
 of 1 21 © Invoke RE 2024

Automating Malware
Deobfuscation with Binary Ninja

Recon 2024 

 of 2 21 © Invoke RE 2024

Introduction	
3
Setup	
3
Plugin Install	
4
HLIL and Scripting with Binary Ninja	
5
Qakbot Unpacking Stub	
11
Import Hash Resolution	
14
Hash Resolution Exercise	
17
XOR Key Identification and Extraction	
18
Resource Extraction and Decryption	
18
Resource Identifier Extraction Exercise	
19
Resource Extraction using PEFile	
19
Resource Decryption	
19
Carving Portable Executables	
20
Testing Against Another Sample	
20
Generically Identifying XOR Key and Resource ID	
21
Conclusion	 21

 of 3 21 © Invoke RE 2024

Introduction
Binary Ninja is a powerhouse reverse engineering suite that provides a plethora of functionality
that is useful when reverse engineering malware. It has a robust Python API for interacting with
abstractions (semantic representations) generated by their multiple levels of Binary Ninja
Intermediate Languages (BNILs). These abstractions result in large simplifications of
disassembled instructions into intrinsic functions and high level languages that can be
accessed directly and easily, which we will be leveraging throughout this workshop.

This workshop will use Binary Ninja to acquire information needed to deobfuscate and extract
a Qakbot sample from its packed form.

Setup
For the Binary Ninja components of this workshop, you will need a personal, commercial or
enterprise version of Binary Ninja. This will give you access to the Python API that we will be
using to extract information from the Binary Ninja database.

In addition to Binary Ninja, we will be using two Python modules to extract a resource from the
packed binary (https://github.com/erocarrera/pefile) and carve embedded Portable
Executables (https://github.com/binref/refinery).

To add these modules in Binary Ninja, perform the following steps:

• Press CMD/CTRL+P to open the command palette and type in “Install python3
module”, which will highlight this command within the command palette window, as shown
in Figure 1.

• Press Enter to bring up the Install python3 modules window, as shown in Figure 2.

Figure 1. Install Python 3 Module Palette Option

Figure 2. Modules Window

https://binary.ninja/
https://docs.binary.ninja/dev/bnil-overview.html
https://docs.binary.ninja/dev/bnil-overview.html
https://github.com/erocarrera/pefile
https://github.com/binref/refinery

 of 4 21 © Invoke RE 2024

• Enter the following modules and press install:

pefile>=2023.2.7
binary-refinery>=0.6.38

This will install these dependencies in your Binary Ninja Python directory.

Plugin Install

We will be using a plugin called Snippets to visualize and execute the automation scripts that
we will be writing. To install this plugin, navigate to the plugin manager by clicking on the
Plugins->Manage Plugins menu item. This will open a new Manage Plugins tab, as
shown in Figure 3.

In the search box type in Snippet UI Plugin. Once displayed, right click the Snippet UI
Entry and click on Install Plugin, as shown in Figure 4.

Figure 3. Plugin Manager

Figure 4. Snippet UI Plugin Installation

 of 5 21 © Invoke RE 2024

In addition to the Snippet plugin, install the HashDB plugin written by Cindy Xiao.

We will be dealing with real malware samples. We will not be executing these, but if your
system has antivirus it may pick up the packed or unpacked samples in these exercises.
Please proceed with caution if you are using your host system.

Now that all required dependencies and plugins are installed, clone the workshop repository
from GitHub using git clone https://github.com/Invoke-RE/workshops. This
repository contains the baseline automation scripts and samples that we will be using
throughout this workshop under recon2024. Unzip the samples.zip with the password
“infected” and open
780be7a70ce3567ef268f6c768fc5a3d2510310c603bf481ebffd65e4fe95ff3 in
Binary Ninja using File->Open… and selecting it from the file explorer dialogue.

HLIL and Scripting with Binary Ninja
Once the sample has been loaded and processed by Binary Ninja, the user interface will
navigate to the _start function (AddressOfEntryPoint from the PE header) and display
the High Level Intermediate Language (HLIL) representation of this function (Figure 5).

