
Olivia Lucca Fraser

Staff Research Engineer, Zero Day Research Team

A Backdoor Lockpick

June 9th, 2023

Reversing & Subverting Phicomm’s Backdoor Protocol

Introducing the Wavlink AC1200

A Baidu search for “Phicomm K2G A1” brought up
listings for a familiar-looking device:

Introducing the Wavlink AC1200

Introducing the Phicomm K2G A1!

The System Status
(系统状态) page
identifies the device
model as K2G,
hardware version A1,
running firmware
version 22.6.3.20.

Using a Known Post-Auth
Command Injection Vuln to Gain

Shell Access

telnetd_startup: first impressions
● 32-bit MIPS (Little Endian) ELF binary
● Runs as a daemon with root permissions
● Listens (quietly) on UDP port 21210

A few interesting strings…

A few interesting strings…

A few interesting strings…

A few interesting strings…

A few interesting strings…

The Main State Machine of the telnetd_startup Service

The Main State Machine of the telnetd_startup Service

We begin in state 2…

The Main State Machine of the telnetd_startup Service

We begin in state 2…

Then go to state 0…

The Main State Machine of the telnetd_startup Service

We begin in state 2…

Then go to state 0…

Then proceed to state 1

The Main State Machine of the telnetd_startup Service

We begin in state 2…

Then go to state 0…

Then proceed to state 1

Which takes us to this final check before either
(a) 0x7010 is written to EEPROM at offset 0x26, or
(b) a telnetd service is launched

The Main State Machine of the telnetd_startup Service

We begin in state 2…

Then go to state 0…

Then proceed to state 1

Which takes us to this final check before either
(a) 0x7010 is written to EEPROM at offset 0x26, or
(b) a telnetd service is launched

And when the service starts, it
checks the EEPROM for the 0x7010
flag, and launch telnetd if it finds it.

STATE 2
(the initial state)

the tell-tale constants of an MD5 hash context:

the tell-tale constants of an MD5 hash context:

So, the service waits for the client to send the token
“ABCDEF1234” and then responds with an MD5 hash of the
string “K2_COSTDOWN__VER_3.0” padded with zeros to a
128-byte buffer.

It then enters STATE 0.

STATE 0
(the second state)

This encrypted secret is sent to the client, as an
authentication challenge.

This encrypted secret is sent to the client, as an
authentication challenge.

Meanwhile…

STATE 1
(the third and final state)

The message “ABCDEF1234” will send
us back to the beginning.

The message “ABCDEF1234” will send
us back to the beginning.

But a message that matches one of these
ephemeral keys will launch telnetd, either
when the device reboots, or immediately.

How is the client supposed to determine TEMP_KEY and PERM_KEY?

How is the client supposed to determine TEMP_KEY and PERM_KEY?

Public-key-decrypted nonce

How is the client supposed to determine TEMP_KEY and PERM_KEY?

Public-key-decrypted nonce

Random string of 31 printable characters

How is the client supposed to determine TEMP_KEY and PERM_KEY?

Public-key-decrypted nonce

Random string of 31 printable characters

How is the client supposed to determine TEMP_KEY and PERM_KEY?

Public-key-decrypted nonce

Random string of 31 printable characters

+TEMP

+PERM

or

How is the client supposed to determine TEMP_KEY and PERM_KEY?

Public-key-decrypted nonce

Random string of 31 printable characters

+TEMP

+PERM

orMD
5

How is the client supposed to determine TEMP_KEY and PERM_KEY?

Public-key-decrypted nonce

Random string of 31 printable characters

+TEMP

+PERM

orMD
5

● We are expected to use the same private key we used to encrypt the nonce to
decrypt the random secret that the server sends us in response.

● We can then compose the ephemeral key using the same formula that the server
does.

How is the client supposed to determine TEMP_KEY or PERM_KEY?

Public-key-decrypted nonce

Random string of 31 printable characters

+TEMP

+PERM

orMD
5

But we don’t have the private RSA key!

How is the client supposed to determine TEMP_KEY or PERM_KEY?

Public-key-decrypted nonce

Random string of 31 printable characters

+TEMP

+PERM

orMD
5

Maybe there’s another way…

How is the client supposed to determine TEMP_KEY or PERM_KEY?

Public-key-decrypted nonce

Random string of 31 printable characters

+TEMP

+PERM

orMD
5

Let’s look a bit more closely at this part here

Concatenating things like this would
make sense if
XORED_MSG_00414b80 was
NECESSARILY a null-terminated
string!

Concatenating things like this would
make sense if
XORED_MSG_00414b80 was
NECESSARILY a null-terminated
string!

