Dissecting the Modern
Android Data Encryptlon
Scheme

Maxime Rossi Bellom
Damiano Melotti

Quarkslab

Who we are

e @DamianoMelotti

e Security researcher @ Quarkslab

e |[nterested in low-level mobile
security and fuzzing

@max_r_b

Security researcher

and R&D leader @ Quarkslab
Working on mobile and embedded
software security

http://twitter.com/DamianoMelotti
http://twitter.com/max_r_b

The trigger

> Hey! My device fell into water and the main SoC is dead. However the Titan M"?
chip seems to be alive and well, do you think you would be able to help me
recover my data on the phone?

[1]: 2021: A Titan M Odyssey (Maxime Rossi Bellom, Philippe Teuwen, Damiano Melotti)
[2]: Attack on Titan M, Reloaded: Vulnerability Research on a Modern Security Chip (Damiano Melotti, Maxime Rossi Bellom)

https://www.blackhat.com/eu-21/briefings/schedule/index.html#-a-titan-m-odyssey-24471
https://www.blackhat.com/us-22/briefings/schedule/index.html#attack-on-titan-m-reloaded-vulnerability-research-on-a-modern-security-chip-27330

The trigger

e Our answer: no, the main SoC is still essential for disk
encryption/decryption
o ... but up to what extent?
e Objective of this research: find out exactly

e Offensive approach:

o What would a forensic analyst do?
o Assuming infinite vulnerabilities, what can you do to get the secrets out?
o Do you still need to bruteforce credentials?

Data Encryption at Rest 101

e I|dea: no sensitive plaintext files in storage
o Attackers must not find files in clear on disk

e Threat model: full physical access to powered-off device
e Data is automatically encrypted when written and automatically
decrypted when read

e How?
o Android: Full-Disk Encryption and File-Based Encryption (required from Android 10)
o Underneath: dm-crypt for FDE, fscrypt for FBE

File-Based Encryption at Rest 101

e Relies on fscrypt, implemented in the Linux kernel
o It supports Ext4, F2FS, and UBIFS

e Operates at the filesystem level
o Allows files encrypted with different keys or unencrypted in a file system

e A master key is provided for directory tree
e Then derived per file keys (for regular file, directory, and symbolic link)
e Metadata are not encrypted by fscrypt

Android File-Based Encryption

e Each file has its own key
e Direct Boot and multi-user support

e T[wo encryption levels:
o Credential Encrypted (CE), available only after authentication
o Device Encrypted (DE), available also during boot
e In short, 2 “main” keys
o DE key, for data decrypted at boot
o CE key, available after authentication, protecting user data

e DE key is automatically decrypted using HW-backed keys

Android File-Based Encryption

a22x:/ # ls /data/data | head -n 20

+BWgXxAAAAAQGIO50Z57bZxML60TCNKCs
+geIWCAAAAgIsCIB+mpPqIQYOHOFrnojC1KJ18e0lvGZWIYXWFTcOWD
+LE39AAAAAwWNVineHXItKqcE1Glo9+EinbUaa3wvp, fXEjal3r4BiC
+0SstbBAAAAWZ2g592e18GG2DMTc4y6H94 jxKEfoRzUDA1QZn0YZKgA5VCUg189sT2IN8yCBFracC
, OWF+BAAAAgQtSCvHA5rRmVC2 lVXEHt 1IE050M9kmaloe+vkWT176K8dxofVp5RcmnLvOxC7WMLJ
,WGCADAAAAg6603+mZ7f009fBNp8zQSdWBqRIIwPUZHafQiTu7khxB
,€GNGDAAAAw+ZAptd14KRyth5ncImIKYAZBTBW7DoUNpMamRG jO5MA

, VU29CAAAAgKApb3amvoChi0pYILwr5xxvUtfOTpZ2h6CrOwG4CR5D
OMQ5GCAAAAQATtXNLN524L3GwuGAek+rVelNjgESmwqljisOkydZa2FKI1VD6ezJIGkc jcRTTD7B
0QcmpBAAAAWMXOhHqP+AT3ktRtIAJKk9,bu2g04xwjlLzf,vgN71QQ2B
OWZ9mBAAAAASKUJUTYZ61eUrgnVJA10InZDm3b7JybYYPw8xhLrfeD
11ppkCAAAAAIAMBENP6KOt3rA9KkIN9bepZOFdpiYDp6bQ5Cj2IU2NB
13nD7DAAAAw,NoobtAOXesIOkFqFC4MIwoKYATdBQrGTm8rfbbdsNC
1KOhaDAAAAAIbCCAZY7LE6W4+DAXnAilv,PEhu4CiUL60TN9ZuL6buC

