
© 2024 NCC Group. All rights reserved.

Reverse Engineering the
PowerG Wireless Protocol
James Chambers and Sultan Qasim Khan
REcon 2024 – June 29, 2024

2

What is PowerG?

• Proprietary radio protocol for wireless security and safety systems
o Developed by Johnson Controls (formerly Tyco / DSC)

• Smart locks: remote locking/unlocking, reporting status
• Sensors: report their status to alarm system panels

oDoor and window contact sensors, motion detectors, window break
sensors, smoke detectors

• Alarm system panels: trigger sirens and lights
• Key fobs: arm/disarm alarm systems or trigger the alarm

3

PowerG Specs

• Employs frequency hopping, adaptive transmission power, and encryption for
system security and reliability

• North American PowerG devices operate in the 915 MHz ISM band
• Range:

4

PowerG Security Claims - Encryption

• "PowerG uses 128-bit AES advanced encryption to protect you from devious
intruders, code grabbing, and message substitution from hackers."
o Source: "PowerG - The power of wires, without the wires"
o https://www.youtube.com/watch?v=8hzX90NQWcg

• "AES is a well-proven encryption algorithm that guarantees strong
authentication and encryption security for the PowerG wireless network."
o Source: PowerG Technology Overview
o https://cms.dsc.com/download.php?t=1&id=24255

https://cms.dsc.com/download.php?t=1&id=24255

5

PowerG Security Claims – Frequency Hopping

• "FHSS changes the frequency of a transmission at intervals faster than an intruder
can retune a jamming device."

• "Once a wireless connection is established and time-synchronization is gained, the
receiver and transmitter agree on one of practically infinite frequency hopping
sequences. These sequences are both encrypted and time-dependent."

• "Unless the system time, the system encryption key and the proper calculation are
all known, the communication cannot be tracked. As a result, unauthorized
interception of, or eavesdropping on, a communication is virtually impossible."

• Source: PowerG Technology Overview
o https://cms.dsc.com/download.php?t=1&id=24255

https://cms.dsc.com/download.php?t=1&id=24255

6

Initial Black Box Analysis – Radio Modulation

• Gaussian Frequency Shift Keying
(GFSK) modulation
oCan be seen in rounded

shape of modulation in power
spectral density (PSD) plot

• 25 kHz deviation
oPeaks in power spectrum are

50 kHz apart

PSD of a Single PowerG Radio Packet

7

Initial Black Box Analysis – Symbol Rate

• 50000 symbols per second
o640 us for a 32-bit preamble of alternating 1s and 0s

In-phase component of a time domain preview of the baseband signal at the start of a PowerG
radio packet. Background colour highlighting shows the frequency (derivative of phase).

8

Initial Black Box Analysis – Frequency Hopping

• 50 channels observed from 912.750 to 919.106 MHz
oSpaced 129.73 kHz apart

• Random-looking hop sequence with 64 hops per second

PowerG Peak Power Spectral Density Plot

9

Initial Black-Box Analysis – Packet Structure

• We used Universal Radio Hacker to analyze captured traffic for patterns
• Observed consistent start to every packet:

o32-bit preamble of 101010..1010 (0xAAAAAA in MSB-first format)
o32-bit sync word of 0x1F351F35 (in big-endian MSB-first format)

• Various values repeated for the next 16 bits, suggesting a header but
interpretation was non-obvious at first
oUpon applying TI CC1101-style dewhitening (supported by URH), it

became clear that the first byte after the sync word was a length field
oNext two bytes after length field had values that often repeated,

suggesting they may be addresses

10

Correspondence with TI Standard Packet Format

• The observed packet structure matched the TI standard packet format with
CC1101-style whitening, 1 byte length field, and 1 byte address

• CC1101-style CRC calculations over the header and payload matched the
last 16 bits of every packet

11

PowerG Modem Hardware and Firmware

• PowerG modems run on Texas Instruments sub-1
GHz wireless MCUs, incl. CC1110 and CC1310

• Recent models use the CC1310
• ARM Cortex-M3 main CPU running from flash

memory
• ARM Cortex-M0 radio CPU running from ROM
• Supports implementing custom/proprietary radio

protocols with a set of flexible radio commands
• PowerG modem firmware found to be built with TI

