
Portrait of the artist as
a young vx-er

This painting is an MBR bootkit
Nika Korchok Wakulich

DISCLAIMER:
The views expressed in this presentation are my own and
do not reflect the opinions of my past, present or future
employers

Viewer Discretion is advised.

whoami
Twitter: @nikaroxanne
Discord: @ic3qu33n
Mastodon: ic3qu33n@infosec.exchange
Website: https://ic3qu33n.fyi/
GitHub: @nikaroxanne

Security Consultant at Leviathan Security Group
Reverse engineer + artist
I <3 malware, hardware hacking, firmware hacking, skateboarding,  
learning languages, creating art, writing lil assembly programs, etc.

greetz 2 the following for their assistance/support w this talk:
Ben Mason (@suidroot), @Laughing_Mantis,
Richard Johnson (@richinseattle), the Rootsyn Discord (@qkumba,
@phLaul and @barbie),  
The team at Leviathan 
REcon

https://ic3qu33n.fyi/projects/mySuperSweet16BitMalwareMSDOSEdition

Focus of this talk

• A project focused on creative applications of vx/
malware reverse engineering

• How I reverse engineered 16-bit bootkits targeting
systems with a legacy BIOS boot process—
specifically focused on bootkits of the 1980s/1990s

• Provides overview of the legacy boot process and
several prominent bootkits of that era

• Aims to answer questions including:

• ‘How would you write a bootkit that exists as a
work of art and/or how would you use vx
techniques to create new art?’

• Why would you do such a thing?

Motivations
• Test the claim that malware of the 1980s/

1990s was simple/easy/unsophisticated/
“just about drawing pretty pictures”

• Conclusively False

• Different talk covers this in more detail
“My Super Sweet 16-Bit Malware: MS-
DOS Edition — TSR Remix”

• Study the techniques of vx legends of the
1980s/1990s to create malware art

• Use the unique properties of vx to extend
the medium — create new work that lives
up to Spanska’s declaration:  
“Coding a virus can be creative” “The Young Martyr” by Paul Delaroche

https://ic3qu33n.fyi/assets/pdf/BSidesSF_Nika_supersweet16bit_m4lw4r3_TSRremix.pdf
https://ic3qu33n.fyi/assets/pdf/BSidesSF_Nika_supersweet16bit_m4lw4r3_TSRremix.pdf
https://ic3qu33n.fyi/assets/pdf/BSidesSF_Nika_supersweet16bit_m4lw4r3_TSRremix.pdf

From “the young martyr” to
~*yung m4rtyr *~

• “The Work of Art in the Age of Mechanical
Reproduction” — Walter Benjamin

• “Simulacra and Simulation” — Jean Baudrillard
• “Tlön, Uqbar, Orbis Tertius” — Jorge Luis Borges
• The work of Spanska
• The work of Vera Molnar and other

groundbreaking artists in computer/digital art
• Many more influences, see References slides

and blog posts for more background on my art
process

16-bit painting of a scan of the painting “Young Martyr” by Paul Delaroche,

Artistic motivations/inspirations:

Definitions
• Virus:  

Fred Cohen (credited as being the “creator” of the term “computer virus” as a way to describe a self-
reproducing program, which he used in his 1984 paper “Computer Viruses, Theory and Experiments.” 
Cohen’s definition was thus: 
 
We define a computer 'virus' as a program that can 'infect' other programs by modifying them to
include a possibly evolved copy of itself. With the infection property, a virus can spread throughout a
computer system or network using the authorizations of every user using it to infect their programs.
Every program that gets infected may also act as a virus and thus the infection grows. — Fred Cohen,
“Computer Viruses, Theory and Experiments,” 1984

• Virus = a self-replicating program that uses a host program to produce those new copies of itself

• vx = “Virus eXchange,” a collection of malware samples; the term “vx” in the 1980s/1990s was also
used by communities that grew around vx sites; “vx-er” refers to someone who writes viruses,
typically reserved for truly 1337 vx writers

Definitions

• Polymorphic virus = a virus that uses a variable encryption/decryption routine and a variable key to
create an encrypted copy of itself in memory, which is appended to/inserted into a host file [1]

• The encrypted image of the virus payload (and the encryption routine of the virus itself)
changes with each iteration, so as to avoid/minimize the presence of known byte patterns
used in AV signatures

• Bootkit = A bootkit is a type of malware that infects a critical component of the OS boot process to
install itself and maintain persistence.

