
Handoff All Your
Privacy(Again)

By Christine Fossaceca

PLEASE TURN OFF
YOUR BLUETOOTH

$whoami

my dog Honey(pot)

STREAM SEASON 2 NOW!

🎙@herhaxpodcast

Agenda

•What is the Continuity Protocol?
•How to Capture Continuity Data
•Packet Breakdown
•✨Live DEMO!✨
•FindMy Protocol + Airtag Packets
•Airtag Encryption

Continuity Protocol Explained

● ”Continuity” allows for information sharing and “seamless” experience” across Apple
products and peripherals

○ Examples: Resume browsing from iPhone to MacBook, Universal Clipboard, Instant Hotspot, WiFi Password

● Powered via a combination of Wi-Fi and Bluetooth LE

● Proprietary! But we have reverse engineered this protocol and disclosed to Apple where
Continuity exposes sensitive information or is poorly implemented. Shmoocon 2020.
Objective By the Sea 2022. Jailbreak Security Summit 2022.

● Past @furiousmac Papers: Handoff All Your Privacy – A Review of Apple’s Bluetooth
Low Energy Continuity Protocol; Who Tracks the Trackers? Circumventing Apple’s
Anti-Tracking Alerts in the Find My Network;

● Other research: Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-Low-Energy
Continuity Protocols; TU Darmstadt (multiple works) such as Open Haystack and AirGuard

It’s not a bug, it’s a feature!

furiousMAC

https://samteplov.com/publications/handoff-all-your-privacy/
https://samteplov.com/publications/handoff-all-your-privacy/
https://samteplov.com/publications/who-tracks-the-trackers/
https://samteplov.com/publications/who-tracks-the-trackers/
https://petsymposium.org/popets/2020/popets-2020-0003.pdf
https://petsymposium.org/popets/2020/popets-2020-0003.pdf
https://www.seemoo.tu-darmstadt.de/team/jclassen/
https://www.seemoo.tu-darmstadt.de/team/aheinrich/
https://github.com/seemoo-lab/openhaystack
https://github.com/seemoo-lab/AirGuard

So you might be wondering…
● What types of information are being sent in the clear?

● And how are you capturing this?

How to Capture Continuity Data

● Bluetooth Hardware Dongle
○ Ubertooth or NRF Dongle

● Wireshark (compiled from source)
● furiousMAC custom dissector!

○ https://github.com/furiousMAC/continuity

● Check out our repository with build instructions!

https://github.com/furiousMAC/continuity

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

The access address is at a 24
byte offset

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

c2:b6:98:c8:df:17

14:7d:da:75:7b:bc

60:7e:9d:e4:6f:8b

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

BLE flags related
to discoverability
and transmission
power (not Apple
Specific)

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Length 0x2, 2 bytes of flag info

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Length 0x2, 2 bytes of flag info

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Length 0x2, 2 bytes of flag info Length 0x13, 19 bytes succeeding

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length only 7 Bytes

Length 0x2, 2 bytes of flag info Length 0xa, 10 bytes succeeding

Length 0x2, 2 bytes of flag info Length 0x13, 19 bytes succeeding

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

0xb

Apple Message Types

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple Message Types

Type 18: Find My

0xb

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple Message Types

Type 18: Find My ✨samteplov.com✨

0xb

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple Message Types

Type 18: Find My

Type 16: Nearby
0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple Message Types