SimpleLink SDK, and running on top of TI-RTOS

12

PowerG Modem Hardware and Firmware

• Some sensor devices run entirely on the TI microcontroller

13

PowerG Modem Hardware and Firmware

• Android-based control panels use PowerG daughterboard as a modem
• Daughterboard modem talks to "virtual modem" service via UART

15

Initial Firmware Analysis
• Started analyzing PowerG as a research project in

early 2023, without hardware
• Aware of PowerG related firmware included in OTA

updates for control panel
• Multiple firmware images, apparently for different

devices and different chips on one device
• All bare metal firmware, with no symbols & very few

strings
• No application-related strings in the actual target

firmware
• Multiple versions of PowerG daughterboards

registered with FCC
• Newer ones keep details confidential
• Can't make out chip IDs on internal photos

16

Initial Firmware Analysis

• All we know is they all look like ARM, and one of them is for an STM32
• Used Symgrate to try to figure out what each image is for

• Fingerprint chip with peripheral accesses, recover function symbol names
• Symgrate finds a handful of function names, including:

NOROM_ThisLibraryIsFor_CC13x0_HwRev20AndLater_HaltIfViolated

• Identifies that this firmware is for the CC13x0 chip and uses TI RTOS / TI SDKs
• Knowing the chip, load SVD definitions to define MMIO peripherals

• Identifies like MMIO RF & cryptography commands
• Fill in more standard TI RTOS library functions, recover structure of tasks and

mailboxes…

17

IAR Data Segment Compression

• The data segment (initial values for variables) referred to by the region table
appeared to be stored in a compressed format

• Early boot code was found to decompress this segment when loading it from
flash to RAM

• Review of IAR documentation and analysis of the decompression algorithm
suggested its an IAR encoding of the LZ77 algorithm

• We reimplemented the decompressor in Python to reconstruct the initial
values for variables in the data segment

18

Radio Operation Logic in Firmware

• TI CC13x0 hardware provides set
of radio commands defined in ROM

• Radio command parameter
structures passed to radio coprocessor
(Cortex-M0) over mailbox interface

• Parameter structs located by
searching data section for sync word
0x1F351F35

• Radio control logic identified
through references to parameter structs

19

Cryptography Operations in Firmware

• AES ECB encrypt is the only
hardware-based cryptography op
used in the modem firmware

• Used for software AES-CTR
• CTR mode only needs the basic

block encryption op
• Encrypts blocks containing a

counter and nonce value to
generate keystream

• Keystream used for XOR
encryption & decryption

20

PowerG AES-CTR

• Normally, AES-CTR operates by encrypting blocks containing a nonce
combined with an incrementing counter value

https://en.wikipedia.org/wiki/File:CTR_encryption_2.svg

21

PowerG AES-CTR

• PowerG uses a slight variation of AES-CTR, where the encrypted 128-bit
block contains:

• 24-bits containing the 32 kHz modem clock rounded to 1/64th of a second
(only 23 bits are significant)

• 8-bit incrementing counter
• 96-bit fixed “secondary key”, or 96 zero bits

clock counter secondary key / 00s

22

PowerG AES-CTR

• This construct is reused for several purposes:
• Packet encryption
• Validating that clocks used for encryption match

• (directly output keystream bytes)
• Channel hopping

• (also based on directly outputting keystream bytes)

23

Packet Encryption

• Generate keystream check value by using initial counter value 0xFF
• Encrypt packet data with initial counter starting at 0x00

• Increments as necessary, but the RF packets are generally small
• RF packets have four cryptography modes:

• 0: not encrypted
• 1: not encrypted
• 2: encrypted using the 96-bit all-zero “nonce”
• 3: encrypted using the 96-bit secondary key “nonce”

24

Channel Hopping

• Generate AES-CTR keystream output with initial counter = 0xFE
• Extract fifth and sixth bytes of keystream: call them A and B
• Calculate channel ID based on hop config:

• 0: A % 50
• 1: (A + 25) % 50
• 2: B % 50

• Hop config 2 only updates every 4 seconds
• (mask AES-CTR clock with ~0x1ffff)

• There is also a static channel, 15 (zero-based count)
• Can still transmit when device clocks are too far out of sync

25

PowerG AES-CTR Problems

• It’s important that the nonce is unique in CTR mode
• Those aren’t nonces
• 23-bit 64 Hz clock can only count for ~36 hours until it wraps around to 0
• Each time a clock value repeats, the same keystream is generated