We will be leveraging HLIL throughout this workshop to acquire a decompiled representation of
instructions at a level similar to IDA Pro’s Hex Rays and Ghidra. 

To view the disassembled equivalent of this HLIL code, select the Split View icon in the top
right-hand corner (Figure 6).

Figure 6. Split View Icon

Figure 5. _start Function in HLIL Representation

 of 6 21 © Invoke RE 2024

This will split the view into two vertical panes, as shown in Figure 7.

Change the instruction representation using the dropdown above the left pane (currently set to
High Level IL) to Disassembly, as shown in Figure 8.

This displays the instructions in their disassembled form within this pane, as shown in Figure 9.

Figure 7. HLIL Split View

Figure 8. Select Disassembly View Dropdown

Figure 9. Disassembled _start Function

 of 7 21 © Invoke RE 2024

The HLIL view attempts to provide a representation that can be semantically understood in the
same way as a programming language, rather than solely relying on disassembled instructions.
Having each representation side-by-side has multiple benefits. The first is that the
disassembled instructions can be referenced inline with the HLIL in order to understand the
recovered instructions more thoroughly. The second is that there are instances where the HLIL
representation is inaccurate, and therefore the only guaranteed method of understanding the
functionality correctly is to read the disassembled instructions.

Now that we have the HLIL and disassembly for the sample, let’s take a look at interacting with
the database using the Binary Ninja Python API. Binary Ninja provides a Read-Eval-Print Loop
(REPL) Python console that provides code completion and a number of other useful
functionality. Display this console using the Console button in the bottom left of the screen
(Figure 10).

The STDOUT and STDERR outputs from the Snippet plugin will be written to the Log view. Open
the Log view by clicking on the Log button in the bottom right of the screen (Figure 11).

We can interact directly with the database using the BinaryView (or bv) through the Python
console. For example, we can acquire the list of functions that have been discovered by Binary
Ninja using bv.functions. This returns a generator, so we can acquire a list of these
functions using list(bv.functions), as shown in Figure 12.

Figure 10. Python Console Button

Figure 11. Log View Button

 of 8 21 © Invoke RE 2024

We can acquire all HLIL instructions from the database using bv.hlil_instructions. This
also returns a generator, so we can acquire the first HLIL instruction, for example, using
list(bv.hlil_instructions)[0], as shown in Figure 13.

In this example, the HLIL instruction is of type HighLevelILVarInit, because it is a variable
that’s being initialized by the memory allocation being performed. We can traverse these
instructions by accessing its operands, as shown in Figure 14.

Here we can see this instruction is made up of a variable and a HighLevelILCall to
malloc. If we wanted to access the size of the memory allocation, for example, we could
access the malloc instruction at its index and access this instruction’s operands, as shown in
Figure 15.

Figure 12. Function List from BinaryView

Figure 13. Get First HLIL Instruction in Database

Figure 14. Get HLIL Instruction Operands

 of 9 21 © Invoke RE 2024

Traversing the HLIL in this manner can be cumbersome. We can use a built-in helper function
called traverse to recursively walk the abstract syntax tree (AST) of this instruction to look for a
constant and return its value once found. This is done by providing a callback function that’s
called on each sub-instruction within the HLIL instruction. The return value of each callback is
returned within a generator from the traverse call. An example of this is shown in Figure 16.

The above example has the prerequisite of knowing that the type of value we’re seeking from
the instruction is a HighLevelILConstant. Since typing function definitions and other
complex code into a REPL isn’t ideal, this is where the Snippet editor plugin comes in. Open
the Snippet editor by going to Plugins->Snippets->Snippet Editor… and click on the
New Snippet button, as shown in Figure 17.

Figure 15. Get Malloc Allocation Size from HLIL Representation

Figure 16. Traverse HLIL Recursively using Helper Function

Figure 17. New Snippet Button

https://api.binary.ninja/binaryninja.highlevelil-module.html#binaryninja.highlevelil.HighLevelILFunction.traverse

 of 10 21 © Invoke RE 2024

This will open the Snippet Name window, as shown in Figure 18.

