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About Me

Security researcher at Ubisoft

Interests:
• Reverse Engineering
• Vulnerability Research
• Software Development
• Software Obfuscation

Contacts
� @ergrelet
ø @ergrelet@mastodon.social

0Disclaimer: this is the result of a personal research project and is not linked to my employer.
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https://twitter.com/ergrelet
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Themida

• Commercial software protector
• Developed by Oreans Technologies1

• Binary-to-binary workflow
• Supports x86 and .NET Windows executables (EXEs and DLLs)

1https://www.oreans.com/
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SecureEngine

• Code protection engine used by Themida
• Shared with other Oreans products2

• Contains the code mutation engine

2Code Virtualizer and WinLicense
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Mutation-based Code Obfuscation

In commercial protectors code mutation generally means:

• No interpreter or virtual machine (VM) involved

• Light obfuscation of the code
• Adds and modifies machine code, preserves original behavior
• Can modify the control flow graph
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Initial Motivation

The goal

• Develop a deobfuscator for the mutation engine
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Initial Plan of Action

The plan

• Fully understand the features of Themida’s mutation engine
• Find potential weaknesses we can leverage to deobfuscate the code
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Obtaining Themida

Research done on the demo version of Themida (v3.1.1)

• Available on Oreans’s web site3

• Contains the same mutation engine as the paid version
• We can use the demo as a black box to infer features and behaviors

3https://www.oreans.com/download.php
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What Mutation Looks Like

Figure 1: Original CFG (6 basic blocks) Figure 2: CFG after mutation (74 basic
blocks)
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What Mutation Looks Like

Figure 3: Original code (71 instructions)
Figure 4: Code after mutation
(2160 instructions)
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Initial Approach
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uops.info

uops.infoa to the rescue!
• Provides descriptions of all(?) x86 instructions

• Contained in a single XML “database”
• Provides a script to generate assembly code

ahttps://uops.info/xml.html

Figure 5: Assembly file generated
from uops.info’s database
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Input Generation

Figure 6: Input generation pipeline
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Difficulties

Ended up testing the SecureEngine’s instruction handling logic as well:

Figure 7: Crash while protecting a function with Themida

Figure 8: Stack corruption viewed in WinDbg

(Haven’t tried to root cause these)
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Difficulties

Figure 9: Infinite loop while protecting a function with Themida
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Features

SecureEngine’s code mutation engine features:

• Opaque function/code entry
• Junk code insertion
• Instruction substitution

• Constant unfolding
• Register-to-stack spilling
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Opaque Code Entry

• Original code is redirected to a trampoline
• Trampoline is used to hinder static analysis

• Equivalent to obfuscated push ADDR; ret
• Redirects to the actual obfuscated code
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Opaque Code Entry

Figure 10: Entry of a protected function
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Opaque Code Entry

Figure 11: CFG of trampolines generated by Themida to wrap codeREcon 2024 19



Opaque Code Entry

Figure 12: Part of the CFG which computes the obfuscated code’s addressREcon 2024 20



Junk Code Insertion

• Junk code insertion is triggered randomly, for 75% of all instructions
• Junk code can be inserted before original instructions or after or both
• Junk code cancels itself out within a single basic block
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Junk Code Insertion

Example of MOV instruction with junk code inserted around:
1 push eax
2 add ax , 42
3 sh l eax , 12
4 mov ebx , ecx ; O r i g i n a l i n s t r u c t i o n
5 pop eax
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Instruction Substitution

The SecureEngine’s code mutation engine can substitute the 14 following x86
instruction classes4:

AND, DEC, INC, JMP, MOV, MOVZX, NEG, NOT, OR, POP, PUSH, SUB,
XCHG, XOR

The instruction substitution pass is always applied to supported instructions.

