1 of 21 © Invoke RE 2024

Automating Malware

Deobfuscation with Binary Ninja
Recon 2024

2 of 21

Introduction

Setup

Plugin Install

HLIL and Scripting with Binary Ninja
Qakbot Unpacking Stub

Import Hash Resolution

Hash Resolution Exercise

XOR Key Identification and Extraction
Resource Extraction and Decryption
Resource Identifier Extraction Exercise
Resource Extraction using PEFile
Resource Decryption

Carving Portable Executables

Testing Against Another Sample
Generically Identifying XOR Key and Resource 1D

Conclusion

© Invoke RE 2024

A W W

11
14
17
18
18
19
19
19
20
20
21
21

3 of 21 © Invoke RE 2024

Introduction

Binary Ninja is a powerhouse reverse engineering suite that provides a plethora of functionality
that is useful when reverse engineering malware. It has a robust Python API for interacting with
abstractions (semantic representations) generated by their multiple levels of Binary Ninja
Intermediate Languages (BNILs). These abstractions result in large simplifications of
disassembled instructions into intrinsic functions and high level languages that can be
accessed directly and easily, which we will be leveraging throughout this workshop.

This workshop will use Binary Ninja to acquire information needed to deobfuscate and extract
a Qakbot sample from its packed form.

Setup

For the Binary Ninja components of this workshop, you will need a personal, commercial or
enterprise version of Binary Ninja. This will give you access to the Python API that we will be
using to extract information from the Binary Ninja database.

In addition to Binary Ninja, we will be using two Python modules to extract a resource from the
packed binary (https://github.com/erocarrera/pefile) and carve embedded Portable
Executables (https://github.com/binref/refinery).

To add these modules in Binary Ninja, perform the following steps:

. Press CMD/CTRL+P to open the command palette and type in “Install python3
module”, which will highlight this command within the command palette window, as shown
in Figure 1.

install python3 module
Install python3 module...

Figure 1. Install Python 3 Module Palette Option
« Press Enter to bring up the Install python3 modules window, as shown in Figure 2.

@) @ Install python3 modules

pefile>=2023.2.7
binary-refinery>=0.6.38

| Cancel l Install

Figure 2. Modules Window

https://binary.ninja/
https://docs.binary.ninja/dev/bnil-overview.html
https://docs.binary.ninja/dev/bnil-overview.html
https://github.com/erocarrera/pefile
https://github.com/binref/refinery

4 of 21 © Invoke RE 2024

- Enter the following modules and press install:

pefile>=2023.2.7
binary-refinery>=0.6.38

This will install these dependencies in your Binary Ninja Python directory.
Plugin Install

We will be using a plugin called Snippets to visualize and execute the automation scripts that
we will be writing. To install this plugin, navigate to the plugin manager by clicking on the
Plugins->Manage Plugins menu item. This will open a new Manage Plugins tab, as
shown in Figure 3.

-+ Manage piugins X +
Search for plugins (filter by @installed, @e... OCD 01

H bObb | community | MIT | % 17 | LastUpdate: 2022-02-17

Category: helper

6502 Architecture Plugin Quality of life utilities for obsessive compulsive CTF enthusiasts.
An architecture plugin for 6502 and binary v
Vector 35 Inc Description License
Add GoReSym Info
Add information recovered by tool GoReSym 0 C D
Xusheng
Add xref from caller to callee based on XFG Quality of life utilities for the obsessive compulsive CTF enthusiasts.
Xusheng
— o

Figure 3. Plugin Manager

In the search box type in Snippet UI Plugin. Once displayed, right click the Snippet UI
Entry and click on Install Plugin, as shown in Figure 4.

+ Manage Plugine X+
Sl Snippet Ul Plugin 1.24
Vector 35Inc | official | MIT | % 22 | LastUpdate: 2024-03-05
Check for Plugin Updates 38U
Dixie Enable Plugin $E Jgin for writing and managing python code-snippets with syntax
Uses Dixie code scanner to find vulng i
3Flatline LLC Install Plugin______ SR h | License
The snippet editor started as a simple example Ul plugin to demonstrate new features &
plugin in its own right. The snippet editor allows you to write small bits of code that mig
are long enough that you don't want to retype them every time in the python-console!

As an added bonus, all snippets are added to the snippets menu and hot-keys can be
All action-system items are also available through the command-palette (CTL/CMD-p).

Figure 4. Snippet Ul Plugin Installation

5 of 21 © Invoke RE 2024

In addition to the Snippet plugin, install the HashDB plugin written by Cindy Xiao.

We will be dealing with real malware samples. We will not be executing these, but if your
system has antivirus it may pick up the packed or unpacked samples in these exercises.
Please proceed with caution if you are using your host system.