• Boot sector infector = the earliest form of bootkit; a BSI is a bootkit that targets storage media that
did not have an MBR (Master Boot Record), and only had a boot sector (hence the name! Surprise!)

• BSIs targeted various forms of floppy diskettes, which did not use an MBR

[1] Page 318-322 "The Giant Black Book of Computer Viruses. Chapter 27: Polymorphic Viruses” Mark
Ludwig, 2nd ed., American Eagle Books, 1998.

Notable Interrupts for 16-Bit
Malware

Notable Interrupts for MS-DOS Malware

• System Interrupts (ROM BIOS):

• Int 10h: Video services

• Int 13h: Disk services

• Int 16h: Keyboard services

• MS-DOS Interrupts:

• Int 21h - MS-DOS System Functions

• Int 25h - Absolute Disk Read

• Int 26h - Absolute Disk Write

ROM Bios Interrupts are

05h, and 10h-1Fh

MS-DOS Reserved Interrupts:
20h-3Fh

Notable Interrupts for Legacy BIOS Bootkits

• System Interrupts (ROM BIOS):

• Int 10h: Video services

• Int 13h: Disk services

• Int 16h: Keyboard services

• MS-DOS Interrupts:

• Int 21h - MS-DOS System Functions

• Int 25h - Absolute Disk Read

• Int 26h - Absolute Disk Write

ROM Bios Interrupts are

05h, and 10h-1Fh

In the pre-boot environment,
we do not have the OS-

specific interrupts available.

Our target interrupts are now

the ROM BIOS interrupts.

Interrupt Vector Table
Invoking system calls on MS-DOS

Terminate and Stay Resident Programs [TSRs]
• TSR = a feature of MS-DOS that allows a user to bypass the limitations of a single-task OS by installing a persistent

program in RAM, which would be invoked by subsequent interrupts

• In order to install a TSR, one had to modify several components of the Interrupt Vector Table, which was the precursor to
the Interrupt Descriptor Table, and that defined the addresses of all of the 256 interrupts in 8086 real-mode.

• The basic formula went as follows:

1. Find the address of a desired interrupt in the IVT

2. Retrieve both address components of the target interrupt (“address components” = the original segment and the original offset,
because DOS used a segmented addressing scheme)

3. The original interrupt’s address components (segment and offset) are saved to a specific address (i.e. two variables in the data
segment or to some other location in memory, defined by the virus writer)

4. A new interrupt handler is installed in the IVT

5. That new interrupt handler’s interrupt routine concludes by jumping back to the original address and passing control back,
creating the illusion that the original interrupt has proceeded as per usual

More detailed walk-throughs of TSR techniques are available on my website: 
https://ic3qu33n.fyi/projects/16bitm4lw4r3-MSDOS/TerminateStayResidentPrograms-part1 
https://ic3qu33n.fyi/projects/16bitm4lw4r3-MSDOS/TerminateStayResidentPrograms-part2

https://ic3qu33n.fyi/projects/16bitm4lw4r3-MSDOS/TerminateStayResidentPrograms-part1
https://ic3qu33n.fyi/projects/16bitm4lw4r3-MSDOS/TerminateStayResidentPrograms-part2

Interrupt
Vector Table

Hooking
system calls
on MS-DOS

A Whirlwind Tour of the
Legacy BIOS Boot Process

Legacy BIOS Boot Process

The Master Boot Record
• A hard drive has a larger storage capacity than a floppy disk, so it is able to hold multiple different

operating systems (up to four) in different partitions

• Partition = as a region of the disk, denoted by a start and an end sector

• Sectors are defined by a triplet (C, H, S) corresponding to the Cylinder (or Track), Head (or Side) and
Sector location of that sector on disk