• Effectively repeated-key XOR, can be broken statistically to recover plaintext
(though these plaintexts are relatively predictable)

• Cryptopals set 3, challenge 20

• Encrypted packets you capture passively can be used for active attacks
against the encryption on that network in the future, each time the
corresponding clock value repeats

26

PowerG AES-CTR Problems
• Captured messages can be replayed when clock repeats
• Modified captured message can be replayed when clock repeats

• No cryptographic authentication
• CTR mode is malleable since it’s based on XOR encryption

• (Remember, AES is just used to generate blocks of keystream)
• Ciphertext of messages with known structure can be directly manipulated

• Flipping one bit in the ciphertext causes corresponding bit flip in plaintext
• Known plaintext attack: ciphertext XOR plaintext = keystream

• Sensors are sending well-structured data that is mostly the same across devices of
same model

• Recover all/most of keystream to encrypt arbitrary messages on clock repeat

27

Overall Modem Firmware Architecture

28

Firmware Host Communication Handling

• Host can configure and poll modem via UART, e.g.:
• Set network keys
• Perform factory reset

• Packets forwarded between network and host via UART
• Some RF packets are handled directly by modem, e.g. pairing process

• Host handles higher-level things like:
• configuration of network through control panel user interface
• monitoring status of connected sensors
• audible and visual alarms

29

Packet Capture with Frequency Hopping

• The channel hopping algorithm was initially unknown to us, and later found to
be dependent on cryptographic keys
oDifficult to capture with a single-channel sniffer

• The entire range of frequencies used by PowerG is less than 6.5 MHz
oPossible to use SDR to capture all channels at once

• We used Sandia gr-fhss_utils for burst detection across the full frequency
range to capture packets without needing to understand the channel hopping

• Using CFO correction to account for inaccuracies in burst detector centre
frequency estimation and crystal inaccuracy

• Also does clock recovery (choose point on waveform to sample symbol)

32

Packet Decoding

• GNU radio flow graph with Sandia gr-pdu_utils and gr-fhss_utils
• Detect burst
• Estimate center frequency
• Filter to burst region
• Feed through quadrature demodulation
• Perform clock recovery
• Check for sync word
• Output group of bits when sync word is detected

• We added a CC1101 dewhitening block to simplify looking at the output bytes

34

Packet Structure

!ts = no timestamp appended

Packet on channel 13 (Burst center frequency:
914,450,087 Hz)
Start time: 14.351108294263273
CRC-16 (CC1101): 0xd073 GOOD

== TIMESTAMP ==
included timestamp: 4293920256 (4293920256
rounded to 1/64s)
unknown 2 bytes before timestamp: 2063 (0x080f)

== CHANNEL HOPPING ==
default channel: 15
hop config 0 channel: 19
hop config 1 channel: 44
hop config 2 channel: 13

== HEADER ==
Packet length: 63 (0x3e + 1)
Payload length: 52
Src addr: 0xfe
Dst addr: 0x01
??? addr: 0xfd

Bit field bytes:
4: 01110000 (0x70)
5: 01000000 (0x40)
6: 00000000 (0x00)

dedupe counter: 7
notification period?: 0
no time info: 0
byte 5 bit 1: 0
nonce mode: 0
Tx power: 1 -> 14 dBm
byte 6 bit 7: 0
byte 6 bit 6: 0
byte 6 bit 5-4: 0
byte 6 bit 3: 0
byte 6 bit 2-0: 0

RF message type: 0x76
Keystream head: ffff
Nonce/crypto mode: 0

== BODY ==
Payload:
00000000: 1C 77 E6 00 00 28 00 0B 01 03 2D 13 14 01 00 11 .w...(....-.....
00000010: 01 03 29 01 10 03 10 00 00 00 00 00 01 24 12 00 ..)..........$..
00000020: 22 61 00 00 00 02 07 00 70 24 35 04 61 00 0F 08 "a......p$5.a...
00000030: 00 06 F0 FF

37

Pairing Process
• Communication unencrypted

• Modem enters pairing mode
• Device enters pairing mode, sends packets on static channel using source address 0xFE:

• Type 0x76 device ad message to addresses 0x01-0x09
• Includes device “long ID”