Now that all required dependencies and plugins are installed, clone the workshop repository
from GitHub using git clone https://github.com/Invoke-RE/workshops. This
repository contains the baseline automation scripts and samples that we will be using
throughout this workshop under recon2024. Unzip the samples. zip with the password
“infected” and open
780be7a70ce3567ef268f6c768£c5a3d2510310c603bf481lebffd65e4fe95££3in

Binary Ninja using File->0Open... and selecting it from the file explorer dialogue.

HLIL and Scripting with Binary Ninja

Once the sample has been loaded and processed by Binary Ninja, the user interface will
navigate to the start function (AddressOfEntryPoint from the PE header) and display
the High Level Intermediate Language (HLIL) representation of this function (Figure 5).

780be7a70ce3...fe95ff3.bndb X +
PE v Linear v High LevelIL ~

int64_t _start()

691413b0 int32_t rdx_3

691413bo int64_t r8_3

691413b0 rcx_3, rdx_3, r8_3 = sub_691bc000o()

691413be data_691875d0 = ©

691413c4 if (rdx_3 == 1)

691413d0 arg_38 = r8_3

691413de sub_6916a570()

691413e3 sub_6916af40()

691413fa return sub_69141280(rcx_3, rdx_3) __tailcall
691413ca return sub_69141280(rcx_3, rdx_3) __tailcall

Figure 5. _start Function in HLIL Representation

We will be leveraging HLIL throughout this workshop to acquire a decompiled representation of
instructions at a level similar to IDA Pro’s Hex Rays and Ghidra.

To view the disassembled equivalent of this HLIL code, select the Split View icon in the top
right-hand corner (Figure 6).

& th =

»

Figure 6. Split View Icon

| 780be7a70ce3..fe5ff3ondo X+

6 of 21 © Invoke RE 2024

This will split the view into two vertical panes, as shown in Figure 7.

PE v Linear v High Level IL v & & = X PEwv Linearv High LevelIL v ¢
& int64_t _start() ii & int64_t _start()

691413b0 int64_t rcx_3 691413b0 int64_t rex_3

691413b0 int32_t rdx_3 691413b0 int32_t rdx_3

691413b0 int64_t r8_3 691413b0 int64_t r8_3

691413b0 rcex_3, rdx_3, r8_3 = sub_691bc000() 691413b0 rcx_3, rdx_3, r8_3 = sub_691bc0ea()

691413be data_691875d0 = @ 691413be data_691875d0 = @

691413c4 if (rdx_3 == 1) 691413c4 if (rdx_3 == 1)

691413d0 arg_38 = r8_3 691413d0 arg_38 = r8_3

691413de sub_6916a570() 691413de sub_6916a570()

691413e3 sub_6916af40() 691413e3 sub_6916af40()

691413fa return sub_69141286(rcx_3, rdx_3) 691413fa return sub_69141280(rcx_3, rdx_3) __tailcall

691413ca return sub_691412806(rcx_3, rdx_3) __t 691413ca return sub_69141280(rcx_3, rdx_3) __tailcall

Figure 7. HLIL Split View

Change the instruction representation using the dropdown above the left pane (currently set to
High Level IL)to Disassembly, as shown in Figure 8.

 780be7a70ce3. fe95f3.ondb X+
MR AN CEIR A High Level IL ~

X
: Disassembly =
ﬂ & int64_t _start(Low Level IL II

& g =

‘ 691413b0 1 Medium Level IL

| 691413b0@ L, High Level IL
691413b0 1 Doudo G
691413b8 p FS€udo ub_691bc0ee ()
691413be d AdvancedIL Forms

Figure 8. Select Disassembly View Dropdown

This displays the instructions in their disassembled form within this pane, as shown in Figure 9.

691413b0 int64_t _start()

691413b5 8b05b52€0400 mov eax, dword [rel data_69184270] {data_691875d0}
691413bb 83fa@1 cmp edx, 0x1

691413be 70000000000 mov dword [rax], 0x8 {data_691875d0}

691413c4 740a je 0x691413d0

691413c6 4883c448 add rsp, 0x48

691413ca e9b1feffff jmp sub_69141280

Figure 9. Disassembled _start Function

7 of 21 © Invoke RE 2024

The HLIL view attempts to provide a representation that can be semantically understood in the
same way as a programming language, rather than solely relying on disassembled instructions.
Having each representation side-by-side has multiple benefits. The first is that the
disassembled instructions can be referenced inline with the HLIL in order to understand the
recovered instructions more thoroughly. The second is that there are instances where the HLIL
representation is inaccurate, and therefore the only guaranteed method of understanding the
functionality correctly is to read the disassembled instructions.

Now that we have the HLIL and disassembly for the sample, let’s take a look at interacting with
the database using the Binary Ninja Python API. Binary Ninja provides a Read-Eval-Print Loop
(REPL) Python console that provides code completion and a number of other useful
functionality. Display this console using the Console button in the bottom left of the screen
(Figure 10).

sub_69154230 €
sub_69154700 €
pcre_exec €
pcre_fullinfo €
pcre_get_stri.. €
€
€
€
€

4

Console Python

pcre_get_stri..
sub_69167570
pcre_copy_sub..