Enter the name get_const.py and click OK. A new Snippet will be opened and we can now
write our script here. Copy the code from get_const.py into this snippet, as shown in Figure
19.

Ensure your High Level IL pane is selected and click on the Run button in the Snippet Editor,
and you will see the same result is displayed in the Log view, as shown in Figure 20.

Figure 18. Snippet Name

Figure 19. get_const Snippet Example

Figure 20. Result from Running Snippet

 of 11 21 © Invoke RE 2024

Qakbot Unpacking Stub
Now let’s look at the unpacking code in this Qakbot sample and extract information from it that
we can use to automatically unpack it. Packers typically have an outer program (commonly
referred to as a stub) that deobfuscates a final malware payload that is executed in memory.

The sample we are analyzing in Binary Ninja
(780be7a70ce3567ef268f6c768fc5a3d2510310c603bf481ebffd65e4fe95ff3) is the
stub that decrypts position independent shellcode that decrypts, loads and executes a final
Qakbot payload in memory. The stub extracts the encrypted shellcode ciphertext from an
embedded resource and decrypts it using a basic XOR cipher. In this workshop we will be
writing code to automatically extract the decryption key and the resource from the stub,
decrypt the shellcode and carve the final Qakbot payload from it.

From the _start function you will see a call to sub_691bc000 (Figure 21).

Navigate to this function by double-clicking on sub_691bc000 for further analysis.

Within the disassembly pane, you can see a large amount of mov operations, as shown in
Figure 22.

Figure 21. Call to sub_691bc000

Figure 22. Large Amount of Mov Operations

 of 12 21 © Invoke RE 2024

The bytes are moved into local variables that are relative to the stack pointer (RSP) and are
within the ASCII range. Select any of these hex bytes and press the r key to turn them back
into their ASCII representation. An example is shown in Figure 23.

This is a technique known as “stack strings” where a string is constructed on the stack
dynamically at runtime. This is an obfuscation technique that prevents recovery of strings using
simple techniques, such as running the strings utility.

Even though this technique is used, the Binary Ninja HLIL simplifies this into a single
__builtin_strncpy operation (Figure 24).

The __builtin_ prefix specifies that this is an “intrinsic” which means the instruction is
inferred from the mov operations being performed. Select the destination variable (var_148) in
order to display the cross-references in the Cross References pane (Figure 25).

Figure 23. Character Change to ASCII Representation Example

Figure 24. __builtin_strncpy Operation

Figure 25. var_148 Cross References

 of 13 21 © Invoke RE 2024

The third entry (highlighted in red) shows a number of operations being performed with this
string. Double-click on this entry to navigate to this location (0x691bc72b). A number of
operations are performed within a for loop with the result being written to rax_25 (Figure 26).

This includes an XOR operation with a byte from the var_148 string (Figure 27).

A modulus operator is being applied to the current index, which causes the index to not
exceed the length of var_148. Based on these operations, we can infer that the var_148
string is an XOR key being used to decrypt a buffer within rax_24 and the result is written to
rax_25 . We then see rax_25 being executed as a function pointer (Figure 26), which results
in the decrypted bytes being executed.

We can rename these variables by highlighting the variable name and pressing the n key. This
will display the Define name dialogue where a variable name can be entered (Figure 27).

Rename var_148 to xor_key, rax_24 to input_buffer and rax_25 to shellcode. By
looking at the operations above the for loop, we can see the input_buffer and shellcode
pointers are the result of two function calls that use unknown function pointers (Figure 28).

Figure 26. rax_25 Operations within For Loop and Shellcode Execution

Figure 27. var_148 XOR Operation

Figure 27. Define Variable Name

Figure 28. Input Buffer and Shellcode Initialization

 of 14 21 © Invoke RE 2024

Import Hash Resolution
These function pointers are assigned the return values of calls to sub_691bcd90 (Figure 29).

