NEG, NOT, OR, POP, PUSH, SUB,
XCHG, XOR

The instruction substitution pass is always applied to supported instructions.

“In XED, an instruction class is “what is typically thought of as the instruction mnemonic."

REcon 2024 23

Instruction Substitution

Example of XCHG instruction substitution:

xchg bl, dh

Figure 13: Original instruction

Figure 14: Mutated instruction

REcon 2024 24

Constant Unfolding

Example of constant unfolding on MOV:

push r13 {var_8}
push rbx {var_1e}

.. | mov rbx, @x5aftb935

.. | mov r13, ex2fe39267
Xor r13, rbx

mov rdx, ©0x539 pop rbx {var_1e}
or r13, @x7/b59f878
Xor r13, Ox6e7f9195
Figure 15: Original instruction XOr r13, Ox11826F¥d6 {6x539}

mov rdx, r13 {@x539}
pop r1s {var_o}

Figure 16: Mutated instruction

REcon 2024 25

FLAGS Register

To preserve FLAGS register, the engine disables code mutation locally when needed:

eax, 0x90
data_1400f3f73

esi, [esitBx1]
data_1400f3f7c

esi, [esi+dx1]
data_1460eb38c

data_148354ead

Figure 17: "Mutated"” intructions when FLAGS are used
REcon 2024 26

Broken Instructions

Interestingly, some instructions can be randomly transformed into broken machine code.

Example of a broken FCMOVNB instruction:

instruction_coverage FCMOVNB:

14081c299 dword [rax], eax
14081c29b 0x4802004b {var_8}
14881c2ab al, Oxdf
14881c2a2

instruction_coverage FCMOVNB:

14881¢299 femovnb st@,

Figure 18: Original instruction
Figure 19: “Mutated"” instruction

REcon 2024 27

Broken Semantics

But also, semantics can be broken sometimes:

xchg dh, dh

Figure 20: Original instruction (NOP)

Figure 21: Mutated instruction (MOV DH, 0)

REcon 2024 28

Weaknesses

The obfuscation is annoying enough, but there are some weaknesses:

= Each basic block is created from one original instruction
= Each basic block is mutated independently
= The original function's CFG is preserved

This means we can deobfuscate each basic block individually to recover original
instructions.

REcon 2024 29

Simplifying The Code

To simplify the code, a couple of ideas came to mind too, but both involve an IR:

= Code Optimization
= Program Synthesis

REcon 2024 30

Simplifying The Code

To simplify the code, a couple of ideas came to mind too, but both involve an IR:

= Code Optimization

= Program Synthesis
= Symbolic Execution

REcon 2024 30

The Big Picture

Resolve Simplify basic Reassemble &

trampoline blocks relocate code

Figure 22: Deobfuscation process, the big picture

REcon 2024 31

The Big Picture

Resolve Simplify basic Reassemble &

trampoline blocks relocate code

Figure 23: Deobfuscation process, the big picture

REcon 2024 31

Defeating Trampolines

To defeat opaque code entry, we can symbolically execute trampolines

= Trampolines contains 2 conditional branches
= Trampoline logic is always the same

REcon 2024 32

Defeating Trampolines

<- Start symbolic execution

REcon 2024 Figure 24: Symbolic Execution Path 33

Defeating Trampolines

<- Redirect execution to
the right branch

REcon 2024 Figure 25: Symbolic Execution Path 33

Defeating Trampolines

<- Redirect execution to
the left branch

REcon 2024 Figure 26: Symbolic Execution Path 33

Defeating Trampolines

<- Extract mutated code's start address

REcon 2024 Figure 27: Symbolic Execution Path 33

Instruction Synthesis

We can differentiate 3 cases for the instruction synthesis process.

REcon 2024 34

Instruction Synthesis (case #1)

148091832 Xorps Xmme, Xxmm®

140091835 jmp Ox14007ed1d

Figure 28: Case #1 (no junk code, no substitution)

REcon 2024 35

Instruction Synthesis (case #2)

14087ed67
14@87edbb
146087ed72
146087ed76
14007ed7a
14007ed7e
14007ed7T
14007ed83
14007ed88
14007ed8¢
14007ed8d
14007ed8f
14007ed93
14007ed9%a

add
add
Xor
Xor
Xor
pop
movups
push
mov
push
pop
add
sub
xchg

rdx, ©x8

rdx, Ox8

rdx, qgword [rsp]
qword [rsp], rdx
rdx, qgword [rsp]
rsp

xmmword [rdi+8x28], xmmo
Ox7fff59¢c1

qword [rsp], ri1@
rsp

ri1e

r160, Ox8

r160, Ox8

qword [rsp], ri1@

Figure 29: Case #2 (junk code inserted, no substitution)