3| Pcre_copy_nam.. &g

>>>

Figure 10. Python Console Button

The STDOUT and STDERR outputs from the Snippet plugin will be written to the Log view. Open
the Log view by clicking on the Log button in the bottom right of the screen (Figure 11).

Log Q Searchlog All -

O
O

[Analysis] Analysis update took 0.000 seconds

(@)

Lo

Q
-

Figure 11. Log View Button

We can interact directly with the database using the BinaryView (or bv) through the Python
console. For example, we can acquire the list of functions that have been discovered by Binary
Ninja using bv. functions. This returns a generator, so we can acquire a list of these
functions using 1ist (bv. functions), as shown in Figure 12.

8 of 21 © Invoke RE 2024

Console Python

>>> list(bv.functions) =
[<func: x86_64@0x69141000>, <func: x86_64@0x69141050>, [
<func: x86_64@0x69141280>, <func: x86_64@0x691413b6>,
<func: x86_64@0x69141400>, <func: x86_64@0x69141420>,
<func: x86_64@0x69141430>, <func: x86_64@0x69141510>,
<func: x86_64@0x691418a0>, <func: x86_64@0x69141910>,
<func: x86_64@0x69141ad0>, <func: x86_64@0x69141cab>,
<func: x86_64@0x69141f10>, <func: x86_64@0x69141fb0o>,

Figure 12. Function List from BinaryView

We can acquire all HLIL instructions from the database using bv.h1il instructions. This
also returns a generator, so we can acquire the first HLIL instruction, for example, using
list (bv.hlil instructions) [0], as shown in Figure 13.

>>> list(bv.hlil_instructions)[0]
<HighLevelIlLVarInit: int64_t* rax = malloc(0x1600)>

Figure 13. Get First HLIL Instruction in Database

In this example, the HLIL instruction is of type HighLevelILVarInit, because it is a variable
that’s being initialized by the memory allocation being performed. We can traverse these
instructions by accessing its operands, as shown in Figure 14.

>>> a = list(bv.hlil_instructions)[0]
>>> a.operands
[<var int64_t* rax>, <HighLevelIlLCall: malloc(0x100)>]

Figure 14. Get HLIL Instruction Operands

Here we can see this instruction is made up of a variable and a HighLevelILCall to
malloc. If we wanted to access the size of the memory allocation, for example, we could
access the malloc instruction at its index and access this instruction’s operands, as shown in
Figure 15.

9 of 21 © Invoke RE 2024

>>> a.operands[1].operands[1]
[<HighLevelILConst: 0x100>]

>>> a.operands[1].operands[1][0]
<HighLevelIlLConst: 0x100>

>>> a.operands[1].operands[1][0].value
<const 0x100>

>>> a.operands[1].operands[1][0@].value.value
256

Figure 15. Get Malloc Allocation Size from HLIL Representation

Traversing the HLIL in this manner can be cumbersome. We can use a built-in helper function
called traverse to recursively walk the abstract syntax tree (AST) of this instruction to look for a
constant and return its value once found. This is done by providing a callback function that’s
called on each sub-instruction within the HLIL instruction. The return value of each callback is
returned within a generator from the traverse call. An example of this is shown in Figure 16.

>>> def is_const(inst: HighLevelILInstruction):
if isinstance(inst, HighLevelIlLConst):
return inst.value.value

>>> list(a.traverse(is_call))
[256]

Figure 16. Traverse HLIL Recursively using Helper Function

The above example has the prerequisite of knowing that the type of value we’re seeking from
the instruction is a HighLevelILConstant. Since typing function definitions and other
complex code into a REPL isn’t ideal, this is where the Snippet editor plugin comes in. Open
the Snippet editor by going to Plugins->Snippets->Snippet Editor..and click on the
New Snippet button, as shown in Figure 17.

L]

I I

Figure 17. New Snippet Button

https://api.binary.ninja/binaryninja.highlevelil-module.html#binaryninja.highlevelil.HighLevelILFunction.traverse

10 of 21 © Invoke RE 2024

This will open the Snippet Name window, as shown in Figure 18.

(. ¢ @ Snippet Name ﬁ

Snippet Name:
get_const.py|

Figure 18. Snippet Name

Enter the name get const.py and click OK. A new Snippet will be opened and we can now
write our script here. Copy the code from get const.py into this snippet, as shown in Figure
19.

Snippet Editor

Filename: get_const.py Description: optional description

3 def is_const(inst: HighLevelIlLInstruction) -> int:
4 if isinstance(inst, HighLevelIlLConst):
return inst.value.value

5
6
7 a = list(bv.hlil_instructions)[@]
8
9

print(list(a.traverse(is_const)))

Figure 19. get_const Snippet Example

Ensure your High Level IL pane is selected and click on the Run button in the Snippet Editor,
and you will see the same result is displayed in the Log view, as shown in Figure 20.