• The main goal of the MBR code is primarily to read the partition table and load the correct OS partition

So… you want to be a vx-er?
Or “ingredients of a 16-bit legacy BIOS bootkit”
• A bootkit needs the following:

• A malicious implant targeting some part of the pre-OS boot environment (i.e. MBR infectors — both MBR code infectors
and partition table infectors, as well as VBR (Volume Boot Record) and IPL (Initial Program Loader) infectors)

• Technique for going memory resident — on DOS, this was done using a TSR (Terminate and Stay Resident program) that
targeted a system interrupt by installing a malicious interrupt handler in the IVT (Interrupt Vector Table)

• Going resident required the virus to allocate adequate space for itself in memory; one of the most common techniques for
doing this was manipulating the BIOS Parameter Block (BPB)

• Stealth techniques

• Saving a copy of the original MBR somewhere on disk (i.e. a sector in a “hidden area” or an unused region of sectors,
hiding it in clusters in the FAT and marking those clusters as bad to avoid deletion by OS)

• Spoofing calls to interrupts that have been hooked by the bootkit to simulate normal system behavior

• Especially for int 13h, this can include returning the saved copy of the MBR during read requests

• Polymorphism to avoid AV detection

Additional features of legacy BIOS bootkits

• Legacy BIOS bootkits (and legacy BIOS boot code, i.e. MBR code) operate in
16-bit real mode

• Legacy BIOS bootkits of the 1980s/1990s had to target different storage
media formats (i.e. 360kB floppies, hard drives, etc.) -> had to develop
routines for handling as many as possible

Iconic bootkits

Brain

BRAIN
• The first PC virus, written + released in 1986

• Most accurately described as a Boot Sector Infector
(BSI) because it only targeted floppy disks — a storage
medium that only held one OS, thus one boot sector

• Specifically Brain targeted 360kB floppies

• Stealth

• Saved the original boot sector in a hidden area of
the disk

• Memory residence achieved using INT 13h TSR and
stealth achieved by spoofing INT13h calls (i.e.
reads/writes returned the saved boot sector)

• See Mikko Hipponen’s documentary 
“Brain: Searching for the first PC virus in Pakistan”

https://youtu.be/lnedOWfPKT0

Stoned

STONED
• Famous bootkit — inspired a range of related bootkits

in this virus family, of varying levels of sophistication  
[Michelangelo, what an absolute flop]

• Able to infect boot sectors of multiple different formats
of storage media (routines for both floppy diskettes,
and for hard drives)

• Stealth

• Saved the original MBR on a hidden area of the disk

• Spoofed valid INT 13h reads/writes with a TSR

• Logic bomb - only displayed the famous “Your PC is
now Stoned!” message 1/8 times (using PC timer)

• Other than infecting every drive it came into contact
with, Stoned was non-destructive and was — relatively
speaking — not too malicious

STONED
• Stoned stores the part of its code that performs

replication (mainly via the infection and signature test
routines which check for an existing installation of the
virus on a diskette), in the INT 0x13 handler

• So the int 0x13 handler really is a viral interrupt handler
— it ensures successful replication of the virus onto all
disks inserted into the machine

• Stoned’s viral ISR only executes when the following two
conditions are met:

1. An INT 13h call is made for either a Disk Read or Disk
Write operation

2. The drive motor is off

• “The Giant Black Book of Computer Viruses” by Mark
Ludwig also includes excellent analysis of key features
of Stoned

STONED
• Stoned begins simply: it hooks — and installs an

interrupt handler for — INT 13h.

• Stoned stores its code in a region of memory by
altering the value of a variable in the BIOS Parameter
Block (BPB) that holds the number of available 1Kb
chunks of memory.