1V6 LUAAAAAWMrNINeM84y83,LYzeNEKdCcACNXxLAhJ+sI7VzbV51yuebjwOMOPTr jR19cv391kD
1fMeDAAAAAGPNPYDGUOWWC8uW1iojo+nhhngWk+x0ZerDfrWwY3ZVIbB
1hGHtCAAAAwTXxP3KkXNUYQOSWoBzqZcsbu2g0@4xwjlLzf,vgN71QQ2B

2d3f jDAAAAgT711kMftxkJIiDOIbRx9,dtg04Rk9L1P5CC17JuqqewNpAlO7TQqO0KIh2yXzcj9,83fbjIHwnpEm]j7FQO1xXBP
2v,UXBAAAAQLloHyVKO8uify8onfmrQXJawy1Dqwg6kc2g2BKroH48D
2wjJhBAAAAgQOMVGF3NqTpssmh6XgAWw1 jHWI86vSwQMXIPQQz6ghD

FBE key derivation

e We focus only on the CE key

e Complex derivation steps
o Start from DE files owned by privileged users

a22x:/ # ls -1 /data/system_de/0/spblob/

system system 58 2022-06-29 - 0000000000000000. handle
system system 72 2022-06-29 - 921e9ab09afd8d9d.metrics

system system 93 2022-06-29 - 921e9ab09afd8d9d. pwd
system system 16384 2022-06-29 - 921e9ab09afd8d9d.secdis
system system 186 2022-06-29 - 921e9ab09afd8d9d. spblob

e User credentials are used in the process
o No matter how many bugs an attacker has, bruteforcing remains necessary!

ARM TrustZone

Non-Secure World

Secure World

Untrusted Untrusted Untrusted Trusted Trusted Trusted
App App App App App App
Rich 05 ¢ o Trusted 05
\/ NV

Secure Monitor

Protected hardware
resources

10

Android Keystore system

e Key storage and crypto services
e Keys are stored as key blobs

e Three protection levels:

o Software only
o TEE (default)
o Hardware-backed (StrongBox)

e Raw key should never leave protected environment

1

Android Keystore system

(Normal World]

UpdateOperation (input)

Be ?inoferation (key blob)

UpdateOperation (input)

FinishOperation (input)

Keymaster TA or
Trusted Chip

Decrypt blob and
extract key material

—

output

12

{ /data/system_de/<uid>/opblob/<handley.pwd

)

N,R, P, salt

credentials

{ /data/system_de/<uvid>/opblob/<handled.secdis }

S ot f

[Ldatn/eystem_de/<uid>/apblob/<handle>.apblob

synthetic_passilord. <handie> ’—Key AES decrypt ;

token

(if authentication is successful)

ZAE‘;‘: decrypt z Key / SHASI2 A]

——/ /

"application=id" I
applicationld

/ |

SYNTHETIC PASSWORD

some strings

as context..

applicationfd

"secdiscardable-
transform® Il secdis

hashed secret

[/dnta/mioc/vD(d/UBEr‘_kega/Ce/(uid>/currentlse£diacardAbIE}

L *Android
ecdiscardable SHAS12"
Il secdiscardable

‘ secdis_hash |l seccet Il seed? [

TAG_APPLICATION_ID

“Android key wWrapping
key generation
SHAS12" Il appld

AES decrypt

key (first 32 bytes)

[/data/misc/vaId/u&er_kesfw/ce/(uid>/current/encrgpted_key}

13

{ /data/system_de/<uidy/opblob/<handley.pwd }

N, R, P, salt

credentials

/o f

token

(if authentication is successful)

ﬁ: /data/system_de/<vid>/spblob/<handled.secdis]

"secdiscardable~
transform® Il secdis

hashed secret

Credentials, scrypt, secdis

1 /data/system_de/<uvid>/spblob/<handle>.pwd)