The sub_691bcd90 function performs dynamic import resolution, which is a technique often
used by malware and shellcode to resolve Windows API functions at runtime. This involves
parsing in-memory structures in order to resolve the addresses of particular functions that are
required for the malware to execute.

This process requires resolution of the module (in this case kernel32) containing the function,
and then the export table of the resolved DLL is walked in order to identify the address of the
target function. Malware authors will often use hashing algorithms to iterate over each function
that is parsed in memory, hash each function name and compare it against the hash of a
desired function to resolve.

In this instance, the second parameter being passed to sub_691bcd90 is the hash being
resolved, whose resolved function pointer is then assigned to a local variable that is later called
where needed. We can automatically identify the hashing algorithm using a plugin called
hashdb, which queries an online database that contains precomputed hashes that map to
common strings, such as Windows API function names.

The second parameter passed to sub_691bcd90 is the hash that is being resolved by this
function. We can confirm this by right-clicking on the first hash (0xe3142) and going to
HashDB->Hunt, as shown in Figure 30.

Figure 29. Function Pointer Initialization

Figure 30. HashDB Hunt for Hash

https://github.com/cxiao/hashdb_bn

 of 15 21 © Invoke RE 2024

This will query HashDB for this hash, and “hunt” for any hashing algorithms that have
produced this hash. In this instance, a number of hashing algorithms are found, as shown in
Figure 31.

This particular hash was produced by a number of different hashing algorithms that are stored
in HashDB. Select the shl1_add algorithm, as shown in Figure 31, and click OK. This will set
the hashing algorithm to shl1_add as shown in the Log window (Figure 32).

Now that the hashing algorithm has been identified and set, we can query HashDB for each
hash by right-clicking on 0xe3142 and selecting HashDB->Hash Lookup. This will display
the String Selection window, as shown in Figure 33.

This will provide a dropdown of strings that correspond to the provided hash. It is common to
have hashing collisions (the same hash for two different strings) from these simple algorithms,
so this may involve some trial and error. However, in this instance, VirtualAlloc is correct.
Click OK to add the selected string to the Binary Ninja database as an enum.

Figure 31. HashDB Hunting Results

Figure 32. Hashing Algorithm Set

Figure 33. String Selection from Hash Value

 of 16 21 © Invoke RE 2024

In addition to the String Selection window, you will be presented with the Bulk Import
window that will allow you to add all export function string hashes related to a particular
module (DLL) as an enumeration to the database. This will allow related function names to be
applied to other hashes that make use of the same hashing algorithm within the database. The
VirtualAlloc export is contained within a number of different modules. Select kernel32
from the dropdown, as shown in Figure 34, and click OK.

Now that all hashes for kernel32 have been imported, we can apply them to each hash by
pressing the m key. For example, select 0xe3142 in the HLIL view and press the m key to
display the Select Enum window for the VirtualAlloc enum member (Figure 35).

Press the Select Enum button to apply this enum member to the selected hash. This will then
be displayed in the HLIL view (Figure 36).

Figure 34. Bulk Import Kernel32 Exports

Figure 35. Select VirutalAlloc Enum Member

Figure 36. Applied VirtualAlloc Enum Member

 of 17 21 © Invoke RE 2024

Hash Resolution Exercise

Rename sub_691bcd90 to mw_resolve_hash using the n key and apply enums to the
remaining hashes using the m key. The result should look something like Figure 37.

Given that mw_resolve_hash returns function pointers, rename each variable using the n key
to each respective function being resolved. The result should look something like Figure 38.

As you can see, things are beginning to take shape now that we can see which Windows API
functions are being called. A handle to a resource embedded within the binary is acquired
using FindResourceA, the size of the resource is acquired using SizeofResource and the
resource is loaded using LoadResource with the result being assigned to input_buffer.
The second parameter of FindResourceA is lpName which is used to identify the embedded
resource. This value is stored within var_100. Selecting var_100 shows a cross-reference for
this variable at the beginning of this function where it is initialized (Figure 39).