Type 18: Find My

Type 16: Nearby

Type 12: Handoff

0xb

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple Message Types

Type 16: Nearby
0xb

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Type 16: Nearby

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Type 16: Nearby

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length = 5

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

CRC

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

06 1c

0000 0100 0001 1100

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

06 1c

0000 0100 0001 1100
Reserved
Airdrop
On/Off

Primary iCloud

Reserved AcOon Codes

Action
Code

Meaning

1 Activity Unknown

2 Activity Reporting Disabled

3 Idle

4 Locked Phone

5 Audio is playing with screen off

7 Transition Idle from Locked Screen

9 Screen is on and video is playing

10 Phone locked; push notifications to watch

11 Active user

13 User is driving in a vehicle

14 Phone in phone call or face time

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

06 1c

0000 0100 0001 1100

Auto Unlock
Auto Unlock Watch

Watch Locked AuthTag
Present

Reserved
WiFi On/Off
4 Byte Auth Tag

Airpods Connected

Auth Tag is 0xe752b4

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Type 12: Handoff

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Length = 14

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Cut/Copy performed

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

IV Seq Num

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Auth Tag

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Encrypted Payload

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format
Pros Cons

Uses encryption Ivs sequential

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple Message Types

Type 7: Proximity
Pairing

0xb

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Type 7: Proximity
Pairing

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Length =25

Apple BLE Frame Format

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Airpods Prefix

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Device Model

Apple BLE Frame Format

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Device Model

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

 Status Codes
Functional🤓 or spooky?👻

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Battery Levels🔋

Apple BLE Frame Format 9 9 8 f

Left Airpod Right Airpod Is charging?
(3bits)

Case

Continuity Protocol Explained It’s not a bug, it’s a feature!

Lid Open Count

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Device Color

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Airpods Suffix

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

Encrypted Data

Apple BLE Frame Format

Continuity Protocol Explained It’s not a bug, it’s a feature!

CRC

Apple BLE Frame Format

PLEASE TURN OFF
YOUR BLUETOOTH

PLEASE TURN OFF
YOUR BLUETOOTH

seri
ous

ly
please!!

PLEASE TURN OFF
YOUR BLUETOOTH

seri
ous

ly
please!!

Demo🔥

Demo Backup🔥

Continuity Protocol Explained It’s not a bug, it’s a feature!

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Type 18: Find My

0xb

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Type 18: Find My

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Type 18: Find My

Type 18: Find My

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

The State Machine of the AirTag

The State Machine of the AirTag

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Length = 25

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Length = 25 25 bytes

Con3nuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Length = 25 25 bytes

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

PAUSE: WHY ARE THESE DIFFERENT?!

Nearby

Separated

Length = 2Length = 2 2 bytes

Length = 25 25 bytes

`
CRC

`
CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Bacery Status”

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

OLD tracking bit!

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

OLD tracking bit!DISSECTOR CODE

Continuity Protocol Explained It’s not a bug, it’s a feature!

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

0 0000 0000 0

e 1110 1101 d

a 1010 1001 9

6 0110 0101 5

2 0010 0001 1

Old Left nibble Bit 4 trackingBit 5 tracking New Left nibble

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

OLD tracking bit!DISSECTOR CODE

-> 0x14
-> 0x54
-> 0x94
-> 0xd4
-> 0x00

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

7 6 5 4 3 2 1 0

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

NearbyLength = 2Length = 2 2 bytes

`
CRC

` `

Public Key Bits

7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0
Pub KeyReserved ReservedReserved Pub KeyReservedReserved Reserved

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

SeparatedLength = 25 25 bytes

`
CRC

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

“Battery Status”

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

“Battery Status”

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

“Battery Status”

7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0
ReservedTracking MaintainedReserved ReservedReservedBattery Battery

Disconnected

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

Length = 25

`

Bytes 6-27 of the public key

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`
`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`
`

“Public Key Bits"

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`
`

“Public Key Bits"

7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0
Pub KeyReserved ReservedReserved Pub KeyReservedReserved Reserved

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`
`

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`
` `

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`
` `
Hint

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

Separated

`
CRC

`
` `
Hint

(also related to public
key)

Continuity Protocol Explained It’s not a bug, it’s a feature!

?

Continuity Protocol Explained It’s not a bug, it’s a feature!

In 5 Minutes

Continuity Protocol Explained It’s not a bug, it’s a feature!

No GPS!

Continuity Protocol Explained It’s not a bug, it’s a feature!

No GPS!

..so how does it work?

Continuity Protocol Explained It’s not a bug, it’s a feature!