• It does this by reading the value stored there and
moving it into a register; decreasing that register
value by 2 (new_available_memory =
original_available_memory - 2k) and writing this
value back to the BPB

• It has now carved out a nice 2Kb free region of
memory that it can use.

16-bit bootkit RE methodology

16-bit Malware RE Methodology
• Preliminary research

• Static Analysis:

• radare2 (I wrote an r2 plugin for automatically identifying interrupts + adding annotations to the disassembly)

• Cutter (for when I’m too tired to use r2)

• IDA Free 5.0 (rip 16-bit support </3)

• Reading the source files (majority of the source files are written in x86 assembly, with syntax specific to a range of assemblers (MASM, TASM,
FASM, A86, etc…)

• Assembling the source using one of the many assemblers

• … or making modifications to the source for use with a different assembler (NASM); mixed results

• Dynamic Analysis:

• QEMU + FreeDOS

• Bochs

• DosBox (more useful for testing sample programs and performing basic analysis, not as flexible as QEMU+FreeDOS which is better for more
involved dynamic analysis)

• *For samples where a compiled binary was not available for dynamic analysis, an auxiliary source of information is danooct1 YouTube channel:
https://www.youtube.com/@danooct1 
Specifically their “MS-DOS malware” playlist:  
https://youtube.com/playlist?list=PLi_KYBWS_E71ObQ8QpGj5zIDXHREbdWaM

https://www.youtube.com/@danooct1
https://youtube.com/playlist?list=PLi_KYBWS_E71ObQ8QpGj5zIDXHREbdWaM

RE Methodology for 1990s-era bootkits, cont.
• All of the previous 16-bit vx RE methodology as well as:

• Using my r2 plugin automating analysis/identification of interrupts + adding annotations to the disassembly

• The process for developing this r2 plugin was an RE side quest, where the goal was to recreate the IDA 5.0
functionality in an up-to-date tool I like using for RE

radare2 plugin for auto analysis of 16-bit disassembly of COM files, using Ralf Brown
Interrupt List

rip IDA 5.0 </3

RE Methodology for 1990s-era bootkits, cont.
• All of the previous 16-bit vx RE methodology as well as:

• Using more recent bootkits as a frame of reference

• Specifically, the Stoned bootkit… from BlackHat 2012, presentation by Peter Kleissner

[left: radare2 disassembly of Stoned bootkit MBR, featured in “Stoned Bootkit” Black Hat 2012 presentation;
right: source code of the Stoned bootkit]

RE Methodology for 1990s-era bootkits, cont.
• Rewriting my own viruses/bootkits was a more productive use of time than spending hours correcting syntax

or digging through documentation for everyone’s favorite assembler for 1990s vx… TASM

Michaelangelo?? Never heard of her.

Michelangelo

MICHAELANGELO
• “Michaelangelo” was a spooky ripoff of Stoned

• Almost identical functionality, with the exception of the
logic bomb: Michelangelo (the virus) trashed a user’s hard
drive on March 6th (the birthday of Michelangelo di
Lodovico Buonarroti Simoni. The artist… Alright, you
know who I’m talking about. He did the paintings on the
ceiling of the Sistine Chapel. And David. The sculpture of
David.)

• Michelangelo was/is an absolute legend in the art world

• He deserves a better bootkit

• Did the Michelangelo bootkit do anything to improve upon
Stoned?

• improved code structure/style in Michelangelo:

• removes a lot of redundant code in Stoned

• simplifies certain functions with better assembly
coding patterns

• smaller total size

Image credit - still from “Michaelangelo: 25 Years Later” by danooctl1 
https://youtu.be/kl_Hbj0BpRU

Image also used in this article:

