
Enabling Security Research

on Qualcomm Wifi Chips

RECON Montreal 2023 –

Daniel Wegemer

(Qualcomm logo according to Bing AI)

Disclaimer: Opinions are my own and not the views of my employer

Motivation

• Wifi chips contain powerful processors

• These processors allow general purpose

computing
• Proprietary binaries prohibit running your own code

• Modifying the existing firmware can:
• Enable additional functionality

• Enable security research (dynamic analysis)

https://commons.wikimedia.org/wiki/File:WiFi_Module_-
ESP8266%2816730689880%29.jpg

Motivation
Vendors of Wifi chips:

• Qualcomm

• Broadcom

• Intel

• Mediatek

• Texas Instruments

• NXP (former Marvell)

Qualcomm Wifi chips had many high or critical rated vulnerabilities in the past. How
many other vulnerabilities are there?

https://aireye.tech/2022/03/29/trends-in-wi-fi-vulnerabilities-this-time-its-qualcomm/

firmware

driver

Motivation

• Two types of Wifi chips: FullMAC and

SoftMAC

• FullMAC implements MAC layer on-

chip, often used for IoT and portable

device

→ Much bigger firmware

→ Making changes to the driver does

not change the behavior of (FullMAC)

Wifi chips

→ We need to change the Wifi chip

firmware directly

wpa_supplicant

MAC Layer

MAC Layer

User
Space

Host
Kernel

Wifi Chip

wpa_supplicant

PHY LayerPHY Layer

FullMACSoftMAC

driver

firmware

Previous Work
• Broadcom Wifi Chips: Nexmon Framework

• Allows Wifi firmware patching on many Broadcom chips
• Deep modifications on Wifi subsystem possible
• See: https://nexmon.org

• Intel chips at Blackhat 2022:
“Ghost in the Wireless, iwlwifi Edition”

• Qualcomm Hexagon based chips at DEFCON 27 and Blackhat 2019:
“Exploiting Qualcomm WLAN and Modem Over the Air”

→ This is the first work on Xtensa based Qualcomm Wifi firmware

https://nexmon.org/

Background

Wifi/IoT Chipset Overview

• SoC bundles multiple processors

into a single package

• Wifi enabled devices often contain

an application processor and a

processor responsible for Wifi

• Timing critical Wifi functionality is

sometimes handled by an additional

processor

Wifi-SoC

Application
Core

Wifi
Core

Optional:
Real-Time

Core

Interconnect

Three types of driver and firmware

• ath10k by Qualcomm

• ath10k-ct by Candelatech

• qcacld by Qualcomm

→ Used for factory processes

ath10k-ct driver can also run QCA firmware

https://www.candelatech.com/

IPQ4019

(“Habanero” by 8devices)

https://lian-mueller.com/media/catalog/product/cache/1/image/9df78eab33525d08d6e5fb8d27136e95/h/a/habanero-dvk-top.jpg

IPQ4019

• Used mainly in Wifi home routers

(e.g. AVM FritzBox)

• Application Core: ARM Cortex A7

→ Runs OpenWRT 19.07 on

Kernel 4.14

• Wifi Subsystem: Cadence/Tensilica

Xtensa

• 2.4 and 5 GHz

• Uses PCIe to communicate

IPQ4019

Interconnect

PCIeArm Cortex A7
(OpenWRT)

Wifi
Core 1

Wifi
Core 2

Ethernet
Subsystem

Debug

Firmware

Firmware: Overview
• Xtensa, little endian

• ROM + RAM

• RAM part of a file in the OpenWRT filesystem

→ Contains multiple “segments” (aka “SGMT”)

→ lz77 compressed

• ROM can be patched

• Codeswap: mechanism to put code of Wifi subsystem in the

hosts memory

• No security enabled by default

• No secure boot

• No stack canneries

• No address randomization

https://www.cadence.com

Firmware: Debugging
Debugfs: /sys/kernel/debug/ieee80211/phy0/ath10k/...

→ .../mem_value can be used for memory access r+w
(only works after core+pci kernel modules are loaded)

→.../debug_mask, can be used to increase verbosity.
Also possible via module parameter “debug=mask=0xYYY” in ath10k_core.ko

https://patchwork.kernel.org/project/ath10k/patch/1416656922-6645-1-git-send-email-yanbol@qti.qualcomm.com/

Firmware: Interfaces

Interfaces between driver and Wifi subsystem

• BMI (Bootloader Messaging Interface)

→ Communicaton between host and Wifi subsystem during bootup

→ Implemented in ROM

• WMI (Wireless Module Interface)

→Communicaton between host and Wifi subsystem after bootup

→Example commands: wifi scanning, channel configuration etc...