• Sends type 0x70 to modem addr (01) to request pairing
• Modem responds on static channel with type 0x71 message containing the network’s primary

key (AES key)
• Switch to crypto mode 2 (encrypt with network key, all zero nonce, network clock)

• Modem sends type 0x51 message containing its clock
• Device sends type 0x72 message containing device info again
• Modem sends type 0x73 with “secondary key” (configured 96 bit ‘nonce’)

• Switch to crypto mode 3 (encrypt with network key, configured nonce, network clock)
• Modem sends 0x74 messages that appear to indicate when it exits pairing mode
• Device is paired to network, starts sending its data (type 0x52)

38

Data messages (RF type 0x52)

• Using packet capture & decode capability, we can now do simple dynamic analysis tests to
learn about payloads for specific peripherals

• Perform different actions in different captures, select unique packet payloads from each
• Cancel out any fields that appear to always change across all capture sets (likely some

counter, timer, etc.)
• E.g., identifying messages for a door contact sensor (open, close, tampered):

tamper 1: 640001 1c77e6 05 03 fd 01 00 (??)
tamper 2: 640005 1c77e6 05 03 40 01 00 (??)
tamper 3: 040006 1c77e6 05 11 27 01 00 2801 00 1101 00 f1010926 036a 05 00 (also closed)
tamper 4: 040008 1c77e6 05 11 27 01 01 2801 00 1101 00 f1010926 036a 05 00 (also closed)
closed: 040006 1c77e6 05 11 27 01 00 2801 01 1101 00 f1010926 0381 05 00
open: 640008 1c77e6 05 11 27 01 00 2801 01 1101 01 f1010926 036b 05 53
 |_dev ID |_length |_tamper | |
 |_ opened/closed |
 |_ also opened/closed?

39

Areas for Future Work - Jamming

• Despite the claims of FHSS preventing jamming, it should still be feasible
oThe band used is narrow enough for jamming all 50 channels

simultaneously to be feasible at a reasonably low power level
oDirectional antennas can be pointed at the panel to minimize power

requirements and disturbance of the surrounding RF environment
oPer-channel reactive jamming can be implemented to only jam during

packet transmissions
• PowerG modems have a jamming detection mechanism that reports

jamming to the panel when RSSIs are repeatedly above a threshold
oCan the the jamming detection be confused, perhaps through modulated

jamming signals?

40

Areas for Future Work - Protocol Attack Surface

• Numerous message types exist, many with non-trivial structures
oAdditional message types for various sensors/sirens/locks/remotes still

need to be studied
• All message parsing is done in C modem firmware and C++ panel code

oPossibility of memory safety issues
oPossibility of pivoting from compromising the PowerG network to

compromising modem firmware to compromising host (panel) software

41

Disclosed Vulnerabilities

• Issues disclosed by NCC Group today:
• Insecure Pairing Process in PowerG
• AES-CTR Nonce Reuse in PowerG Packet Encryption
• PowerG Packet Encryption Not Authenticated

• One vulnerability affecting popular PowerG products is still being withheld
under an extended disclosure timeline to provide additional opportunity for
Johnson Controls to address it.

42

Disclosure Timeline

• March 28, 2024: First contact attempt with productsecurity@jci.com, initial
disclosure of three vulnerabilities

• April 10, 2024: Second contact attempt with productsecurity@jci.com, disclosing
one additional vulnerability

• May 15th, 2024: Third, fourth, and fifth contact attempts through LinkedIn
and customer service contacts

• June 10th, 2024: NCC Group discloses issues to CERT/CC and CISA
• June 13th, 2024: Vendor responds to acknowledge report, disagree with CVSS

ratings
• June 18th, 2024: NCC Group maintains 90 day disclosure window for three

vulnerabilities, volunteers to extend timeline for one vulnerability

mailto:productsecurity@jci.com
mailto:productsecurity@jci.com

43

Tools Used

• SigDigger – for radio signal visualization and baseband analysis
• Universal Radio Hacker (URH) – for black-box radio protocol analysis
• Ghidra – for firmware analysis
• Symgrate – for black-box symbol identification
• GNU Radio – for building packet capture pipeline
• Sandia National Laboratories GNU Radio Utilities:

ogr-pdu_utils: demodulation, clock recovery, sync word detection
ogr-fhss_utils: capturing frequency hopping spread spectrum signals (burst

detection, frequency offset correction)

Question & Answers