If we had a way to make the first
byte of XORED_MSG_00414b80
zero, then we could easily predict the
ephemeral passwords.

We don’t actually need the corresponding private RSA
key to have SOME control over what an UNPADDED
application of RSA_public_decrypt() does to
our input!

We don’t actually need the corresponding private RSA
key to have SOME control over what an UNPADDED
application of RSA_public_decrypt() does to
our input!

If we just want to control the first byte of the plaintext, trial
and error is good enough.

So long as we don’t need to worry about the padding scheme, there’s
nothing to stop us from applying this function to entirely phony
“ciphertexts” and seeing what it produces.

The main takeaway for us
here is that unpadded RSA
encryption is not “plaintext
aware.”

It is possible for us to
produce a valid ciphertext
without “knowing” the
corresponding plaintext.

● So, if we can produce
phony but “valid”
ciphertext, knowing only
the public key, what
exactly do we want to do
with that?

● It seems that the
telnetd_startup service
places very few
constraints on what the
corresponding plaintext
should be.

● Little more than a string
length check, which I think
is redundant anyway. (It
can’t be more than 256
characters long – but the
key itself is only 1024 bits,
which bounds the plaintext
at 128 bytes.)

Remember that the random secret only
contains printable characters.

Remember that the random secret is
then XORed with the “decrypted”
nonce, which we control.

Remember that the random secret is
then XORed with the “decrypted”
nonce, which we control.

So, if we randomly generate a nonce
that “decrypts” to an array of bytes
that BEGINS with a printable
character, then we have a 1-in-94
chance of causing an XOR collision
that makes
XORED_MSG_00414b80 begin
with a null byte!

Remember that the random secret is
then XORed with the “decrypted”
nonce, which we control.

So, if we randomly generate a nonce
that “decrypts” to an array of bytes
that BEGINS with a printable
character, then we have a 1-in-94
chance of causing an XOR collision
that makes
XORED_MSG_00414b80 begin
with a null byte!

As far as the %s format string is
concerned, that would make
XORED_MSG_00414b80 an
EMPTY STRING!

DEMO TIME

Are other models and
firmware versions affected?

Are other models and
firmware versions affected?

To find out, I ordered Phicomm’s newest consumer router from Amazon,
the K3C, and while I waited for it to arrive, I painstakingly scoured
Chinese language router hacking forums for as many leaked firmware
blobs as I could find.

I identified three different variations of the backdoor protocol.

Reconstructing the History of
Phicomm’s Backdoor Protocol

Reconstructing the History of
Phicomm’s Backdoor Protocol

Backdoor Protocol:
Version 1

As found on the Phicomm K2 router with firmware version 22.5.9.163 (built in February, 2017).

Here, the ephemeral keys are just
the MD5 hashes of the decrypted
nonce provided by the client,
concatenated (in the same
insecure way) with the special
salts.

(With one variation: “PERM” is
spelled “PERP” in this build.)

No random plaintext is used, no
XOR operation is performed. This
is easy to exploit with a null byte
injection even if you don’t have the
private key…

The most obvious flaw in the oldest
version of the backdoor that I was
able to find is that Phicomm baked the
private RSA key into the
telnetd_startup binary!

This was a completely unforced error.
The binary doesn’t even use the
private key.

Here’s the Ghidra decompilation for
rsa_public_decrypt_nonce() in the
telnetd_startup that shipped with the
Phicomm K2, fw version 22.5.9.163.

The most obvious flaw in the oldest
version of the backdoor that I was
able to find is that Phicomm baked the
private RSA key into the
telnetd_startup binary!

This was a completely unforced error.
The binary doesn’t even use the
private key.

Here’s the Ghidra decompilation for
rsa_public_decrypt_nonce() in the
telnetd_startup that shipped with the
Phicomm K2, fw version 22.5.9.163.

The most obvious flaw in the oldest
version of the backdoor that I was
able to find is that Phicomm baked the
private RSA key into the
telnetd_startup binary!

This was a completely unforced error.
The binary doesn’t even use the
private key.

Here’s the Ghidra decompilation for
rsa_public_decrypt_nonce() in the
telnetd_startup that shipped with the
Phicomm K2, fw version 22.5.9.163.

Tools for Exploiting this Version of the Backdoor Exist in the Wild

Hackers were quick to notice this
mistake, and a tool for gaining an
unauthenticated root shell appears
widely on Chinese language router
forums.

I spun up a Windows VM, launched RoutAckPro, and sniffed.

Backdoor Protocol:
Version 2

I bought an international release of the Phicomm K3C
router off Amazon, to see if it had a similarly vulnerable
backdoor.

