You have become the very
thing you swore to destroy:
Remotely exploiting an
Anti1Virus engine

echo SUSER

Simon, Cloud Vulnerability Researcher at Google

ClamAV: Why would an attacker pwn 1t?

e Open-Source AV engine for Linux, MacOS and Windows
e Popular for Linux clients

e Widely used in server-side contexts:
o Email servers (e.g. Zimbra)
o Appliances (e.g. Cisco Secure Web Appliance)
o Cloud Storage etc.

e WritteninC

=> Achieving Remote-Code-Execution would give an attacker
privileged access to highly sensitive data such as emails and
(up|down)loaded files

https://github.com/Cisco-Talos/clamav

ClamAYV High-Level Overview

e Supports file-type detection and recursive scanning of many file-formats

e e.g.unpacks ZIP or 7zip files, detects each files’ type and either unpacks
them or scans them for known viruses

e Recursive depth and number of files scanned depends on configuration
settings

Detect filetype <

Call filetype specific scan
function

No

s the filetype a containe 3 s

; b Ye
(e.g. Archive) and contains —{>°s Is recu:(seg):hg zc;an limit
multiple entries? ’

lYes

Exit loop

No

Detect Virus

ClamAV: The Threat Model

e An external or internal attacker can upload files which are scanned in a
backend by a ClamAV instance

e The attacker discovers a vulnerability in a parser for one of the many file

formats ClamAV supports
o e.g. HFS+, Autolt, CPIO, DMG and many more

e Trigger a vulnerability by getting a maliciously crafted file

Agenda for today
1) Why the usual approaches to info leaks won't work with remote ClamAV

2) Bugs we found
3) Exploitation strategy

4) Real-World case study: unauthenticated RCE on an email server

Why common Info-Leak
strategies don't apply to
ClamAV

The assumed environment

The assumed environment;

e Full ASLR applied to all loaded libraries and files
e An attacker gets to see the scan results (virus or no virus)

e Multi-threaded Server (ClamD)
o A single segfault will crash all threads

Stage 1

Info leak trigger

0x13371337

-

Attacker

Stage 2

Corruption Trigger + ROP chain gadgets

Reverse shell

-

Attacker

This doesn't apply to ClamAV

e ClamAV is a non-interactive target. At most, an attacker can see if a scan resulted in a
virus being detected or not.

e |n most environments an intermediary server communicates directly with ClamAV and
gives us a custom error message. No direct interaction with ClamAV

Info leak trigger Info leak trigger

> >

“Error” Web Application “Virus found”

< <

Attacker

Alternative approaches

e Partial pointer overwrite
o Could overwrite a function pointer partially and call a function like system()
o We didn't find a gadget for this, at least none that would have worked reliably

e Data only exploits
o ClamAV dumps files to /tmp using a randomized filename before scanning them
o If we can overwrite the path and get an arbitrary file-write primitive we might be able to get RCE
o The files are created as clamav user and this won't work in sandboxed environments
o Still: It could work for targets where the environment is known and can be exploited

e Bruteforce ASLR

o By default runs in multi-threaded server mode
o Server restarts are very costly. Just not feasible

The Bugs

Bug #1 - Heap Buffer Overflow

In February 2023, Cisco released an advisory on a Heap Buffer Overflow we
reported:

CVE-2023-20032

CVS Score: 9.8

Due to missing bounds check while parsing HFS+, a file-system by Apple
Can be triggered remotely by an unauthenticated attacker

Default configuration

https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-clamav-q8DThCy

Bug #1 - Heap Buffer Overflow

fileOffset
readSize

realFileBlock * volHeader->blockSize;
volHeader—->blockSize;

if (curBlock == startBlock) {
fileOffset += startOffset;

} else if (curBlock == endBlock) {
readSize = endSize;

5 (fmap_readn(ctx->fmap, buff + buffOffset, fileOffset, readSize) != readSize) {
cli_dbgmsg("hfsplus_fetch_node: not all bytes read\n");
return CL_EFORMAT;

Bug #1 - Heap Buffer Overflow

The bug is powerful as:

e Overflow size can be controlled (must be in range of 4KB-2MB)
e Overflow contents can be arbitrarily controlled
e Can be triggered repeatedly in a loop

Bug #2 - OOB Read

We reported an Out-Of-Bounds Read bug to the maintainers of libmspack in the
same timeframe

e libmspack is used by ClamAV to parse Microsoft Cabinet files (CAB and
CHM)

e CVE-2023-29077

e (Can be triggered remotely in default configurations

e Due to integer truncation

libmspack CHM files background

e CHM are Microsoft Compiled HTML Help Files
e Archive that contains compressed and uncompressed files

e Consists of:
o CHM file header
Array of file headers
System files (contain Metadata about Compression)
Content files (the help files)

o O O

e ClamAV uses libmspack to extract CHM files

CHM Header

File Header Array

Uncompressed Data

Compressed Data

*/

st

};

ruct mschmd_file {
VESS

* A pointer to the next file in the list, or NULL if this is the final
* file.