Encryption 101
PUBLIC KEY = encrypt
PRIVATE KEY = decrypt

Continuity Protocol Explained It’s not a bug, it’s a feature!

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

0x12345678910ABCDEFABCDEF

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

0x12345678910ABCDEFABCDEF

Notional key PubKey

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

0x12345678910ABCDEFABCDEF

Notional key PubKey
P224 ELLIPTIC CURVE PUBLIC KEY
224 bits in PubKey = 28 byte key

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Apple Server

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Apple Server

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Apple Server

Continuity Protocol Explained It’s not a bug, it’s a feature!

airtag

No GPS but… BLUETOOTH!

Apple Server

Can download and
unlock with Private
Key

Continuity Protocol Explained It’s not a bug, it’s a feature!

If at 3:00pm on Saturday, the AirTag was nearby to a user who claimed they were at the Hilton
Hotel, then the AirTag must have also been at or near the Hilton Hotel at the same time.

NOTE!!

This is
 not

live

tracking

What the heck is P224- ECIES?!

● Let’s take a deep dive into encryption (photo cred @replover4eva)

P-224 Encryption in General

The “domain parameters” are already agreed upon (p, a, b, G, n, h) and the curve is represented by the formula:

y2= x3-3x+18958286285566608000408668544493926415504680968679321075787234672564
and (p, a, b, G, n, h) are defined as follows:
p = 26959946667150639794667015087019630673557916260026308143510066298881
a = -3
b = 18958286285566608000408668544493926415504680968679321075787234672564
G= (19277929113566293071110308034699488026831934219452440156649784352033,
19926808758034470970197974370888749184205991990603949537637343198772)
n = 26959946667150639794667015087019625940457807714424391721682722368061
h=1

(FIPS 186-4 Digital Standard)

• Recall the Diffie Hellman key exchange, and the ability to generate a shared secret
• P-224 Elliptic Curve Diffie Hellman (ECDH) is similar, with more parameters

P-224 ECIES
• “Elliptic Curve Integrated Encryption Scheme”
• Supposed to be Even More Secure™ and protect against chosen-plaintext and chosen-ciphertext attacks
• ECIES integrates additional features such as message authentication codes (MAC) and key derivation

functions (KDF) into the protocol, as well as a symmetric encryption scheme for faster encryption times
• This is introduced in a 2009 paper (Daniel R. L. Brown. Standards for Efficient Cryptography 1 (SEC 1).

2009. https://www.secg.org/sec1-v2.pdf)

• In the AirTag implementation, the KDF used is ANSI-X9.63-KDF and the MAC scheme used is SHA-256.
The symmetric key scheme ENC is AES-128-GCM.

• It is important to note that given an elliptic curve and an x-coordinate on that curve, the y-coordinate can be
trivially calculated, so usually only the x-coordinate is shared in practical implementations

https://www.secg.org/sec1-v2.pdf

Continuity Protocol Explained It’s not a bug, it’s a feature!

The AirTag and owner device must collaboratively generate a 28
byte Master public key P, (comprised of key pair public p0 and
private d0) as well a 32 byte key Secret Key Separated (SKS)

(if you want to know more, there’s bonus slides at the end, but
basically, they use math to each generate P without either actually
sending P over the channel, much like most shared secret
generation)

The master key P and SKS are used to generate a derivative key
PWi, defined by key pairs public pi and private di

Every 15 minutes, a new key pair public pi and private di are
generated, and the new pi value is what is beaconed

All the math
1) ephemeral key is generated (extraction)
SKSi = KDF(SKSi-1, “update”, 32)

2) expansion of key pair
(ui , vi) = KDF(SKSi , “diversify”, 72)

3) Reduce into P-224 valid scalars
ui = ui(mod q-1) + 1 (where q is the order of the base point G of the P-224 elliptic curve.)
vi = vi(mod q-1) + 1

4)Generate pi and di
di = (d0*ui) + vi
pi = (di *G)

Where * is the dot product, G is the point generator and the original public key
is (d0,p0)

Continuity Protocol Explained It’s not a bug, it’s a feature!