Firmware: Loading
Two loading methods possible:

• BMI (Bootloader Messaging Interface)

• Copy Engine: ath10k_hw_diag_fast_download() in ath10k, different in ath10k-ct

In case of compressed firmware:

• BMI method needs to be used

• Decompression done in ROM of Wifi Core

Driver Wifi CoreFirmware

BMI

Firmware: File Format

FW PART1

Metadata 1

METADATA3Address: 0x409200 (literals base)
Length: 0x4018

Address: 0x409200 (literals base)
Length: 0x170

Gets overwritten by 2nd part

Magic: “SGMT”
Flags: 0x1 (compressed)

METADATA2

FW PART2

Segment Header 2

FW PART1

Magic: “SGMT”
Flags: 0x1 (compressed)

METADATA4

FW PART2

IE_HEADERS 1

IE_HEADERS 2

1.

2.

Ath10k-ct firmware version:
10.4b-ct-4019-fW-012-17ba98334

Segment Header 1
Driver logs:

OTP:
bmi_lz_stream_start()
bmi_lz_data(lenght 0x1244)
FW:
bmi_lz_stream_start()
bmi_lz_data(lenght 0x59c96)
...

<do it again…>

OTP:
bmi_lz_stream_start()
bmi_lz_data(lenght 0x1244)
FW:
bmi_lz_stream_start()
bmi_lz_data(lenght 0x59c96)

Firmware: Memory Layout

Memory contents are repeating:

Ath10k-ct firmware version: 10.4b-ct-4019-fW-012-17ba98334

Xtensa Architecture

Xtensa in QCA Wifi chips

• Literal Pools are used for “L32R”

instructions

• Loads are independent of PC

• Instead the offset is calculated from a fixed
“LITBASE”

• Call8 is used to move a register

window by 8
• e.g. a10 of caller will be a2 of callee

See also: https://github.com/chipsi007/noduino-sdk/blob/master/bootloader/xtos/reset-vector.S#L302-#L309

Register Usage

a0 Return address

a1 Stack Pointer

a2 - a7 Incoming arguments

Xtensa Literal Pools

my_patch() {
…
wlan_main()

}

Target Code:
wlan_main()

Literal Pool:
…
wlan_main() → 0xc3834

“wlan_main()” will use a “L32R” instruction to get the target address:
LITBASE
+ offset within Literal Pool (part of L32R)
= Target Address

This calculation is done in every “l32r” instruction!

LITBASE

… …

Memory:
0xc3834

Xtensa Literal Pools

• LITBASE is set at the beginning of FW execution:

• For IPQ4019 Literal pool start is at 0x408001

• Code:

l32r a2, lib4_start + 0x40001

wsr a2, LITBASE

• Existing Wifi firmware code does expect the

LITBASE to be set as shown above

Xtensa Litbase in Disassemblers

IDA 7.7 adds support of Xtensa, but ignores LITBASE

Ghidra supports Xtensa using this plugin (https://github.com/yath/ghidra-
xtensa) but ignores LITBASE

Radare2 ignores LITBASE

Binary Ninja using this plugin (https://github.com/zackorndorff/binja-xtensa)
ignores LITBASE too

https://github.com/yath/ghidra-xtensa
https://github.com/zackorndorff/binja-xtensa

Xtensa: Disassembler Plugin for

Binary Ninja

• Based on https://github.com/zackorndorff/binja-xtensa

• Patch: diff --git a/binja_xtensa/instruction.py b/binja_xtensa/instruction.py
index 7243f07..e7f1700 100644

--- a/binja_xtensa/instruction.py
+++ b/binja_xtensa/instruction.py
@@ -34,6 +34,8 @@ Link to the Xtensa docs/manual I was referencing:
"""
from enum import Enum

+LITBASE = 0x408000 + 0x40001
+

https://stackoverflow.com/a/32031543
def sign_extend(value, bits):
@@ -233,7 +235,8 @@ class Instruction:

def offset_l32r(self, addr):
enc = sign_extend(self.imm16 | 0xFFFF0000, 32) << 2

- return (enc + addr + 3) & 0xFFFFFFFC
+ return (LITBASE & 0xFFFFF000) + enc

https://github.com/zackorndorff/binja-xtensa

Xtensa: Disassembler Plugin for

Ghidra

• Based on: https://github.com/Ebiroll/ghidra-xtensa

• Patch: diff --git a/data/languages/xtensa.sinc b/data/languages/xtensa.sinc
index 80ac9bf..e8ef5c8 100644
--- a/data/languages/xtensa.sinc
+++ b/data/languages/xtensa.sinc
@@ -236,7 +236,7 @@ srel_6.23_sb2: rel is s8_6.23 [
] { export *:4 rel; }

srel_8.23_oex_sb2: rel is u16_8.23 [
- rel = ((inst_start + 3) & ~3) + ((u16_8.23 | 0xffff0000) << 2);
+ rel = (0x448001 & 0xFFFFF000) + ((u16_8.23 | 0xffff0000) << 2);
] { export *:4 rel; }

https://github.com/Ebiroll/ghidra-xtensa

Firmware patching

using Nexmon

Nexmon: Introduction

• Extract ROM, “Flashpatches”,
RAM, UCODE for Broadcom Wifi
chips

• Write patches in C, call existing
firmware functions

• Compile and link firmware code

• Create firmware file

Matthias Schulz. Teaching Your Wireless Card New Tricks: Smartphone Performance and Security Enhancements through
Wi-Fi Firmware Modifications. Dr.-Ing. thesis, Technische Universität Darmstadt, Germany, February 2018

