Enabling Security Research
on Qualcomm Wifi Chips

RECON Montreal 2023 —
Daniel Wegemer

Y

QAQO0QUM

\-—/

e

(Qualcomm logo according to Bing Al)

Disclaimer: Opinions are my own and not the views of my employer

Motivation

Wifi chips contain powerful processors

These processors allow general purpose
computing

Proprietary binaries prohibit running your own code
Modifying the existing firmware can:

 Enable additional functionality
 Enable security research (dynamic analysis)

Motivation

Vendors of Wifi chips:
High/Critical Vulnerabilities in Qualcomm Chips
e Qualcomm
« Broadcom
 Intel

« Mediatek

. Texas Instruments

lInerabilities

o

C
[+)]
2
3

o

Febuary March April May June July August September October November December January Febuary March

° N X P (fo rm e r M arve I |) 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2021 2022 2022 2022

https://aireye.tech/2022/03/29/trends-in-wi-fi-vulnerabilities-this-time-its-qualcomm/

Qualcomm Wifi chips had many high or critical rated vulnerabilities in the past. How
many other vulnerabilities are there?

Motivation

Two types of Wifi chips: FullMAC and SoftMAC FullMAC
SoftMAC

FUullMAC implements MAC layer on-
chip, often used for IoT and portable
device

- Much bigger firmware

- Making changes to the driver does
not change the behavior of (FUllMAC)
Wifi chips MAC Layer
- We need to change the Wifi chip
firmware directly

Host
Kernel

Wifi Chip

Previous Work

 Broadcom Wifi Chips: Nexmon Framework

Allows Wifi firmware patching on many Broadcom chips
Deep modifications on Wifi subsystem possible
See:

* Intel chips at Blackhat 2022:
“Ghost in the Wireless, iwlwifi Edition”

 Qualcomm Hexagon based chips at DEFCON 27 and Blackhat 2019:
“Exploiting Qualcomm WLAN and Modem Over the Air”

- This is the first work on Xtensa based Qualcomm Wifi firmware

https://nexmon.org/

Background

Wifi/loT Chipset Overview

* So0C bundles multiple processors
Into a single package Wifi-SoC

« Wifi enabled devices often contain
an application processor and a

processor responsible for Wifi
« Timing critical Wifi functionality is
sometimes handled by an additional
processor

Interconnect

Three types of driver and firmware

« athl1l0k by Qualcomm

 ath10k-ct by Candelatech _7_="|/7
* qcacld by Qualcomm e

- Used for factory processes e

ath10k-ct driver can also run QCA firmware

IPQ4019
"Habanero” by 8devices

> 0/ & O RS .
P0000900000PRURNIR0RER0ITE ~

a2

GPIO&
N

https://lian-mueller.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/h/a/habanero-dvk-top.jpg

IPQ4019

Used mainly in Wifi home routers
(e.g. AVM FritzBox)

Application Core: ARM Cortex A7
- Runs OpenWRT 19.07 on
Kernel 4.14

Interconnect

Wifi Subsystem: Cadence/Tensilica
Xtensa

2.4 and 5 GHz

Uses PCle to communicate

Firmware

Firmware: Overview

Xtensa, little endian
ROM + RAM

RAM part of a file in the OpenWRT filesystem
- Contains multiple “segments” (aka “SGMT")
- 1277 compressed Cadence® Tensilica® Xtens

ROM can be patched

https://www.cadence.com

Codeswap: mechanism to put code of Wifi subsystem in the
hosts memory

No security enabled by default
No secure boot
No stack canneries

No address randomization

Firmware: Debugging

Debugfs: /sys/kernel/debug/ieee80211/phy0/ath10k/...

- .../mem_value can be used for memory access r+w
(only works after core+pci kernel modules are loaded)

—>.../debug_mask, can be used to increase verbosity.
Also possible via module parameter “debug=mask=0xYYY” in ath10k_core.ko

ath10k: Add the target register access and memory dump debugfs interface

Message ID 1416656822-6645-1-git-send-email-yanbol@gti.qualcomm.com {mailing list archive)
State S d, archived
Headers

Commit Message

https://patchwork.kernel.org/project/ath10k/patch/1416656922-6645-1-git-send-email-yanbol@qti.qualcomm.com/

Firmware: Interfaces

Interfaces between driver and Wifi subsystem
BMI (Bootloader Messaging Interface)

- Communicaton between host and Wifi subsystem during bootup
- Implemented in ROM

WMI (Wireless Module Interface)

- Communicaton between host and Wifi subsystem after bootup

- Example commands: wifi scanning, channel configuration etc...

