
© Invoke RE 2024

Automating Malware 
Deobfuscation with Binary Ninja
Recon 2024

1

Download contents: https://github.com/Invoke-RE/workshops

https://github.com/Invoke-RE/workshops


© 2024 Invoke RE

Joshua Reynolds
Founder, Invoke RE

• Over ten years of security-related 
experience working for industry leading 
companies


• Spoken at RSA, DEF CON and Virus 
Bulletin on ransomware and malicious 
document analysis


• Co-developed malware analysis course 
taught at Southern Alberta Institute of 
Technology


• @jershmagersh / @InvokeReversing


• info@invokere.com

mailto:info@invokere.com


© Invoke RE 2024

Obfuscation

Makes malware difficult to understand and analyze


Hides the true purpose and behaviour of the malware

3



© Invoke RE 2024

Binary Ninja

Powerhouse reverse engineering suite


Intermediate languages (BNILs)


Robust Python API

4



© Invoke RE 2024

Binary Ninja BNILs

5

Source: Binary Ninja User Documentation, https://docs.binary.ninja/dev/bnil-overview.html 

https://docs.binary.ninja/dev/bnil-overview.html


© Invoke RE 2024

Warning: Malware!

6

Real-world malware samples that may trigger 
antivirus. Please handle with care.



© Invoke RE 2024

HLIL and Scripting with Binary Ninja



© Invoke RE 2024

Unpacking Qakbot



© Invoke RE 2024

Packers

Broad terms to describe protecting original binary


Original binary not recognizable on disk


Typically use encryption, compression and encoding


Stub generation and packing is typically automated

9



© Invoke RE 2024

Packers Contd.

Do not modify original code


Crypters, packers, protectors


Execute binary in memory


10



© Invoke RE 2024

Unpacking Process

11

First Stage Stub Second Stage Shellcode
Maps Second Stage Plaintext PE

Third Stage PE
Maps Plaintext Qakbot PE

Executes Qakbot PE
Resolves Imports

Extracts Resource

Decrypts Shellcode

Executes Shellcode

Executes PE



© Invoke RE 2024

Plan of Attack

Extract needed info from stub using Binary Ninja


Extract resource (pefile) and decrypt it using info


Carve plaintext PEs from shellcode (binary refinery)


12



© Invoke RE 2024

Dynamic Function Resolution



© Invoke RE 2024

Dynamic Module Resolution

14

_PEB (gs:60h)
BYTE Reserved1[2]

BYTE BeingDebugged
BYTE Reserved2[1]
PVOID Reserved3[2]
PPEB_LDR_DATA Ldr

PEB_LDR_DATA (_PEB+0xC)
BYTE Reserved1[8]
BYTE Reserved[3]

LIST_ENTRY 
InMemoryOrderModuleList

_LIST_ENTRY (_LDR+14h)
_LIST_ENTRY *Flink
_LIST_ENTRY *Blink

_LIST_ENTRY InMemoryOrderLinks

_LIST_ENTRY InLoadOrderLinks

. 

. 

. 

.

_UNICODE_STRING FullDllName
_UNICODE_STRING BaseDllName

kernel32.dll== !=InLoadOrderLinks.Flink

_LDR_DATA_TABLE_ENTRY 
(_LIST_ENTRY)



© Invoke RE 2024

Dynamic Function Resolution

15

IMAGE_DOS_HEADER
char e_magic

LONG e_lfanew

. 

. 

. 

.

WORD Magic

. 

. 

. 

.

IMAGE_FILE_HEADER (+0x3c)

Enum MajorLinkerVersion

BYTE MinorLinkerVersioin

IMAGE_DATA_DIRECTORY 
DataDirectory

DWORD Characteristics

. 

. 

. 

.

IMAGE_EXPORT_DIRECTORY (+0x88)

DWORD TimeDateStamp

DWORD NumberOfNames

DWORD AddressOfFunctions

DWORD AddressOfNames
DWORD 

AddressOfNameOrdinals

DWORD NumberOfFunctions



© Invoke RE 2024

Dynamic Function Resolution

16

. 

. 

.

IMAGE_EXPORT_DIRECTORY

DWORD AddressOfFunctions

DWORD AddressOfNames

DWORD AddressOfNameOrdinals

Function Hash

Ordinals[NumberOfNames]

Functions[NumberOfFunctions]

f(x) ==!=

AddressOfNames

AddressOfNameOrdinals

FuncAdds[NumberOfFunctions]

AddressOfFunctions

Resolved Function Address

O
rd

in
al



© 2024 Invoke RE

Questions?

Contact 
 

@jershmagersh 
@InvokeReversing 
info@invokere.com


invokere.com

mailto:info@invokere.com