This one is running firmware version 33.1.25.177

Honestly, this brand new K3C International edition, running 33.1.25.77, was
my first clue that there are indeed variations in the backdoor protocol
from one Phicomm device to another.

The tool that worked so well on the (half-assedly rebranded) K2G, seen
earlier, would not work on this device without modifications.

The Phicomm K3C did indeed have a service listening on UDP port 21210,
but instead of responding to “ABCDEF1234” with a device-identifying
MD5 hash, it would respond to any message with 128 bytes of high-
entropy data.

I needed to get inside the
device to take a closer
look.

I wanted to access the filesystem, and ideally get a shell.

The web interface didn’t share the K3G A1’s command injection vulnerability…
but I did find a UART port.

I wanted to access the filesystem, and ideally get a shell.

The web interface didn’t share the K3G A1’s command injection vulnerability…
but I did find a UART port.

Don’t worry, I opened a window.

I set up my UART-to-USB bridge and got to work.

Interrupting the boot
process gave me
unauthenticated access
to a UBOOT shell, from
which I could dump the
NAND storage.

I found and modified a TCL expect script by
someone named Valerio, and used it to
hexdump the NAND while I got some rest.

Most of the NAND dump appeared to contain very
high-entropy data, likely encrypted or compressed.

But there were a few valuable bits of information in
the clear…

A /etc/passwd file, for example!

…from which hashcat could easily recover
the root password for the device.

I rebooted the device and logged in as
root, over UART.

Imagine my delight (mild
disappointment) when I
loaded this device’s
telnetd_startup into Ghidra,
and saw that it hadn’t even
been stripped!

The state machine looks
almost exactly like what we
saw in the K2G A1, but without
the ABCDEF DEVICE_ID →
exchange.

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Let’s be lazy here, and call on the
reverser’s favourite tool: strings.

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Let’s be lazy here, and call on the
reverser’s favourite tool: strings.

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Let’s be lazy here, and call on the
reverser’s favourite tool: strings.

Does this look familiar?

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Let’s be lazy here, and call on the
reverser’s favourite tool: strings.

Does this look familiar?

Here’s rsa_public_decrypt_nonce() from the k2.22.5.9.163

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Let’s be lazy here, and call on the
reverser’s favourite tool: strings.

Does this look familiar?

Here’s rsa_public_decrypt_nonce() from the k2.22.5.9.163

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Let’s be lazy here, and call on the
reverser’s favourite tool: strings.

Does this look familiar?
It’s the same public key that they
used for the K2.22.9.163!

They redacted the private key,
but left the public key unchanged.

Here’s rsa_public_decrypt_nonce() from the k2.22.5.9.163

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Let’s be lazy here, and call on the
reverser’s favourite tool: strings.

Does this look familiar?
It’s the same public key that they
used for the K2.22.9.163!

They redacted the private key,
but left the public key unchanged.

Here’s rsa_public_decrypt_nonce() from the k2.22.5.9.163

But it’s cool, we don’t actually need
the private key to pop this version of
the Phicomm backdoor.

We can use the same trick we used
for the K2G A1, and just skip the
ABCDEF DEVICE_ID exchange.→
(Note to self: now is a good time to plug in the K3C.)

DEMO TIME
Part Deux

Backdoor Protocol:
Version 3

(Back where we started.)

This seems to be when it dawned on Phicomm that the
internet is slow to forget a leaked private key, and that it was
time to switch things up.

The third version of the protocol includes the
ABCDEF1234 DEVICE_ID exchange, and each device ID →
seems to have its own pair of RSA keys.

The public key is baked into the telnetd_startup binary, and
the private key seems, in each case, to have been
successfully kept as a secret, but is presumably used by
officials (?) to gain a root shell on the router.

The Responsible Disclosure Process

I set out to find someone at Phicomm with whom I could discuss these
vulnerabilities, and inform them of Tenable’s 90-day coordinated disclosure
protocol.

Generally speaking, we notify the vendor that we’ve found a 0-day, and tell
them that if they respond, we will disclose in 90 days time, or as soon as we
learn that the vulnerability has been patched.

We also tell them that we will disclose in 45 days time if we receive no reply.

I tried to reach out over other channels, but the situation did not look promising.

I tried to reach out over other channels, but the situation did not look promising.

So, what happened?
● 2008: Gu Guoping founds Shanghai Feixun, which

will later be known as “Shanghai Phicomm”
● 2012: Lianbi Financial founded by ????
● 2014: Phicomm declares operating income of 10

billion yuan (about $1.5 billion USD), dubbed
“Little Huawei” in the Chinese press.