Log a earch og e s

[Default] [256]

Figure 20. Result from Running Snippet

11 of 21 © Invoke RE 2024

Qakbot Unpacking Stub

Now let’s look at the unpacking code in this Qakbot sample and extract information from it that
we can use to automatically unpack it. Packers typically have an outer program (commonly
referred to as a stub) that deobfuscates a final malware payload that is executed in memory.

The sample we are analyzing in Binary Ninja
(780be7a70ce3567ef268f6c768fc5a3d2510310c603bf481lebffd65e4fe95f£3)is the
stub that decrypts position independent shellcode that decrypts, loads and executes a final
Qakbot payload in memory. The stub extracts the encrypted shellcode ciphertext from an
embedded resource and decrypts it using a basic XOR cipher. In this workshop we will be
writing code to automatically extract the decryption key and the resource from the stub,
decrypt the shellcode and carve the final Qakbot payload from it.

From the start function you will see a call to sub 691bc000 (Figure 21).

691413b0 int64_t _start()

691413b0 int64_t rcx_3

691413b0 int32_t rdx_3

691413b0 int64_t r8_3

691413b0 rcx_3, rdx_3, r8_3 = sub_691bc000()
691413be data_691875d0 = ©

Figure 21. Call to sub_691bc000

Navigate to this function by double-clicking on sub_691bc000 for further analysis.

Within the disassembly pane, you can see a large amount of mov operations, as shown in
Figure 22.

int32_t sub_691bc0ee()

691bcB2b c644247040 mov byte [rsp+6x70 {var_148}], 0x40
691bcB30 644247141 mov byte [rsp+0x71 {var_147}], 0x41
691bcO35 c64424726¢ mov byte [rsp+0x72 {var_146}], @x6c
691bcB3a c64424737a mov byte [rsp+0x73 {var_145}], @x7a
691bcO3f 644247473 mov byte [rsp+0x74 {var_144}], ©x73
691bcB44 c644247551 mov byte [rsp+0x75 {var_143}], ©x51
691bcB49 644247631 mov byte [rsp+0x76 {var_142}], ©x31
691bcB4e 644247744 mov byte [rsp+0x77 {var_141}], @x44
691bcO53 644247853 mov byte [rsp+0x78 {var_14@}], ©x53
691bcO58 644247953 mov byte [rsp+0x79 {var_13f}], ©x53
691bcO05d c644247a3e mov byte [rsp+0x7a {var_13e}], 0x3e
691bc062 c644247b49 mov byte [rsp+0x7b {var_13d}], ©x49
691bc067 c644247c39 mov byte [rsp+0x7c {var_13c}], ©x39

Figure 22. Large Amount of Mov Operations

12 of 21 © Invoke RE 2024

The bytes are moved into local variables that are relative to the stack pointer (RSP) and are
within the ASCII range. Select any of these hex bytes and press the r key to turn them back
into their ASCII representation. An example is shown in Figure 23.

int32_t sub_691bc000()

691bcoBO 4881ech860100600 sub rsp, 6x1b8

691bcB0B7 48c7842458010000.. mov gword [rsp+0x158 {var_60}], 0x0
691bcB13 48c7842490010000.. mov gword [rsp+0x190 {var_28}], ©xe
691bcB1f 48c7842450010000.. mov gword [rsp+0x150 {var_68}], ©xe
691bcB2b c644247040 mov byte [rsp+0x70 {var_148}], -
691bcB30 644247141 mov byte [rsp+0x71 {var_147}], 0x41

Figure 23. Character Change to ASCII Representation Example

This is a technique known as “stack strings” where a string is constructed on the stack
dynamically at runtime. This is an obfuscation technique that prevents recovery of strings using
simple techniques, such as running the strings utility.

Even though this technique is used, the Binary Ninja HLIL simplifies this into a single
__builtin strncpy operation (Figure 24).

int32_t sub_691bce00()

int64_t s_1

__builtin_memset(s: &s_1, c: @, n: 0x14)

char var_148

__builtin_strncpy(dest: &var_148, src: "@AlzsQ1DSS>I9XX7kB7M1MT3?CH8B1ggtV_!RTX0zJSbzmUYpW5H2n@o$"

Figure 24. __builtin_strncpy Operation

The builtin_prefix specifies that this is an “intrinsic” which means the instruction is
inferred from the mov operations being performed. Select the destination variable (var 148)in
order to display the cross-references in the Cross References pane (Figure 25).