• The Finder device also creates its own ephemeral key
pairs on the P-224 Curve

• When it receives the public key pi, it uses ECDH to
compute another shared secret –> SharedKeyFinder
SKF

• It uses the KDF to compute an ephemeral key
SKF’ = KDF(SKF, “update”, 32)

• The first 16 bytes of SKF’ become a 16 byte
encryption key e’ for AES-GCM. The last 16 bytes of
SKF’ become the initialization vector (IV). This is an
implementation of ECIES (from TU

Darmstadt paper)

Continuity Protocol Explained It’s not a bug, it’s a feature!

• The Apple Servers store the locations reports as key
value pairs (SHA256(pi), 88 byte location report)

• You can request a location report as long as you
know the hash

• The owner device collaboratively generated (p0,d0),
so calculating pi and SHA256(pi) is trivial.

• Also, because the owner device can recalculate all of
the private keys from the airtag as well, it will
calculate the corresponding private key di for public
key pi, then using the ephemeral public key , the
owner can calculate the shared secret SKF. Using the
known KDF function, the owner can then calculate
SKF’, which becomes e’ and IV, and was used to
AES- 128 encrypt the original payload, and since
AES is symmetric, this will decrypt that location
report as well.

Bluetooth Limitations

● Small Packet Size vs Strong Encryption Need
○ MTU recommendation is 512 bytes (that’s including header info and payload)

○ In practice this is much smaller! And for Bluetooth low energy EVEN smaller (max
recommended payload only 27 bytes)

○ BUT we want to use strong encryption, and a P-224 key of 224 bits is equivalent to an RSA
key of 2048 bits

○ So Apple does something a little creative here….

Continuity Protocol Explained It’s not a bug, it’s a feature!

Apple BLE Frame Format

SeparatedLength = 25 25 bytes

`
CRC

Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`
`

`

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`
`

`

d 9

1101 1001

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`
`

`

d 9

1101 1001`

Public Key
Bits

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

`

Hint

`

28 byte key

Bytes 0-5

Bytes 6-27

`

d 9

1101 1001`

`

à0010à10à1001à9
Final PubKey:

Public Key
Bits

 Creative Key Storage It’s not a bug, it’s a feature!

Separated

Apple BLE Frame Format

28 byte key

Bytes 0-5

Bytes 6-27

`

Hint

`
`

`

d 9

1101 1001`

Public Key
Bits

à0010à10à1001à9
Final PubKey: 991407543e55f962a3958e

c67a231860353ee746f8cb2771cfbd933f

References
[1] Hardwick, Tim. “Apple Announces AirTag Tracking Devices Starting at $29 Each. MacRumors, 20 Apr. 2021,
https://www.macrumors.com/2021/04/20/apple-unveils-airtags-tracking-devices/.
[2] “AirTag.” Apple, Apr. 2021, https://www.apple.com/airtag/.
[3] “Create Innovative Accessories.” Apple. 2021,https://mfi.apple.com/.
[4] Goldheart, Sam. “AirTag Teardown: Yeah, This Tracks” IFixit, 1 May 2021, https://www.ifixit.com/News/50145/airtag-
teardown-part-one-yeah-this-tracks.
[5] “NRF52832.” Nordic Semiconductor, https://www.nordicsemi.com/products/nrf52832.
[6] NIST. “Digital Signature Standard (DSS).” Federal Information Processing Standards Publication, 2013,
https://doi.org/10.6028/nist.fips.186-4.
[7] Guillaume Celosia, Mathieu Cunche. Saving Private Addresses: An Analysis of Privacy Issues in the Bluetooth-Low-Energy
Advertising Mechanism. MobiQuitous 2019 - 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, Dec 2019, Houston, United States. pp.1-10, ff10.1145/3360774.3360777ff. ffhal-02394629f
[8] Afaneh, Mohammad. “Bluetooth Addresses & Privacy in Bluetooth Low Energy.” Novel Bits, 6 Apr. 2020,
https://novelbits.io/Bluetooth-address-privacy-ble/.
[9] Great Scott Gadgets, https://greatscottgadgets.com/ubertoothone/.
[10] Bluetooth SIG. Bluetooth Core Specification Version 5.2. Tech. rep. 2019.
[11] Heinrich, Alexander, et al. “Who Can Find My Devices? Security and Privacy of Apple’s Crowd-Sourced Bluetooth Location
Tracking System.” Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 3, 2021, pp. 227–245.,
https://doi.org/10.2478/popets-2021-0045.