*/

struct mschmd_file *next;

VESS

* A pointer to the section that this file is located in. Indirectly,
% it also points to the CHM helpfile the file is located in.

*/

struct mschmd_section xsection;

/**% The offset within the section data that this file is located at. */
off_t offset;

/*x The length of this file, in bytes */
off_t length;

/*x The filename of this file —— a null terminated string in UTF-8. x/
char xfilename;

libmspack CHM files background

When a compressed file is extracted, things get more complicated...

e The file offset is not used as an offset into the file but as an index into the
Reset Table

e libmspack reads the Reset Table from the attacker supplied file into memory
and accesses it like an array to obtain the real offset within the file

e The Reset Table is an uncompressed file with a special name:
::DataSpace/Storage/MSCompressed/Transform/{7FC28940-9D31-11D0-9B
27-00A0C91E9C7C}/InstanceData/ResetTable

CHM Header

File Header Array

Reset Table File

1337 4096 8000

Uncompressed Data

Compressed Data

Bug #2 - OOB Read 1n Reset Table lookup

libmspack treats the Reset Table like a regular uncompressed file. It allocates
length bytes of memory according to the file entry (attacker controlled)

However, it truncates the length field from 8 bytes to 4 bytes before allocating
memory

len = (int) file—>length;

if (!(data = (unsigned char %) sys—>alloc(sys, (size_t) len))) {
self->error = MSPACK_ERR_NOMEMORY;
return NULL;

Bug #2 - OOB Read 1n Reset Table lookup

A length of value 1<<32 | 1337 or 4294968633 would be truncated into 1337.

The resulting Reset Table buffer is 1337 bytes large

len = (int) file—>length;

if (!(data = (unsigned char %) sys—>alloc(sys, (size_t) 1len)))
self->error = MSPACK_ERR_NOMEMORY;
return NULL;

Bug #2 - OOB Read 1n Reset Table lookup

Following the example of a length of 1<<32 | 1337, the Reset Table Buffer is
1337 bytes large.

However, when the bounds check is made, the untruncated value of 1<<32 | 1337
is used as the upper bounds. Therefore we can read beyond the index 1337.

Bug #2 - OOB Read 1n Reset Table lookup

pos = Oxdeadbeef
sec->rtable->length = 4294968633 data =

/* ensure reset table entry for this offset exists x/
if (entry < EndGetI32(&datallzxrt_NumEntries]) &&
pos <= (sec—>rtable->length - entrysize))

switch (entrysize) {
case 4:
xoffset_ptr = EndGetI32(&datalpos]);

Bug #2 - OOB Read 1n Reset Table lookup

Strong OOB Read primitive as:

e Size of the Reset Table Buffer can be arbitrarily controlled, Heap Feng Shui is
easier

e 0OB Read Size can be controlled (4 or 8 bytes)

e (OB index can be controlled

The resulting value of the OOB Read is interpreted as the offset into the CHM
archive file

Let's pwn ClamAV

CHM Header

File Header Array

EEEEEN
. To detect the known, compressed

virus, the CHM file must be
Uncompressed Data well-formed and libmspack must
seek to it correctly

Compressed Data

CHM Header

File Header Array

Uncompressed Data

Compressed Data

/*
il

Value read out of bounds (e.g. function pointer)

read the reset table entry x/
(read_reset_table(self, sec, entry, &length, &offset)) {

[/ s

get offset of compressed data stream:

= offset of uncompressed section from start of file

+ offset of compressed stream from start of uncompressed section

+ offset of chosen reset interval from start of compressed stream x/

self->d—>inoffset = file->section->chm—>sec@.offset +

sec—>content—>offset +
offset;

Addition with fully attacker-controlled values

CHM Header

File Header Array

/* seek to input data x/
if (sys—->seek(self->d->infh, self->d->inoffset, MSPACK_SYS_SEEK_START)) {

self->error = MSPACK_ERR_SEEK;
break;

X
Uncompressed Data

Compressed Data

CHM Header

File Header Array

Uncompressed Data

Compressed Data

Let's assume:

e We can make a target ClamAY instance
scan multiple files

e We can reliably prepare the heap and
always read the same function pointer
via our Out-Of-Bounds Read

e The only thing we change is the value of
the offsets that are added to the
function pointer that is read
Out-Of-Bounds

CHM Header

File Header Array

Uncompressed Data

Compressed Data

3 places we can seek to:

1)

Outside of the file: seek returns an error,
ClamAYV stops the scan and no crash
occurs. No virus is found

Somewhere inside the file but not at the
beginning of the known virus: No virus
is found

Exactly at the beginning of the virus:
The virus is detected

CHM Header

File Header Array

Uncompressed Data

Compressed Data

CHM Header

File Header Array

Uncompressed Data

Compressed Data

At some point, the sum of the offset addition
with the function pointer is exactly the offset
of the known virus in the file. In this case it is
detected

e This allows us to bruteforce ASLR
without ever triggering the buffer
overflow and crashing the server

e When the virus is detected, we know
what the value of the function pointer
WETS

e However, still need to bruteforce 28 bits
of ASLR.. not feasible, right?