Cross References

» Filter (6)

- Data References {1
|> 691be1d8 char* __builtin_strncpy(char* dest, char const* src

~Variable References {5
~char var_148 {5

|¢& 691bc@2b char var_148
|¢& 691bc@2b __builtin_strncpy(&var_148, "@AlzsQ1DSS>I9XX7kB7M1N
|¢& 691bc72b rax_25[sx.q(i_1 - var_78_1 * var_2c_1 + var_104_1 H
|> 691bc@2b char var_148
|> 691bc@2b __builtin_strncpy(&var_148, "@Alsz1DSS>I9XX7kB7M1h1

Figure 25. var_148 Cross References

13 of 21 © Invoke RE 2024

The third entry () shows a number of operations being performed with this
string. Double-click on this entry to navigate to this location (0x691bc72b). A number of
operations are performed within a for loop with the result being written to rax 25 (Figure 26).

for (int32_t i_1 = 0; i_1 u< rax_23; i_1 += 1)
| rax_25[sx.q(i_1 - i * var_2c_1 + var_104_1 + i - i
result = rax_25()

Figure 26. rax_25 Operations within For Loop and Shellcode Execution

This includes an XOR operation with a byte from the var_148 string (Figure 27).

rax_24[sx.q(i_1 + i * 2)] *» (&var_148)[modu.dp.q(@:(sx.q(i_1)), ©x3a)]

Figure 27. var_148 XOR Operation

A modulus operator is being applied to the current index, which causes the index to not
exceed the length of var 148. Based on these operations, we can infer that the var 148
string is an XOR key being used to decrypt a buffer within rax 24 and the result is written to
rax_25.We then see rax 25 being executed as a function pointer (Figure 26), which results
in the decrypted bytes being executed.

We can rename these variables by highlighting the variable name and pressing the n key. This
will display the Define name dialogue where a variable name can be entered (Figure 27).

O @ Define Name

Enter variable name:

‘xor_key| 3
Close |Accept |

Figure 27. Define Variable Name

Rename var 148 to xor key, rax 24 to input buffer and rax 25 to shellcode. By
looking at the operations above the for loop, we can see the input buffer and shellcode
pointers are the result of two function calls that use unknown function pointers (Figure 28).

691bc5b1 int64_t rax_22 = rax_12(var_68, zx.q(var_100), 0xa)
691bc5ca int32_t rax_23 = rax_15(var_68, rax_22)

691bc5e2 char* input_buffer = rax_18(var_68, rax_22)

691bc629 char* shellcode = rax_9(0, zx.q(rax_23), 0x3000, zx.q

Figure 28. Input Buffer and Shellcode Initialization

14 of 21 © Invoke RE 2024

Import Hash Resolution

These function pointers are assigned the return values of calls to sub_691bcd90 (Figure 29).

691bc3a4 int32_t var_36_1 = @
691bc3f1 int64_t rax_6 = sub_691bcb46(&var_50, 6, 0, 0, 0, 0, 0)
691bc43b int64_t rax_9 = sub_691bcd90(rax_6, 0xe3142, var_2c_1, V

691bc48c int64_t rax_12 = sub_691bcd908(rax_6, 0x1a@96e, var_2c_1,

691bc4d9 int64_t rax_15 = sub_691bcd908(rax_6, 0x380c56, var_2c_1,
691bc526 int64_t rax_18 = sub_691bcd90(rax_6, 0xd6056, var_2c_1,
691bc594 int64_t var_68

691bc573 sub_691bcd90(rax_6, ©x3469ec6, var_2c_1, var_104_1, 6, V

Figure 29. Function Pointer Initialization

The sub_691bcd90 function performs dynamic import resolution, which is a technique often
used by malware and shellcode to resolve Windows API functions at runtime. This involves
parsing in-memory structures in order to resolve the addresses of particular functions that are
required for the malware to execute.

This process requires resolution of the module (in this case kernel32) containing the function,
and then the export table of the resolved DLL is walked in order to identify the address of the
target function. Malware authors will often use hashing algorithms to iterate over each function
that is parsed in memory, hash each function name and compare it against the hash of a
desired function to resolve.

In this instance, the second parameter being passed to sub 691bcd90 is the hash being
resolved, whose resolved function pointer is then assigned to a local variable that is later called
where needed. We can automatically identify the hashing algorithm using a plugin called
hashdb, which queries an online database that contains precomputed hashes that map to
common strings, such as Windows API function names.

The second parameter passed to sub_691bcd90 is the hash that is being resolved by this
function. We can confirm this by right-clicking on the first hash (0xe3142) and going to
HashDB->Hunt, as shown in Figure 30.

VUL VWU MUujuouiiciit...

int64_t rax_9 = sub_691bcd90(rax_6, - . .
int64_t rax_12 = sub_691bcd90(rax_6, Oxlc L e AU L U

int64_t rax_15 = sub_691bcd90(rax_6, 0x3¢ Reanalyze CurrentFunction

int64_t rax_18 = sub_691bcd90(rax_6, Oxdt Disable Current Function Analysis

int64_t var_68 Highlight Instruction »
sub_691bcd908(rax_6, 0x3469ec6, var_2c_1,
int64_t rax_22 = rax_12(var_68, zx.q(var_) o
int32_t rax_23 = rax_15(var_68, rax_22) Navigateto Selection in New Tab
char* input_buffer = rax_18(var_68, rax_z Navigate to Selection in New Window

,,,,,, Hash Lookup HashDB

Log Multiple Hash Lookup Plugins »

E % [Pial] Unable to download https://raw.