Firmware: Loading

Two loading methods possible:

« BMI (Bootloader Messaging Interface)

« Copy Engine: athl0k_hw_diag_fast_download() in ath10k, different in ath10Kk-ct
In case of compressed firmware:

* BMI method needs to be used

Decompression done in ROM of Wifi Core

BMI
Driver Wifi Core

Firmware: File Format

Magic: “SGMT”

Flags: Ox1 (compressed) Driver logs:
Address: 0x409200 (literals base)
Length: 0x170

OTP:
bmi_lz_stream_start()
bmi_lz_data(lenght 0x1244)
FW:

/mi_lz_stream_start()
bmi_lz_data(lenght 0x59c96)

<do it again...>

Magic: “SGMT” OTP:
Flags: Ox1 (compressed) :
Address: 0x409200 (literals base) Em:_:i_zg?aa(:gﬁzthirgilz 44)
Length: 0x4018 EW.

bmi_lz_stream_start()
bmi_lz_data(lenght 0x59c96)

Ath10k-ct firmware version:
10.4b-ct-4019-fW-012-17ba98334

Firmware: Memory Layout

Memory contents are repeating:

Xtensa Architecture

Xtensa in QCA Wifi chips

Literal Pools are used for “L32R”

Instructions
* Loads are independent of PC Register Usage
* Instead the offset is calculated from a fixed a0 Return address
“LITBASE” al Stack Pointer

a2 - a7 Incoming arguments

Call8 Is used to move a register
window by 8

 e.g.alo0 of caller will be a2 of callee

See also: https://github.com/chipsi007/noduino-sdk/blob/master/bootloader/xtos/reset-vector. S#L.302-#L309

Xtensa Literal Pools

0xc3834 LITBASE
Memory:

“wlan_main()” will use a “L32R” instruction to get the target address:
LITBASE
+ offset within Literal Pool (part of L32R)
= Target Address

This calculation is done in every “I132r” instruction!

Xtensa Literal Pools

« LITBASE is set at the beginning of FW execution:
 For IPQ4019 Literal pool start is at 0x408001

 Code:
132r a2, lib4 start + 0x40001
wsr a2, LITBASE
« Existing Wifl firmware code does expect the

LITBASE to be set as shown above

Xtensa Litbase In Disassemblers

IDA 7.7 adds support of Xtensa, but ignores LITBASE
Ghidra supports Xtensa using this plugin (
) but ignores LITBASE

[{{l Radare2 ignores LITBASE

— Binary Ninja using this plugin (
ignores LITBASE too

https://github.com/yath/ghidra-xtensa
https://github.com/zackorndorff/binja-xtensa

Xtensa: Disassembler Plugin for
Binary Ninja

Based on

P atC h . diff --git a/binja_xtensa/instruction.py b/binja_xtensa/instruction.py
. index 7243f07..e7f1700 100644

--- a/binja_xtensa/instruction.py
+++ b/binja_xtensa/instruction.py
@@ -34,6 +34,8 @@ Link to the Xtensa docs/manual | was referencing:

||||||

from enum import Enum

https://stackoverflow.com/a/32031543
def sign_extend(value, bits):
@@ -233,7 +235,8 @@ class Instruction:

def offset_[32r(self, addr):
enc = sign_extend(self.imm16 | OXFFFF0000, 32) << 2

https://github.com/zackorndorff/binja-xtensa

Xtensa: Disassembler Plugin for
Ghidra

Based on:

P a‘tC h . diff --git a/data/languages/xtensa.sinc b/data/languages/xtensa.sinc
- index 80ac9bf..e8ef5c8 100644

--- a/data/languages/xtensa.sinc
+++ b/data/languages/xtensa.sinc

@@ -236,7 +236,7 @@ srel_6.23 _sbh2: relis s8 6.23 |
]1{ export *:4 rel; }

srel_8.23 oex_sb2: relisul6 8.23]

]{ export *:4 rel; }

https://github.com/Ebiroll/ghidra-xtensa

Firmware patching
using Nexmon

Nexmon: Introduction

FIRMWARE ANALYSIS

rom.clean.bin m.bin T complete_fiv
M firmsware dump
es

Extract ROM, “Flashpatches”, ————

(StarTiNG PoIinT)

RAM, UCODE for Broadcom WifI |esyesm——

N ucodebin —— I, ucode.asm

- mbled ucode and structun
C h I S INFORMATION STORAGE
code.” patc ucode.modified.asm C s
i changes modified ucode = S

L] L] L] L]
extracted
y templateram
]]] E COMPRESSION
1 flashpatches.c ™ T templateram.c ucode_compressed.c Wrapper.c
I r I I |Wa r e u | I ‘ I O I I S extracted extracted reassembled, placement
flashpatches emplateram | modified ucode | inform. and