REcon 2024

Instruction Synthesis (case #2)

ExprId('zf', 1): ExprOp('==", ExprId('RSP', 64), ExprInt(exe, 64)),

ExprId('af', 1): ExprSlice(ExprOp('~', ExprId('RSP', 64), ExprOp('+', ExprId('RSP', &
ExprId('cf', 1): ExprSlice(ExprOp('~', ExprId('RSP', 64), ExprOp('&', ExprOp('~r',
ExprId('of', 1): ExprSlice(ExprOp('&', ExprOp('~', ExprId('RSP', 64), ExprOp('+',
ExprId('nf', 1): ExprSlice(ExprId('RSP', 64), 63, 64),

ExprMem(ExprOp('+', ExprId('RDI', 64), ExprInt(ex2e, 64)), 128): ExprId('XMMe’,
ExprId('IRDst', 64): ExprInt(exA2, 64),

ExprId('pf', 1): ExprOp('parity', ExprOp('&', ExprId('RSP', 64), ExprInt(@xFF, 64)))

Figure 30: Basic block’s symbolic execution

ExprId('IRDst', 64): ExprInt(ex4, 64)J
ExprMem(ExprOp('+', ExprId('RDI', 64), ExprInt(@x2e, 64)), 128): ExprId('XMMe', 128)

REcon 2024 Figure 31: MOVUPS instruction’s symbolic execution

Instruction Synthesis (case #2)

REcon 2024

[y
CRETCEN
CAPIVP 3 CAPILU| RIr , O4), CAPIVP\ T , CApPI
tnent ra ran
S < e

64), ExprInt(ex20, 64)), 128): ExprId('XMMe', 128)

ExprId('IRDst', 64): ExprInt(ex4, 64)4
ExprMem(ExprOp('+', ExprId('RDI', 64), ExprInt(@x2e, 64)), 128): ExprId('XMMe', 128)

Figure 33: MOVUPS instruction’s symbolic execution

Instruction Synthesis (case #2)

[y
CRETCEN
CAPIVP 3 CAPILU| RIr , O4), CAPIVP\ T , CApPI
tnent ra ran
S < e

64), ExprInt(ex20, 64)), 128): ExprId('XMMe', 128)

Figure 34: Basic block's symbolic execution (FLAGS removed)

T RO POy o MRRERT SR
ExprMem(ExprOp('+", ExprId('RDI', 64), ExprInt(ex2e, 64)), 128): ExprId('XMMe', 128)
h

REcon 2024 Figure 35: MOVUPS instruction’s symbolic execution

Instruction Synthesis (case #3)

For instructions which the mutation engine can substitute:

= We only have to manually synthesize 14 instruction classes

= Development effort is thus symmetric between attack and defense
= We can use pattern matching

REcon 2024

38

Instruction Synthesis (case #3)

Exprop(', ExprId('RSP", 64), ExprInt(exe, 64)),

ExprSlice(Exprop(‘~", ExprId('RSP', 64), ExprOp('+’
ExprOp('parity', ExprOp('&', ExprId('RSP', 64), Exp
ExprSlice(ExprOp('&', ExprOp('~', ExprId('RSP', 6&4)

ExprSlice
: ExprSlice A", ExprId('RSP', 64), ExprOp('&’
ExprId('IRDst', 64): ExprInt(exl2e, 64)

Figure 36: Basic block’s symbolic execution

REcon 2024 38

Instruction Synthesis (case #3)

B, 2%y Savm TikiGesy 89905
= - = = — — e - oo = - s s
LAPI SLI1LT | LAY VP 3 LAPI LUy NIF 5 W), LAPIVPY T
e - PP RN —an -

= P ot e)
- =

s ST, Caps T

Figure 37: Basic block's symbolic execution (FLAGS removed)

REcon 2024 38

Instruction Synthesis (case #3)

Topen Gl Tem " g B CREE T, 82y Bopn BiniEeS, 390%;

:4'\|JI SJ.LLEW_::I\P\GP .-l, :4'\|JI:U;(.-‘-‘ Ty :I‘;P\CJP('T'

&
C

Figure 38: Instruction “synthesized” via pattern matching

REcon 2024 38

Result

$./sha256_test_protected.exe
SHA-256 tests: SUCCEEDED
$ themida-unmutate ./sha256_test_protected.exe -a 0x1400011d0 6x140001000 Ox140001200 BOx140EO1270
-0 sha256_test_simplified.exe

Resolving mutated's functions' addresses...