“Watch Journalists in the 90s Freak Out Over the Destructive ‘Michelangelo’ Virus That
Wasn’t” 

https://www.vice.com/en/article/kbybkz/watch-the-collective-media-freakout-over-the-
destructive-michelangelo-virus-that-wasnt

https://youtu.be/kl_Hbj0BpRU
https://www.vice.com/en/article/kbybkz/watch-the-collective-media-freakout-over-the-destructive-michelangelo-virus-that-wasnt
https://www.vice.com/en/article/kbybkz/watch-the-collective-media-freakout-over-the-destructive-michelangelo-virus-that-wasnt

“Reverse Engineering” Michaelangelo

• vx-underground GitHub — MS-DOS Malware collection - Michaelangelo (original source file?) 
https://github.com/vxunderground/MalwareSourceCode/tree/main/MSDOS

• vx-underground GitHub — MS-DOS Malware collection - Michaelangelo (Dark Angel’s disassembly of the
Michaelangelo bootkit, 40Hex number 8, volume 2, issue 4) 
https://github.com/vxunderground/MalwareSourceCode/tree/main/MSDOS

• Again, the zine archives on VX-UG, primarily 40hex and 29a zine archives

• Both for vx work in those zines and for the articles/tutorials therein

• “Reverse Engineering” —> reading the assembly files; using that knowledge to rewrite my own

• Due to the amount of preliminary research on other viruses, this part of the process was relatively quick

https://github.com/vxunderground/MalwareSourceCode/tree/main/MSDOS
https://github.com/vxunderground/MalwareSourceCode/tree/main/MSDOS

Michelangelo REanimator
wake the dead!!

• Use the best techniques of
Stoned and Michelangelo to
write a better bootkit

• Use techniques of Spanska for
sprites, animation, vx writing as
art

• Use techniques of other vx
writers (i.e. Dark Angel) for *flair*

• Flair == polymorphism

Challenges of bootkit art
“Artists must suffer for the art. That’s why it’s called painting.”

• 512 bytes is a pretty small amount of small for a virus under normal conditions

• 512 bytes is brutal when you are trying to load an image of a sprite at 128x80 resolution
even after downsampling it and adding the byte buffer to the data section of your virus and
realizing you probably can only fit a sprite that’s < 64 bytes and at that point, the pixelated
output of your original image is so drastically different so as to be unrecognizable and wow
I am really suffering for the art, someone give me a solo show at the Whitney

• 128*80 == 10240 bytes

• Why this resolution? Because 320x200 bytes would occupy the entire VGA buffer. But it
also results in an image file that is 64000 bytes.

• 64000 bytes is almost too large for a normal COM program on DOS [file size limit of
.COM program:  
65536 bytes - length PSP (256 bytes) - word of stack (2 bytes) = 65278 bytes
(~63kB)

• Try scaling down to 1/10 at 32*20?

• 32*20 == 640 bytes, but the resulting image just looks like trash… and it’s still
larger than 512 bytes

• 128*80 was the sprite size that provided a happy medium — the generated sprite was
still recognizable and detailed enough, and the resulting image size was small enough
to fit into the region of sectors between the MBR and VBR

michelangelo REanimator
Bootkit features and functionality
**Work in Progress

• Int 13h handler (TSR) — adapted from one of my other demo TSRs

• Polymorphic -> used for graphics routines and for simple bootkit encryption/decryption routine

• Replaces original MBR code with vx MBR, saves original MBR on free sectors on “disk”

• (I have only tested this on my emulator setup, so this is infecting a virtual disk image in
QEMU; I have yet to test this on hardware of that era.)

• Graphical payload

• Stores the graphical payload in sectors on disk that are free (using same technique as bootkits of
the 1980s/1990s — FDISK formats a drive so first sector of active partition is at (C 0, H 1, S 1)

• # free sectors between MBR and root directory of active partition = # of sectors on a cylinder
(roughly 62, 63 - 1 (MBR), depends on disk formatting)

Sprite generation using Python script, part 1:
downsampling

Sprite generation using Python script,
part 2: bitmap -> bytes

Sprite generation using Python script, part 3:  
displaying the sprite with VGA magic

michelangelo reanimator
generation 0

generation 1-1337
michelangelo reanimator

Connections to modern bootkits

Practical applications of 16-bit legacy BIOS bootkits
• MS-DOS is dead (rip) but systems using Legacy BIOS are not…