Nexmon: Introduction

patch.c

wrapper.c

definitions.mk

patch.elf

1.

patch.o

5. objcopy section.bin

wrapper.o

3. ld patch.elf
*.o

*.ld

nexmon.pre

patch.elf

4. awk nexmon.mk

nexmon.mk

dd

gcc

gcc

nexmon.pre

firmware.bin

2. awk nexmon.ld

Nexmon: Adaption
Necessary changes Qualcomm firmware:

1. Decompress segments from firmware-5.bin

2. Support multiple binaries (one for each segment)

3. Support “LITBASE”

Overview (steps in Makefile):

• Compiles + Links patches

• Copy patches into binary 0x980000 of 2nd (decompressed) segment

• Compress segment parts, create 2nd segment

• Adds padding bytes to 2nd segment

• Creates complete binary: firmware-5.bin

Nexmon: 2. Handle multiple binaries

• GCC Plugin is used to create “nexmon.pre” file

• This file is also used as input to dd & linker

• Extended to include a file name:

nexmon.pre

0x00409228 PATCH obj/patch.o my_patch segment2_00409200_mod.bin

0x000c3834 DUMMY obj/wrapper.o wlan_main segment2_00980000_mod.bin

“attribute” in source code

Compile

Patching Firmware – 1st attempt
• Patch goal: write 0x1234 to an

address, jump back to original code

• Use xtensa-esp32-elf-gcc to
compile + link LE binary

• Load into IPQ4019 chip

• Use DebugFS to read memory after
patch has run to check if 0x1234
was written successfully

→ Does not work! Why?

Patching Firmware – 1st attempt

• L32R uses offset in LITBASE to

calculate target address

• LITBASE is set at the very

beginning of the FW execution in

ROM

→ Existing code in FW relies on

this

• There is no parameter to tell our

compiler/linker where an already

existing LITERAL POOL is!

Patching Firmware – 1st attempt

Hack: Avoid L32R instructions

• Use immediate values only

• No references!

• Needs handcrafted Assembly

Nexmon: 3. Handle LITBASE
Two possible solutions:

1. Tell Linker where existing Literal Base is and how full it is

2. Use our own LITBASE value

→ We are going with option #2!

Necessary steps:

• Set LITBASE to 0x0 at function entry.

→ This can be done extending Nexmons GCC plugin

• Set LITBASE to original value at function exit.

→ This needs to be done in Binutils assembler because it expands/relaxes

calls to a load+call

Nexmon: 3. Handle LITBASE

Patching Binutils Assembler “as”

• Needs to be done because of

“Instruction Relaxation” in the

assembler

• Relaxation adds a l32r before each call

instruction

• The LITBASE used in this l32r needs to

point to 0x0.

• Only after this we can set the LITBASE

back to its original value

→ We can not patch this in GCC, its needs to be patched in the assembler!

Nexmon: 3. Handle LITBASE

The assembler uses “string patterns” to “relax” instructions:

Nexmon: 3. Handle LITBASE

Patching Binutils Assembler “as”

static bool
xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
{

…
for (; bi != NULL; bi = bi->next)
{

+ /* QCAMON: IF CURRENT OPCODE is callx8 && PREV OPCODE is l32r*/
+ if(bi->opcode == 0x3a && prev_bi->opcode == 0x86) {
+ TInsn *new_ins = (TInsn *) malloc(sizeof(TInsn));
+ tinsn_init (new_ins);
+ build_wsr_litbase_insn(new_ins);
+ new_ins->debug_line = insn->debug_line;
+ new_ins->loc_directive_seen = insn->loc_directive_seen;
+ istack_push(istack, new_ins);
+ }
+

TInsn *next_insn = istack_push_space (istack);

…
return true;

}

Patching Firmware – 2nd attempt

• Patch goal: write 0x1234 to an
address, jump back to original
code

• C-Code can now be used!

• We can use GCC plugin +
patched “as” to compile our
code

→ Much simpler code

Patching Firmware – 2nd attempt

Assembly compiled with our GCC plugin and the patched binutils assembler

Open Problems

• Binutils patch needs implementation based on using

Stack (avoid using a register)

• Support for disassemblers is lacking

• Missing text console in firmware for easier debugging

→ We can implement this ourselves now!

(lame) Demo Time!

Summary & Future Work
• Modified Nexmon framework can be found here: https://qcamon.org, including:

• Demo patch

• patches for Ghidra and Binary Ninja

• GCC to complie LE Xtensa

• Patched Binutils

• First POC patch code shows feasibility of firmware modifications

• Further improvements will help to make firmware modifications easier and
enable security research

• Use “Production Software” (QDART) by Qualcomm to explore hidden FW
functionality

• Explore “Codeswap” feature of FW

https://qcamon.org/

Thanks

• Martin Korth (aka ProblemKaputt)

for his awesome GBA reverse engineering

• rqou (aka ArcaneNibble)

for “ath10k_unzl.py” script

Q&A
Visit https://qcamon.org !

Mail: daniel@wegemer.com

https://qcamon.org/