Navigate to Selection in New Pane

Figure 30. HashDB Hunt for Hash

https://github.com/cxiao/hashdb_bn

15 of 21 © Invoke RE 2024

This will query HashDB for this hash, and “hunt” for any hashing algorithms that have

produced this hash. In this instance, a number of hashing algorithms are found, as shown in
Figure 31.

[HashDB] Algorithm Selection

The following algorithms contain a matching hash.

Select an algorithm to set as the default for this binary.
Count Hit Rate Algorithm Type |

1 100% ch_add_rol8 unsigned_int (4 bytes) XOR and ROL 8 and SLI

1 100% revil_O10F unsigned_int (4 bytes) Lower 21 bits of an LFS

1 100% shll_add unsigned_int (4 bytes) SHIFT LEFT 1and ADD
M

]

‘Cancel [OK_|

Figure 31. HashDB Hunting Results

This particular hash was produced by a number of different hashing algorithms that are stored
in HashDB. Select the sh11 add algorithm, as shown in Figure 31, and click OK. This will set
the hashing algorithm to sh11 add as shown in the Log window (Figure 32).

Log Q Searchlog

Al -

[cxiao_hashdb_bn.actions] Setting the hash algorithm for this analysis
database to 'shl1_add [unsigned_int (4 bytes)]: SHIFT LEFT 1 and ADD'

Figure 32. Hashing Algorithm Set

Now that the hashing algorithm has been identified and set, we can query HashDB for each
hash by right-clicking on 0xe3142 and selecting HashDB->Hash Lookup. This will display
the String Selection window, as shown in Figure 33.

[BON) [HashDB] String Selection

Select the best match for the hash value 0xe3142
VirtualAlloc -

Cancel | OK |

Figure 33. String Selection from Hash Value

This will provide a dropdown of strings that correspond to the provided hash. It is common to
have hashing collisions (the same hash for two different strings) from these simple algorithms,
so this may involve some trial and error. However, in this instance, VirtualAlloc is correct.
Click 0K to add the selected string to the Binary Ninja database as an enum.

16 of 21 © Invoke RE 2024

In addition to the String Selection window, you will be presented with the Bulk Import
window that will allow you to add all export function string hashes related to a particular
module (DLL) as an enumeration to the database. This will allow related function names to be
applied to other hashes that make use of the same hashing algorithm within the database. The
VirtualAlloc export is contained within a number of different modules. Select kernel132
from the dropdown, as shown in Figure 34, and click OX.

o [HashDB] Bulk Import

The hash for VirtualAlloc is a module function.

Do you want to import all function hashes from this module?
api-ms-win-core-memory-I1-1-0

kernel32

kernelbase (¢

Figure 34. Bulk Import Kernel32 Exports

Now that all hashes for kernel132 have been imported, we can apply them to each hash by
pressing the m key. For example, select 0xe3142 in the HLIL view and press the m key to
display the Sselect Enum window for the VirtualAlloc enum member (Figure 35).

[] [] Select Enum
Q + enum hashdb_strings_shl1_add : uint32_t
Name fEnum Member Name { :
hashdb_strings_shll_add VirtualAlloc VirtualAlloc = 0xe3142,
GlobalFree = 0x3460e,

Figure 35. Select VirutalAlloc Enum Member

Press the Select Enum button to apply this enum member to the selected hash. This will then
be displayed in the HLIL view (Figure 36).

int64_t rax_9 = sub_691bcd906(rax_6, VirtualAlloc, var_2c_1, var_104_1,
int64_t rax_12 sub_691bcd90(rax_6, ©x1a@96e, var_2c_1, var_104_1, @,
int64_t rax_15 sub_691bcd90(rax_6, 0x380c56, var_2c_1, var_104_1, @,
int64_t rax_18 sub_691bcd90(rax_6, 0xd6@56, var_2c_1, var_104_1, @,

Figure 36. Applied VirtualAlloc Enum Member

17 of 21 © Invoke RE 2024

Hash Resolution Exercise

Rename sub_691bcd90 tomw _resolve hash using the n key and apply enums to the
remaining hashes using the m key. The result should look something like Figure 37.

int64_t rax_9 = mw_resolve_hash(rax_6, VirtualAlloc, var_2c_1, var_164_1, 0, v
int64_t rax_12 = mw_resolve_hash(rax_6, FindResourceA, var_2c_1, var_104_1, 0,
int64_t rax_15 mw_resolve_hash(rax_6, SizeofResource, var_2c_1, var_104_1, ©
int64_t rax_18 mw_resolve_hash(rax_6, LoadResource, var_2c_1, var_104_1, 9,
int64_t var_68

mw_resolve_hash(rax_6, GetModuleHandleExW, var_2c_1, var_104_1, 0, var_30_1, i

Figure 37. Resolved Enumerations Applied and Function Renamed

Given that mw_resolve hash returns function pointers, rename each variable using the n key
to each respective function being resolved. The result should look something like Figure 38.