4In XED, an instruction class is “what is typically thought of as the instruction mnemonic.”
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Instruction Substitution

Example of XCHG instruction substitution:

Figure 13: Original instruction
Figure 14: Mutated instruction
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Constant Unfolding

Example of constant unfolding on MOV:

Figure 15: Original instruction

Figure 16: Mutated instruction
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FLAGS Register

To preserve FLAGS register, the engine disables code mutation locally when needed:

Figure 17: “Mutated” intructions when FLAGS are used
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Broken Instructions

Interestingly, some instructions can be randomly transformed into broken machine code.

Example of a broken FCMOVNB instruction:

Figure 18: Original instruction
Figure 19: “Mutated” instruction
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Broken Semantics

But also, semantics can be broken sometimes:

Figure 20: Original instruction (NOP)
Figure 21: Mutated instruction (MOV DH, 0)
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Weaknesses

The obfuscation is annoying enough, but there are some weaknesses:

• Each basic block is created from one original instruction
• Each basic block is mutated independently
• The original function’s CFG is preserved

This means we can deobfuscate each basic block individually to recover original
instructions.
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Simplifying The Code

To simplify the code, a couple of ideas came to mind too, but both involve an IR:

• Code Optimization
• Program Synthesis
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The Big Picture

Figure 22: Deobfuscation process, the big picture
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The Big Picture

Figure 23: Deobfuscation process, the big picture
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Defeating Trampolines

To defeat opaque code entry, we can symbolically execute trampolines

• Trampolines contains 2 conditional branches
• Trampoline logic is always the same
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Defeating Trampolines

Figure 24: Symbolic Execution PathREcon 2024 33



Defeating Trampolines

Figure 25: Symbolic Execution PathREcon 2024 33



Defeating Trampolines

Figure 26: Symbolic Execution PathREcon 2024 33



Defeating Trampolines

Figure 27: Symbolic Execution PathREcon 2024 33



Instruction Synthesis

We can differentiate 3 cases for the instruction synthesis process.
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Instruction Synthesis (case #1)

Figure 28: Case #1 (no junk code, no substitution)
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Instruction Synthesis (case #2)

Figure 29: Case #2 (junk code inserted, no substitution)
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Instruction Synthesis (case #2)

Figure 30: Basic block’s symbolic execution

Figure 31: MOVUPS instruction’s symbolic executionREcon 2024 37



Instruction Synthesis (case #2)

Figure 32: Basic block’s symbolic execution (FLAGS removed)

Figure 33: MOVUPS instruction’s symbolic executionREcon 2024 37



Instruction Synthesis (case #2)

Figure 34: Basic block’s symbolic execution (FLAGS removed)

Figure 35: MOVUPS instruction’s symbolic executionREcon 2024 37



Instruction Synthesis (case #3)

For instructions which the mutation engine can substitute:

• We only have to manually synthesize 14 instruction classes
• Development effort is thus symmetric between attack and defense
• We can use pattern matching
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Instruction Synthesis (case #3)

Figure 36: Basic block’s symbolic execution
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Instruction Synthesis (case #3)

Figure 37: Basic block’s symbolic execution (FLAGS removed)
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Instruction Synthesis (case #3)

Figure 38: Instruction “synthesized” via pattern matching
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Result

Figure 39: Simplified binaries can be run
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Result

Figure 40: Original (6 BBs) Figure 41: Obfuscated
(74 BBs)

Figure 42: Deobfuscated
(7 BBs)
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Result

Figure 43: Original (71 instructions)
Figure 44: Deobfuscated (74 instructions)
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Recap

To recap:

• A few weaknesses facilitated the work

• Static symbolic execution was very effective
• The attack scales and works seemlessly on complex functions

• Time complexity is roughly linear to the number of basic blocks
• It can be parallelized

• We’re able to recover very close-to-original machine code
• Binaries can be patched to run on the deobfuscated code

A blog series will be published soon with more details, stay tuned!
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Questions?

Code is available here (GPL-3.0): https://github.com/ergrelet/themida-unmutate

Figure 45: QR Code for the link above
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