N x Parcamve Process inchuded in
DEXION.pre — N nexmonl.pre [wrapper.h

Compile and link firmware code

gen/".mk
extract symbols
< | from

and insert into

Create firmware file =B S

by patch.elf [™ fw_bandhd
T~ | contains placed : g.bi
and resolved L original
ymbols firmwware file

Matthias Schulz. Teaching Your Wireless Card New Tricks: Smartphone Performance and Security Enhancements through
Wi-Fi Firmware Modifications. Dr.-Ing. thesis, Technische Universitat Darmstadt, Germany, February 2018

Nexmon: Introduction

+

patch.elf

- section bin "

definitions.mk

awk
patch.elf

patch.elf

* X
o o)
(o)

nexmon.mk

Nexmon: Adaption

Necessary changes Qualcomm firmware:

1. Decompress segments from firmware-5.bin

2. Support multiple binaries (one for each segment)

3. Support “LITBASE”

Overview (steps in Makefile):

« Compiles + Links patches

« Copy patches into binary 0x980000 of 2" (decompressed) segment
« Compress segment parts, create 2nd segment

 Adds padding bytes to 2nd segment

 Creates complete binary: firmware-5.bin

Nexmon: 2. Handle multiple binaries

« GCC Plugin is used to create “nexmon.pre” file
This file is also used as input to dd & linker

« Extended to include a file name:

“attribute” in source code

Compile
nexmon.pre

Patching Firmware — 15t attempt

« Patch goal: write 0x1234 to an
address, jJump back to original code

« Use xtensa-esp32-elf-gcc to (void *al, void a2, void
compile + link LE binary

 Load into IPQ4019 chip

 Use DebugFS to read memory after
patch has run to check if 0x1234
was written successfully

- Does not work! Why?

Patching Firmware — 15t attempt

L32R uses offset in LITBASE to
calculate target address

LITBASE is set at the very
beginning of the FW execution in
ROM

—> Existing code in FW relies on
this

There is no parameter to tell our
compiler/linker where an already
existing LITERAL POOL is!

Patching Flrmware 1St attempt

Hack: Avoid L32R instructions
* Use immediate values only
* No references!

* Needs handcrafted Assembly

Nexmon: 3. Handle LITBASE

Two possible solutions:

1. Tell Linker where existing Literal Base is and how full it is
2. Use our own LITBASE value

- We are going with option #2!

Necessary steps:

. Set LITBASE to 0x0 at function entry.
—> This can be done extending Nexmons GCC plugin

. Set LITBASE to original value at function exit.

—> This needs to be done in Binutils assembler because it expands/relaxes
calls to a load+call

Nexmon: 3. Handle LITBASE

Patching Binutils Assembler “as”

 Needs to be done because of
“Instruction Relaxation” in the
assembler

 Relaxation adds a 132r before each call
instruction

e The LITBASE used in this I32r needs to
point to 0xO.

« Only after this we can set the LITBASE
back to its original value

- We can not patch this in GCC, its needs to be patched in the assembler!

Nexmon: 3. Handle LITBASE

The assembler uses “string patterns” to “relax” instructions:

static [1

Nexmon: 3. Handle LITBASE

Patching Binutils Assembler “as”

static bool
xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
{

1;(.).r (; bi '= NULL; bi = bi->next)

{

TInsn *next_insn = istack_push_space (istack);

return true;

}

Patching Firmware — 2"d attempt

« Patch goal: write 0x1234 to an
address, jump back to original
COde void (void *al, woid *a2, woid *a3, oi

e (C-Code can now be used!

 We can use GCC plugin +
patched “as” to compile our
code

- Much simpler code

Patching Firmware — 2"d attempt

Assembly compiled with our GCC plugin and the patched binutils assembler

Open Problems

Binutils patch needs implementation based on using
Stack (avoid using a register)

Support for disassemblers is lacking

Missing text console in firmware for easier debugging
- We can implement this ourselves now!

tamey DEMO TIMeE!

Summary & Future Work

Modified Nexmon framework can be found here: , Including:

Demo patch
patches for Ghidra and Binary Ninja
GCC to complie LE Xtensa

Patched Binutils
First POC patch code shows feasibility of firmware modifications

Further improvements will help to make firmware modifications easier and
enable security research

Use “Production Software” (QDART) by Qualcomm to explore hidden FW
functionality

Explore “Codeswap” feature of FW

https://qcamon.org/

Thanks

Martin Korth (aka ProblemKaputt)
for his awesome GBA reverse engineering

rqou (aka ArcaneNibble)
for “ath10k_unzl.py” script

Q&A

Visit |

Mail: daniel@wegemer.com

https://qcamon.org/