int64_t VirtualAlloc = mw_resolve_hash(rax_7, VirtualAlloc, var
int64_t FindResourceA = mw_resolve_hash(rax_7, FindResourceA, vV
int64_t SizeofResource = mw_resolve_hash(rax_7, SizeofResource,
int64_t LoadResource = mw_resolve_hash(rax_7, LoadResource, var
int64_t var_68

mw_resolve_hash(rax_7, GetModuleHandleExW, var_2c_1, var_104_1,
int64_t rax_19 = FindResourceA(var_68, zx.q(var_100), ©0xa)
int32_t rax_20 = SizeofResource(var_68, rax_19)

char* input_buffer = LoadResource(var_68, rax_19)

char* shellcode = VirtualAlloc(@, zx.q(rax_20), 0x3000, zx.q(0x

Figure 38. Assigned Variable Names to Pointers

As you can see, things are beginning to take shape now that we can see which Windows API
functions are being called. A handle to a resource embedded within the binary is acquired
using FindResourceA, the size of the resource is acquired using SizeofResource and the
resource is loaded using LoadResource with the result being assigned to input buffer.
The second parameter of FindResourceA is 1pName which is used to identify the embedded
resource. This value is stored within var 100. Selecting var 100 shows a cross-reference for
this variable at the beginning of this function where it is initialized (Figure 39).

- Variable References {6}
~int16_t var_100 {3}
|& 691bcicb int16_t var_100 = 0x3b4

Figure 39. var_100 Initialization Cross-Reference

18 of 21 © Invoke RE 2024

Rename var 100 to rsrc_id for readability. In order for us to extract the final Qakbot
payload, we need to extract the rsrc_id to identify which resource we need to extract from
the PE and extract the xor key to decrypt the embedded resource. We will do this
programatically using the Binary Ninja API.

XOR Key Identification and Extraction
We can acquire all HLIL instructions for our target function (sub_691bc000) using:
list (bv.get function at (0x691bc000).hlil.instructions)

We can then enumerate these instructions and look at the first callto builtin strncpy
using the following (see extract gakbot.py):

finstr = None
addr = 0x691bc000
func = bv.get function at (addr)

for instr in func.hlil.instructions:
for token in instr.tokens:

if ' builtin strncpy' == token.text:
finstr = instr
if finstr:
break

if finstr:
Access second operand of builtin strncpy
key param = finstr.params[1]
#Access constant data from parameter
key = bytes (key param.constant data.data)

Here we enumerate all text tokens that make up each HLIL instruction and look for the
__builtin strncpy operation. We can then access the second parameter of the
__builtin_ strncpy instruction and acquire the data using the following code:

if finstr:
Access second operand of builtin strncpy
key param = finstr.params[1]
#Access constant data from parameter

key = bytes (key param.constant data.data)

This will acquire the key data in byte format that we can use to decrypt the embedded
resource.

Resource Extraction and Decryption

The resource identifier assignment comes after the callto builtin strncpy, as shownin
Figure 40.

691bcB2b char xor_key
691bcO2b __builtin_strncpy(dest: &xor_key, src: "@AlzsQ1D
691bclch int16_t [Fsresid = 0x3b4

Figure 40. Resource Identifier Assignment

19 of 21 © Invoke RE 2024

We can access this instruction by adding to the current HLIL instruction’s index using the
following code:

list (func.hlil.instructions) [finstr.instr index+1]

Here we are accessingthe builtin strncpy’s index and using that to acquire the next
instruction in the list of all HLIL instructions within the function.

Resource ldentifier Extraction Exercise

Now that we have the resource identifier instruction, use the techniques described in the HLIL
and Scripting with Binary Ninja section to acquire the resource identifier constant value and
add it to extract gakbot.py.

Resource Extraction using PEFile

Once the resource identifier has been acquired, we can use it to extract the resource using a
module called pefile. The pefile module allows parsing and accessing PE structures and
attributes, including resources. We can access the resource using the following:

def extract resource (fpath, rsrcid):
rsrc_data = None
pe = pefile.PE (fpath)
pe mapped = pe.get memory mapped image ()
for rsrc in pe.DIRECTORY ENTRY RESOURCE.entries:
for entry in rsrc.directory.entries:
if entry.struct.Name == rsrcid:
rsrc_offset =
entry.directory.entries[0] .data.struct.OffsetToData
rsrc_size =
entry.directory.entries[0] .data.struct.Size
rsrc_data = pe mapped[rsrc offset:rsrc offset +
rsrc_size]
return rsrc data

This function accesses IMAGE DIRECTORY ENTRY RESOURCE data directory entries of the
provided PE and compares each entry’s name to the acquired resource identifier. The pefile
module allows accessing PE data in its mapped format using the

get memory mapped image function. This is used to acquire the resource data with the
identified resource offset and resource size.