Known data Function pointer

Out Of Bounds Read

Known data Function pointer

Out Of Bounds Read

Known data Function pointer

Out Of Bounds Read

Summary ASLR bypass oracle

e We used the value of an OOB Read to change the logic flow of the target to
side-channel the value that was read

value = read_oob_trigger(attacker_index)
if logic(value):
enter logic path with output 1
path_one(value)
elif other_logic(value):
enter logic path output 2
path_two(value)
else:
error path can also be used to sidechannel value
error_out(value)

Summary ASLR bypass oracle

e We used the value of an OOB read to change the logic flow of the target to
side-channel the value that was read

e By aligning the OOB read offset with known or attacker-controlled data, we
reduced the number of required attempts to ~1000. Bytes are brute forced
individually. This yielded in more control over the logic flow we manipulated

Putting 1t all together

Leak ASLR with aforementioned Oracle

Prepare ROP chain and embed it into a nested archive to achieve a desired
heap layout

Trigger buffer overflow and overwrite function pointer on heap

struct rtf_state {
rtf_callback_begin cb_begin; /* must b
rtf_callback_process cb_process;
rtf_callback_end cb_end;
void* cb_data; /* data set up by cb_be
size_t default_elements;

Real-World case study

The Target: Zimbra

e Open-Source, Enterprise-Ready Email Suite

e Comes with ClamAV installed. Every incoming and outgoing email is scanned. No
sandboxing is deployed

e Commonly used by governments

e Mass exploitation of CVE-2022-27925 against government, military and billion
dollar corporations 1

e Russian APT target NATO-aligned government servers to access military and
diplomat’s emails using CVE-2022-27926 1

[1] https://www.volexity.com/blog/2022/08/10/mass-exploitation-of-unauthenticated-zimbra-rce-cve-2022-27925/
[2] https://www.bleepingcomputer.com/news/security/cisa-warns-of-zimbra-bug-exploited-in-attacks-against-nato-countries/

https://www.volexity.com/blog/2022/08/10/mass-exploitation-of-unauthenticated-zimbra-rce-cve-2022-27925/
https://www.bleepingcomputer.com/news/security/cisa-warns-of-zimbra-bug-exploited-in-attacks-against-nato-countries/

Why the oracle won't work in an email context

e So far we have been assuming a setup where an attacker will be notified of
the scan result (virus or no virus)

e Thisis not usually the case for email servers as an external attacker

ClamAV

Payload via email

>

OK Zimbra SMTP Server

-

Attacker

SpamAssassin

Why the oracle won't work in an email context

e The SMTP server simply receives the email and responds to the client, then
queues the email for virus scanning and spam checking

e Timing based attacks impossible as queue is used

e We need another side-channel. Maybe we can exploit the fact that virus
scanning comes before spam-checking?

Side-channel via Email Spoofing Validation

e When an attacker sends an email to an SMTP server, they can simply claim
to be “trusted@example.com”

e To validate this claim, the email server makes a SPF DNS request to the
responsible DNS server for example.com. The DNS server responds with a
list of IPs that are allowed to send emails for this domain

The Collaborator server received a DNS lookup of type TXT for the domain name _dmarc.g4lkd17pvolf62voqikfjifi9sfk3arz.oastify.com.

The lookup was received from IP addresMat 2023-May-25 13:32:22.818 UTC.

mailto:trusted@example.com

Side-channel via Email Spoofing Validation

In Zimbra's configuration, the email server bails if a virus was detected in the
email. No further spam checks are made. This means:

An attacker can host a DNS server

Generate a unique subdomain per email that is sent to the target instance
When no virus is found (the ASLR oracle did not succeed), a DNS request is
made

If a virus is found, no DNS request is made. An attacker can side-channel the
oracle success through this behaviour

simonscannell@simonscannell:~-$./clamav-zimbra-exploit target.coml

https://docs.google.com/file/d/1RR-m63GUpdFBG6QBsBsJWnv4mmVHygTi/preview?resourcekey=0-_fKtpsa3ADXF9gaY-j3Sjw

Conclusions

e Just because the result of an OOB Read is not reflected, it can be
side-channeled by observing how the application behaves based on the
value

e A similar approach can be applied to scenarios where you target a
load-balanced service and need to ensure that your payload is triggered
against the worker for which ASLR has been defeated

Questions?

Feel free to reach out:
Twitter: @scannell_simon

Email: simonscannell at google com