● 2014: Phicomm initiates merger with Huiqiu
Technology (formerly Beisheng Pharmaceutical)

● 2015: Guoping gains control of Lianbi Financial
● 2015: Phicomm launches “0-yuan purchase plan”
● 2016: Huiqiu discloses that Guoping had gained

control of the company. Guoping’s affiliate
Xianyan receives largest fine in history from
China Securities Regulatory Commision (about
$500 million USD)

● 2016: Guoping claims to have lost financial control
of Phicomm

The “0-yuan Purchase Plan”
Essentially, the deal was that you could apply for a full rebate on the
purchase of Phicomm routers and IoT devices if you register for the
Lianbi Financial and Huaxia Wanija Financial Peer-to-Peer lending Apps.

Further Reading…

● 2018-06: Lianbi Financial filed
on suspicion of “illegally
absorbing public deposits”
(i.e. running a Ponzi scheme) –
Gu Guoping is arrested.

● 2021-02-04: Shanghai No. 1
Intermediate People’s Court
holds public hearing for fraud
case against Guoping

● 2021-06-23: Songjian Police
arrest Lianbi personnel

“On the morning of December 8, the Shanghai No. 1
Intermediate People’s Court publicly sentenced the
defendants Gu Guoping, Nong Jin, Chen Yu, Zhu Jun,
Wang Jingjing, and Zhang Jimin on the case of
fundraising fraud. Gu Guoping was sentenced to life
imprisonment for the crime of fundraising fraud,
deprived of political rights for life, and
confiscated of all personal property.”

To make a long story short, we
should not expect patches.

Security Advisories

● CVE-2022-25213: Improper access control for UART shell
● CVE-2022-25214: Improper access control on LocalClientList.asp
● CVE-2022-25215: Improper access control on LocalMACConfig.asp
● CVE-2022-25218: Unpadded RSA lets attacker control plaintext
● CVE-2022-25219: Null byte interaction error in password generator

See Tenable research advisory TRA-2022-01 for details.

Thank You!
Olivia Lucca Fraser

Staff Research Engineer on Tenable’s Zero Day Research Team

github.com/oblivia-simplex

	Slide: 1
	Slide: 2
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 14 (4)
	Slide: 14 (5)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 15 (4)
	Slide: 15 (5)
	Slide: 15 (6)
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 21
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 24
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 26
	Slide: 27
	Slide: 28 (1)
	Slide: 28 (2)
	Slide: 29 (1)
	Slide: 29 (2)
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33
	Slide: 34 (1)
	Slide: 34 (2)
	Slide: 34 (3)
	Slide: 35 (1)
	Slide: 35 (2)
	Slide: 35 (3)
	Slide: 35 (4)
	Slide: 35 (5)
	Slide: 35 (6)
	Slide: 35 (7)
	Slide: 36
	Slide: 37
	Slide: 38
	Slide: 39 (1)
	Slide: 39 (2)
	Slide: 39 (3)
	Slide: 40
	Slide: 41 (1)
	Slide: 41 (2)
	Slide: 41 (3)
	Slide: 41 (4)
	Slide: 42
	Slide: 43 (1)
	Slide: 43 (2)
	Slide: 43 (3)
	Slide: 44
	Slide: 45
	Slide: 46 (1)
	Slide: 46 (2)
	Slide: 46 (3)
	Slide: 47
	Slide: 48
	Slide: 49
	Slide: 50
	Slide: 51
	Slide: 52
	Slide: 53
	Slide: 54
	Slide: 55
	Slide: 56
	Slide: 57 (1)
	Slide: 57 (2)
	Slide: 57 (3)
	Slide: 58
	I spun up a Windows VM, launched RoutAckPro, and sniffed.
	Slide: 60
	Slide: 61
	Slide: 62
	Slide: 63
	Slide: 64 (1)
	Slide: 64 (2)
	Slide: 65
	Slide: 66
	Slide: 67
	Slide: 68
	Slide: 69
	Slide: 70
	Slide: 71 (1)
	Slide: 71 (2)
	Slide: 71 (3)
	Slide: 71 (4)
	Slide: 71 (5)
	Slide: 71 (6)
	Slide: 71 (7)
	Slide: 71 (8)
	Slide: 72
	Slide: 73
	Slide: 74
	Slide: 75
	Slide: 76
	Slide: 77
	Slide: 78
	Slide: 79
	Slide: 80
	Slide: 81
	Slide: 82
	Slide: 83
	Slide: 84
	Slide: 85 (1)
	Slide: 85 (2)
	Slide: 86 (1)
	Slide: 86 (2)
	Slide: 87
	Slide: 88
	Slide: 89
	Slide: 90
	Slide: 91
	Slide: 92
	Slide: 93
	Slide: 94
	Slide: 95