Resource Decryption

We can now decrypt the extracted resource data by performing a rotating XOR decryption with
the extracted key from the XOR Key Identification and Extraction section and the following
code:

def xor (key: bytes, ct: bytes) -> bytes:

r = bytes|()
for i, b in enumerate(ct) :
r += (b © key[i % len(key)]).to bytes(l, 'little')

return r

https://github.com/erocarrera/pefile

20 of 21 © Invoke RE 2024

This results in plaintext shellcode that maps an embedded PE into memory and executes it.
This first stage PE contains another PE that is our final Qakbot payload.

Carving Portable Executables

In order to carve all embedded PE files, we can use Binary Refinery, which is “a collection of
Python scripts that implement transformations of binary data such as compression and
encryption”. Binary Refinery is often thought as a command-line version of CyberChef, which
provides data transformations used by malware analysts to recover and deobfuscate
information. We will be using Binary Refinery to carve embedded PE files from a given data
blob using the carve pe module using the following code:

def carve pe(data: bytes) -> list:
from refinery import carve pe
This syntax is specific to Binary Refinery's
operator overloading and is wvalid Python.
carved = data | carve pe | []
return carved

Here this function makes use of Binary Refinery’s pipe format to pipe our resource data into the
cave pe module, which will look for, acquire the size of and extract a portable executable
from the provided blob and return this within a list. As mentioned, since this blob contains two
embedded PE files, we need to call this function twice using the following code:

first pe = carve pe(pt) [0]
second pe = carve pe (first pe) [0]

The second PE is then written to disk using the following code:

fw = open (F"{path} gakbot.bin", "wb")
fw.write (second pe)
fw.close ()

Save the opened Binary Ninja database by pressing CMD/CTRL+s (in order for our script to find
the binary file on disk) and run extract gakbot.py in the Snippets editor.

Testing Against Another Sample

Open the
12094a47a9659%901c2f7¢c5b36e21d2b0145¢c9e7b2e79845a437508efa96e5£305 sample
in Binary Ninja and navigate to the sub_ 180005556 function. This is the same type of
unpacking function identified in the first sample that we analyzed (Figure 41).

int32_t sub_180005556()

int64_t s_1

__builtin_memset(s: &s_1, c: 0, n: 0x14)

char var_128

__builtin_strncpy(dest: &var_128, src: "F?fzfMN(JNfU3)sNTOTY61J!4Qo0"
int32_t var_100 = 0x2f2

Figure 41. Unpacking Stub Key Copy and Resource |dentifier

https://github.com/binref/refinery
https://github.com/gchq/CyberChef
https://binref.github.io/#refinery.carve_pe

21 of 21 © Invoke RE 2024

Replace the addr variable value with this address (0x180005556) and run the script. Since the
function containsa builtin strncpy call followed by the resource identifier variable
assignment, the script automatically identifies these values, extracts them, decrypts the
embedded resource and writes the final payload to disk.

Generically Identifying XOR Key and Resource ID

A generic version of the script is provided extract heuristic generic.py. Since we do
not want to manually identify the function containing these values for every packed sample, we
want to establish a heuristic for identifying these functions.

Sincethe builtin strncpy intrinsic is not called frequently, we can look for this within
the database as a starting point. We can acquire the address of the this function using
bv.get symbol by raw name (' builtin strncpy') .address which resolves this
symbol to the virtual address within the database. We can then get the cross-references to this
address using bv.get callers (addr).

We can then verify that we have the correct call location by acquiring all HLIL instructions for
the function and ensuring the instructions following this call are an integer assignment and
variable declaration:

rsrc_instr = list(c.function.hlil.instructions) [c.hlil.instr index+1]
var init instr = list(c.function.hlil.instructions)
[c.hlil.instr index+2]
if isinstance(rsrc instr, HighLevelILVarInit) \
and isinstance(rsrc_instr.operands[1l], HighLevelILConst) \
and isinstance(var init instr, HighLevellILVarDeclare) :
return c.function

Developing these heuristics typically requires identifying unique attributes that can be used to
enumerate locations needed to extract information. Here we’ve simply used the two types of
HLIL instructions that follow our target location, which is unique to this function.

Conclusion

This workshop has demonstrated common automation techniques that can be used by
analysts to access information from binaries using Binary Ninja and deobfuscate them using
plugins and Python modules. Although these types of tasks are common, malware samples
often require custom automation to be written for them, but the general concepts can be
applied across many malware families. Additionally, the automation can be applied to multiple
malware samples that have been obfuscated using the same techniques in order to extract
information from them automatically, which drastically saves time and manual analysis efforts.

	Introduction
	Setup
	Qakbot Unpacking Stub
	Conclusion