More References
[12] “Find My Network Accessory Specification.” Apple. Version Release R1. 2020. url:
https://developer.apple.com/ find-my/.
[13] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. 2016. Protecting Privacy of BLE Device Users. In 25th
USENIX Security Symposium (USENIX Security 16). 1205–1221.
[14] Celosia, Guillaume, and Mathieu Cunche. “Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-
Low-Energy Continuity Protocols.” Proceedings on Privacy Enhancing Technologies, vol. 2020, no. 1, 2020, pp.
26–46., https://doi.org/10.2478/popets-2020-0003.
[15] “Throughput with Bluetooth Low Energy Technology.” Version 4.0 Bluetooth API Documentation. Silicon
Labs, June 2022, https://docs.silabs.com/Bluetooth/4.0/general/system-and- performance/throughput-with-
Bluetooth-low-energy-technology.
[16] Derhgawen, Ashish. “Maximizing BLE Throughput Part 4: Everything You Need to Know.” Punch Through, 16
Nov. 2020, https://punchthrough.com/ble-throughput-part-4/.
[17] “Size Considerations for Public and Private Keys.” Documentation, IBM, 27 May 2021,
https://www.ibm.com/docs/en/zos/2.4.0?topic=certificates-size-considerations-public-private-keys. [18] Jeremy
Martin, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry, Erik
Rye, Brandon Sipes, and Sam Teplov. “Handoff All Your Privacy: A Review of Apple’s Bluetooth Low Energy
Implementation.” In: (2019). doi: 10.2478/popets-2019- 0057.

More References
[18] Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry, Erik Rye,
Brandon Sipes, and Sam Teplov. “Handoff All Your Privacy: A Review of Apple’s Bluetooth Low Energy
Implementation.” In: (2019). doi: 10.2478/popets-2019- 0057.
[19] Travis Mayberry, Ellis Fenske, Dane Brown, Jeremy Martin, Christine Fossaceca, Erik C. Rye, Sam Teplov, and
Lucas Foppe. 2021. Who Tracks the Trackers? Circumventing Apple’s Anti- Tracking Alerts in the Find My
Network. In Proceedings of the 20th Workshop on Privacy in the Electronic Society (WPES ’21), November 15,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3463676.3485616
[20] Daniel R. L. Brown. Standards for Efficient Cryptography 1 (SEC 1). 2009. https://www.secg.org/sec1-v2.pdf
[21] “Apple Platform Security.” Apple. 2020. url: https : / / support.apple.com/guide/security/ (Alternate
Link).https://github.com/0xmachos/Apple-Platform-Security-Guides/blob/master/2020- spring-apple-platform-
security-guide.pdf
[22] Wireshark · Go Deep., https://www.wireshark.org/.
[25] Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Information Theory, Vol.
22, No. 6, 1976, pp. 644-654. https://ee.stanford.edu/~hellman/publications/24.pdf
[26] “Elliptic-Curve Diffie–Hellman.” Wikipedia, Wikimedia Foundation, 9 Nov. 2022,
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman.
[27] “P-224.” Standard Curve Database, 2020, https://neuromancer.sk/std/nist/P-224.