Figure 37. Resolved Enumerations Applied and Function Renamed

Figure 38. Assigned Variable Names to Pointers

Figure 39. var_100 Initialization Cross-Reference

 of 18 21 © Invoke RE 2024

Rename var_100 to rsrc_id for readability. In order for us to extract the final Qakbot
payload, we need to extract the rsrc_id to identify which resource we need to extract from
the PE and extract the xor_key to decrypt the embedded resource. We will do this
programatically using the Binary Ninja API.

XOR Key Identification and Extraction
We can acquire all HLIL instructions for our target function (sub_691bc000) using:

list(bv.get_function_at(0x691bc000).hlil.instructions)

We can then enumerate these instructions and look at the first call to __builtin_strncpy
using the following (see extract_qakbot.py):

finstr = None
addr = 0x691bc000
func = bv.get_function_at(addr)

for instr in func.hlil.instructions:
 for token in instr.tokens:
 if '__builtin_strncpy' == token.text:
 finstr = instr
 if finstr:
 break

if finstr:
 # Access second operand of __builtin_strncpy
 key_param = finstr.params[1]
 #Access constant data from parameter
 key = bytes(key_param.constant_data.data)

Here we enumerate all text tokens that make up each HLIL instruction and look for the
__builtin_strncpy operation. We can then access the second parameter of the
__builtin_strncpy instruction and acquire the data using the following code:

if finstr:
 # Access second operand of __builtin_strncpy
 key_param = finstr.params[1]
 #Access constant data from parameter
 key = bytes(key_param.constant_data.data)

This will acquire the key data in byte format that we can use to decrypt the embedded
resource.

Resource Extraction and Decryption
The resource identifier assignment comes after the call to __builtin_strncpy, as shown in
Figure 40.

Figure 40. Resource Identifier Assignment

 of 19 21 © Invoke RE 2024

We can access this instruction by adding to the current HLIL instruction’s index using the
following code:

list(func.hlil.instructions)[finstr.instr_index+1]

Here we are accessing the __builtin_strncpy’s index and using that to acquire the next
instruction in the list of all HLIL instructions within the function.

Resource Identifier Extraction Exercise

Now that we have the resource identifier instruction, use the techniques described in the HLIL
and Scripting with Binary Ninja section to acquire the resource identifier constant value and
add it to extract_qakbot.py.

Resource Extraction using PEFile

Once the resource identifier has been acquired, we can use it to extract the resource using a
module called pefile. The pefile module allows parsing and accessing PE structures and
attributes, including resources. We can access the resource using the following:

def extract_resource(fpath, rsrcid):
 rsrc_data = None
 pe = pefile.PE(fpath)
 pe_mapped = pe.get_memory_mapped_image()
 for rsrc in pe.DIRECTORY_ENTRY_RESOURCE.entries:
 for entry in rsrc.directory.entries:
 if entry.struct.Name == rsrcid:
 rsrc_offset =
entry.directory.entries[0].data.struct.OffsetToData
 rsrc_size =
entry.directory.entries[0].data.struct.Size
 rsrc_data = pe_mapped[rsrc_offset:rsrc_offset +
rsrc_size]
 return rsrc_data

This function accesses IMAGE_DIRECTORY_ENTRY_RESOURCE data directory entries of the
provided PE and compares each entry’s name to the acquired resource identifier. The pefile
module allows accessing PE data in its mapped format using the
get_memory_mapped_image function. This is used to acquire the resource data with the
identified resource offset and resource size.

Resource Decryption

We can now decrypt the extracted resource data by performing a rotating XOR decryption with
the extracted key from the XOR Key Identification and Extraction section and the following
code:

def xor(key: bytes, ct: bytes) -> bytes:
 r = bytes()
 for i, b in enumerate(ct):
 r += (b ^ key[i % len(key)]).to_bytes(1, 'little')
 return r

https://github.com/erocarrera/pefile

 of 20 21 © Invoke RE 2024

This results in plaintext shellcode that maps an embedded PE into memory and executes it.
This first stage PE contains another PE that is our final Qakbot payload.