Function at 0x1400011d@® jumps to 0x14031f2da

Function at ©x140001000 jumps to 0x140028532

Function at ©x140001200 jumps to ©x140211875

Function at 0x140001270 jumps to 0x1U400760b7

Deobfuscating mutated functions...

Simplifying function at 0x14031f24a...

Simplifying function at ©x140028532...

Simplifying function at Ox140211875...

Simplifying function at 0x1400760b7...

Rebuilding binary file.

Done! You can find your deobFuscated binary at 'sha256_test_simplified.exe'
$./sha256_test_simplified.exe
SHA-256 tests: SUCCEEDED

$ |

Figure 39: Simplified binaries can be run

REcon 2024

| S

. [—

:
Figure 40: Original (6 BBs) Figure 41: Obfuscated Figure 42: Deobfuscated

(74 BBs) (7 BBs)
REcon 2024 20

Result

aes_encrypt_cbc:
aes_encrypt_cbe: 1400011b8 e94bec6600 jmp data_148670000
1400011b68 4157 push r15 {__saved_r15}
1400011b2 4156 push r14 {__saved_r14} J
1400011b4 4155 push r13 {__saved_r13}
140001106 4154 push r12 {__saved_r12} 148670000 4157 push r15 {__saved_r15}
1400011b8 56 push rsi {__saved_rsi} 148670002 4156 push r14 {__saved_r14}
1400011b9 57 push rdi {__saved_rdi} 140670004 4155 push r13 {__saved_r13}
1400011ba 55 push rbp {__saved_rbp} 148670006 4154 push r12 {__saved_r12}
1400011bb 53 push rbx {__saved_rbx} 140670008 56 push rsi {__saved_rsi}
1400011bc 4883ec48 sub rsp, 9x48 140670009 57 push rdi {__saved_rdi}
1400011c® 31c0 xor eax, eax {0x@} 14067000a 55 push rbp {__saved_rbp}
1400011c2 f6c20f test dl, exf 14067000b 53 push rbx {__saved_rbx}
1490011c5 Bf85cc009000 jne 0x148081297 14067000c 4883c4b8 add rsp, OxfFFFFFFfffFfffbe

140670010 31cO xor eax, eax {0x@}
|J 140670012 40f6c20f test d1, exf
140670016 0f85d6000000 jne 0x14067008F2
1400011ch 48clead4 shr rdx, ox4 |
1400011cf b8B1000000 mov eax, 0x1 J
14067001c 48cleadsd shr rdx, ox4 I
140670028 b881000000 mov eax. 0x1

Figure 43: Original (71 instructions)
Figure 44: Deobfuscated (74 instructions)

REcon 2024 41

To recap:

= A few weaknesses facilitated the work

REcon 2024 42

To recap:

= A few weaknesses facilitated the work
= Static symbolic execution was very effective

REcon 2024 42

To recap:

= A few weaknesses facilitated the work
= Static symbolic execution was very effective

= The attack scales and works seemlessly on complex functions
= Time complexity is roughly linear to the number of basic blocks
= |t can be parallelized

REcon 2024 42

To recap:

= A few weaknesses facilitated the work
= Static symbolic execution was very effective

= The attack scales and works seemlessly on complex functions
= Time complexity is roughly linear to the number of basic blocks
= |t can be parallelized

= We're able to recover very close-to-original machine code

REcon 2024 42

To recap:

= A few weaknesses facilitated the work

Static symbolic execution was very effective

The attack scales and works seemlessly on complex functions
= Time complexity is roughly linear to the number of basic blocks
= |t can be parallelized

= We're able to recover very close-to-original machine code
= Binaries can be patched to run on the deobfuscated code

REcon 2024 42

To recap:

= A few weaknesses facilitated the work

Static symbolic execution was very effective

The attack scales and works seemlessly on complex functions
= Time complexity is roughly linear to the number of basic blocks
= |t can be parallelized

= We're able to recover very close-to-original machine code
= Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!

REcon 2024 42

Questions?

Code is available here (GPL-3.0): https://github.com/ergrelet/themida-unmutate

Figure 45: QR Code for the link above

REcon 2024 43