• RE techniques for legacy BIOS bootkits (specifically DOS bootkits) are equally applicable to 16-bit bootkits of different OSes

• Also applicable for legacy BIOS RE/exploit writing (i.e. legacy BIOS implants)

• Relevant resources:

• BIOS Disassembly Ninjutsu Uncovered - by pinczakko

• Phrack articles:

• “A Real SMM Rootkit: Reversing and Hooking BIOS SMI Handlers” Filip Wecherowski

• “Persistent BIOS Infection: The early bird catches the worm” by .aLS and Alfredo

• “System Management Mode Hack: Using SMM for ‘Other Purposes’” By BSDaemon, coideloko, D0nAnd0n

• VGA-targeting malware — “VGA Bootkit” by Nicholas E. Economou and Eduardo Juarez, presented at Ekoparty 2012

• Legacy BIOS —> UEFI

• UEFI replaced legacy BIOS and offers significant security improvements, but it isn’t perfect

• Knowing where to look in legacy BIOS bootkits can provide insights when trying to understand the code patterns used in modern UEFI-
targeting malware

[1]“Rootkits and Bootkits: Reversing Modern Malware and Next Generation Threats,” Alex Matrosov, Eugene Rodionov, and Sergey Bratus

https://github.com/pinczakko/BIOS-Disassembly-Ninjutsu-Uncovered
http://phrack.org/issues/66/11.html
http://phrack.org/issues/66/7.html
http://phrack.org/issues/65/7.html
https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/corelabs-ekoparty-2012-VGA_Persistent_Rootkit.pdf

VX Sources

• vx-underground GitHub — MS-DOS Malware collection: 
https://github.com/vxunderground/MalwareSourceCode/tree/main/MSDOS

• “Internet Archive — Malware Museum,” Mikko Hypponen,  
https://archive.org/details/malwaremuseum  
NOTE: These are defanged binaries, they are useful for preliminary research but lack
the malicious functionality that it interesting from an RE/malware analysis perspective

• The zine archives on VX-UG, primarily 40hex and 29a zine archives 

• A myriad of knowledgeable experts who wish to remain anonymous

https://github.com/vxunderground/MalwareSourceCode/tree/main/MSDOS
https://archive.org/details/malwaremuseum

References
“Advanced MS-DOS Programming,” Ray Duncan, Microsoft Press, 1986

“Microsoft MS-DOS Programmer’s Reference,” Microsoft Corporation, 2nd ed.: version 6.0., Microsoft Press, 1993

"The Giant Black Book of Computer Viruses," Mark Ludwig, 2nd ed., American Eagle Books, 1998.

"Rootkits and Bootkits: Reversing Modern Malware and Next Generation Threats,”Alex Matrosov, Eugene Rodionov, and
Sergey Bratus, No Starch Press, 2019

“Computer Viruses and Data Protection: Unclassified,” Ralf Burger, Abacus Software, 1991

“A Look Back at Memory Models in 16-bit MS-DOS,” Raymond Chen, The Old New Thing, Microsoft Blogs, July 28, 2020,  
 https://devblogs.microsoft.com/oldnewthing/20200728-00/?p=104012

“On Memory Allocations Larger Than 64KB on 16-Bit Windows,” Raymond Chen, The Old New Thing, Microsoft Blogs,
https://devblogs.microsoft.com/oldnewthing/20171113-00/?p=97386

 “Retired Malware Samples, Everything Old is New Again,” Lenny Zeltser, August 1, 2018.  
https://zeltser.com/retired-malware-samples-retrospective/

https://devblogs.microsoft.com/oldnewthing/20200728-00/?p=104012
https://devblogs.microsoft.com/oldnewthing/20171113-00/?p=97386
https://zeltser.com/retired-malware-samples-retrospective/