Carving Portable Executables
In order to carve all embedded PE files, we can use Binary Refinery, which is “a collection of
Python scripts that implement transformations of binary data such as compression and
encryption”. Binary Refinery is often thought as a command-line version of CyberChef, which
provides data transformations used by malware analysts to recover and deobfuscate
information. We will be using Binary Refinery to carve embedded PE files from a given data
blob using the carve_pe module using the following code:

def carve_pe(data: bytes) -> list:
 from refinery import carve_pe
 # This syntax is specific to Binary Refinery's
 # operator overloading and is valid Python.
 carved = data | carve_pe | []
 return carved

Here this function makes use of Binary Refinery’s pipe format to pipe our resource data into the
cave_pe module, which will look for, acquire the size of and extract a portable executable
from the provided blob and return this within a list. As mentioned, since this blob contains two
embedded PE files, we need to call this function twice using the following code:

first_pe = carve_pe(pt)[0]
second_pe = carve_pe(first_pe)[0]

The second PE is then written to disk using the following code:

fw = open(F"{path}_qakbot.bin", "wb")
fw.write(second_pe)
fw.close()

Save the opened Binary Ninja database by pressing CMD/CTRL+s (in order for our script to find
the binary file on disk) and run extract_qakbot.py in the Snippets editor.

Testing Against Another Sample
Open the
12094a47a9659b1c2f7c5b36e21d2b0145c9e7b2e79845a437508efa96e5f305 sample
in Binary Ninja and navigate to the sub_180005556 function. This is the same type of
unpacking function identified in the first sample that we analyzed (Figure 41).

Figure 41. Unpacking Stub Key Copy and Resource Identifier

https://github.com/binref/refinery
https://github.com/gchq/CyberChef
https://binref.github.io/#refinery.carve_pe

 of 21 21 © Invoke RE 2024

Replace the addr variable value with this address (0x180005556) and run the script. Since the
function contains a __builtin_strncpy call followed by the resource identifier variable
assignment, the script automatically identifies these values, extracts them, decrypts the
embedded resource and writes the final payload to disk.

Generically Identifying XOR Key and Resource ID
A generic version of the script is provided extract_heuristic_generic.py. Since we do
not want to manually identify the function containing these values for every packed sample, we
want to establish a heuristic for identifying these functions.

Since the __builtin_strncpy intrinsic is not called frequently, we can look for this within
the database as a starting point. We can acquire the address of the this function using
bv.get_symbol_by_raw_name('__builtin_strncpy').address which resolves this
symbol to the virtual address within the database. We can then get the cross-references to this
address using bv.get_callers(addr).

We can then verify that we have the correct call location by acquiring all HLIL instructions for
the function and ensuring the instructions following this call are an integer assignment and
variable declaration:

rsrc_instr = list(c.function.hlil.instructions)[c.hlil.instr_index+1]
var_init_instr = list(c.function.hlil.instructions)
[c.hlil.instr_index+2]
if isinstance(rsrc_instr, HighLevelILVarInit) \
 and isinstance(rsrc_instr.operands[1], HighLevelILConst) \
 and isinstance(var_init_instr, HighLevelILVarDeclare):
 return c.function

Developing these heuristics typically requires identifying unique attributes that can be used to
enumerate locations needed to extract information. Here we’ve simply used the two types of
HLIL instructions that follow our target location, which is unique to this function.

Conclusion
This workshop has demonstrated common automation techniques that can be used by
analysts to access information from binaries using Binary Ninja and deobfuscate them using
plugins and Python modules. Although these types of tasks are common, malware samples
often require custom automation to be written for them, but the general concepts can be
applied across many malware families. Additionally, the automation can be applied to multiple
malware samples that have been obfuscated using the same techniques in order to extract
information from them automatically, which drastically saves time and manual analysis efforts.

	Introduction
	Setup
	Qakbot Unpacking Stub
	Conclusion