More References
[28] “Chapter 3 - An Introduction To Cryptography”.Editor(s): Dale Liu, Max Caceres, Tim Robichaux, Dario V. Forte, Eric S.
Seagren, Devin L. Ganger, Brad Smith, Wipul Jayawickrama, Christopher Stokes, Jan Kanclirz, Next Generation SSH2
Implementation,Syngress,2009,
Pages 41-64,https://doi.org/10.1016/B978-1-59749-283-6.00003-9. (https://www.sciencedirect.com/topics/computer-
science/plaintext-attack)
[29] Ryan K.L. Ko, Kim-Kwang Raymond Choo,Chapter 1 -The Cloud Security Ecosystem.Syngress,
2015,Pages 1-14,https://doi.org/10.1016/B978-0-12-801595-7.00001-X. (https://www.sciencedirect.com/topics/computer-
science/el-gamal)
[30] NIST. “Digital Identity Guidelines”. Special Publication, 2017, https://doi.org/10.6028/NIST.SP.800-63b
[31] Abdel Hakeem SA, Kim H. Centralized Threshold Key Generation Protocol Based on Shamir
Secret Sharing and HMAC Authentication. Sensors (Basel). 2022 Jan 3;22(1):331. doi:
10.3390/s22010331
[32] Alexander Heinrich, Niklas Bittner, and Matthias Hollick. 2022. AirGuard - Protecting
Android Users from Stalking Attacks by Apple Find My Devices.
[33] NIST. “Recommendation for Key-Derivation Methods in Key-Establishment Schemes”. Special Publication, 2018,
https://doi.org/10.6028/NIST.SP.800-56Cr1
[34] Ireland, David. “AES-GCM Authenticated Encryption.” CryptoSys PKI Pro Manual, DI Management Services Pty Limited,
10 Sept. 2022, https://www.cryptosys.net/pki/manpki/pki_aesgcmauthencryption.html.
[35] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-curve cryptography. 1 Jan 2017.
https://safecurves.cr.yp.to.
[36] Giry, Damien. “Cryptographic Key Length Recommendation.” BlueKrypt, 24 May 2020, https://www.keylength.com/en/4/.

Questions?

christine@herhaxpodcast.com
@x71n3 on Twitter

mailto:christine@herhaxpodcast.com

AirTag + Owner Device Key Exchange
● Assume an a priori securely established Bluetooth communications channel (

During the Bluetooth pairing procedure, the two devices use an a priori Apple
server key (written into the firmware of both devices) [12]to encrypt these
initial transmissions)

● Collaborative Key Generation Steps (From the Original FindMy Specification)
○ “AirTag Accessory Alice” must generate a P-224 scalar s and a random 32 byte value r, then concatenates s

with r, and calculates a value c1 by calculating the SHA-256 of s concatenated with r.

○ “Owner Device Bob” also generates a P-224 scalar, s’, and a random 32 byte value r’. However, Bob then
uses generational point G to generate S’, where S’ = G * s’ , where * indicates the dot product. Note, this is
quite similar to the calculation for Bob’s public key in the section above. Bob’s iDevice can then send c2
which is a set containing {S’, r’}.

○ Now, S’ is also point on the curve P-224, because it was created from G, the generational point. AirTag
Accessory Alice verifies this. The AirTag will be the first to compute the Master public key P. Using S’ from
the Owner device, the formula is P = S’ +s * G. Remember, P is never sent over the channel, so instead, the
AirTag sends c3 = {s, r}

AirTag + Owner Device Key Exchange (cont)
● Collaborative Key Generation Steps (cont)

○ Next, the owner device does a bit of verification, first, verifying that s is a valid P-224 scalar, and then
computing the SHA-256 hash of s concatenated with r. The AirTag sent this value initially with c1, so the
owner device compares its own calculation to c1, and aborts if they are not equal. Now, the owner device
can independently compute the Master key P with the formula P = S’ +s * G and the private key d with the
formula d = s +s’(mod q), where q is the order of the base point G of the P-224 elliptic curve.

○ At this point, the AirTag and the owner device (Alice and Bob) each have generated P without sending it
over the channel. Using P, each can independently compute SKN and SKS as the 64 byte output of the KDF
function ANSI-X9.63-KDF(x(P), r concatenated with r’). The SKN is the first 32 bytes of this value and
SKS the last 32 bytes.