N R ‘L' salt {/data/sgatem_de/<uid>/spblob/(handle>.secdisJ

credentials M token "secdiscardable—-

transform® Il
secdis

OHASI
(if authentication is successful) Lj

hashed secret

.

app(icatisnld

15

Authentication with Gatekeeper

e The Gatekeeper TA verifies credentials from the TEE
e /data/system_de/<uid>/spblob/<handle>.pwd

O scrypt parameters
o password handle, i.e. HMAC(SHA512("user-gk-authentication" ||
scrypt(credentials, params))
e If successful, Gatekeeper returns an authentication token

o Signed token to be used to prove successful authentication
o Needed by Keymaster to use authentication-bound keys
o Standard format, designed not to allow replay attacks®

e Gatekeeper implements throttling to prevent bruteforcing

[3]: https://android.googlesource.com/platform/hardware/libhardware/+/master/include/hardware/hw_auth_token.h 16

https://android.googlesource.com/platform/hardware/libhardware/+/master/include/hardware/hw_auth_token.h

Successful authentication

FNorMQl World ﬁD ‘ Gatekeeper TA J

Verify (pwd_handle, current_handle)

Hr’lAC(current_hanciﬂe) == pwd_handle?
3l
yes
v

reset throttilin g counters

generate authe}ntication token

Ok :

«]
5 auth_token 5
: 3 17

Failed authentication

(Normal World] ‘ Gatekeeper TA J

; Verify (pwd_handle, current_handle)

>
HHAC(Current_hancile) == pwd_handle?
0

‘no

v

update throttling counters

Nope, try again -

<

18

{ /data/system_de/<uid>/opblob/<handley.pwd

)

N,R, P, salt

credentials

{ /data/system_de/<uvid>/opblob/<handled.secdis }

S ot f

[Ldatn/eystem_de/<uid>/apblob/<handle>.apblob

synthetic_passilord. <handie> ’—Key AES decrypt ;

token

(if authentication is successful)

ZAE‘;‘: decrypt z Key / SHASI2 A]

——/ /

"application=id" I
applicationld

/ |

SYNTHETIC PASSWORD

some strings

as context..

applicationfd

"secdiscardable-
transform® Il secdis

hashed secret

[/dnta/mioc/vD(d/UBEr‘_kega/Ce/(uid>/currentlse£diacardAbIE}

L *Android
ecdiscardable SHAS12"
Il secdiscardable

‘ secdis_hash |l seccet Il seed? [

TAG_APPLICATION_ID

“Android key wWrapping
key generation
SHAS12" Il appld

AES decrypt

key (first 32 bytes)

[/data/misc/vaId/u&er_kesfw/ce/(uid>/current/encrgpted_key}

19

[ldatn/syetem_de/<u:d>Iepbiob/<handle>.epblob

synthetic_password, <nandle> '—Key AES decrypt ;

applicationld

f AES de@k —r 5,435,2/& e azplic&(:z\o-n:l: [
SYNTHETIC PAsauORDl

Synthetic Password

e Problem: credentials shouldn’t be linked to the CE key

o What if the user changes them?
e Solution: Synthetic Password

o Key blob stored in /data/system_de/<uid>/spblob/<handle>. spblob
o First, decrypted with an authentication-bound, TEE-protected key
o Then, decrypted with the (hashed) applicationId

[/data/system_de/<uvid>/spblob/<handle>.spblob]

synthetic_password <handle) |—Ke9 AES decrypt ;

ZAES decrypt @Keg

"applicat

Il applicationld

SYNTHETIC
PASSWORD

ion—id"
applicationld

21

Attacking SP derivation

e Need to target the TEE

® [wo alternatives

o Keymaster TA (accessing the first AES key)
o Gatekeeper TA (validating credentials and minting auth tokens)

| /data/system_de/<uid>/spblob/<handie.opblob |

(if authentication is successful)

synthetic_password_<handle> ——key AES decrypt
p

' 5 "application—id"

@@K% M Il applicationld

applicationld

SYNTHETIC
PASSWORD 22

Global strategy

e Our goal

o Root the device and access all the device encrypted files
o Patch the Gatekeeper trustlet to accept any credentials

e Forthat we need

o Either multiple bugs (code exec, priv esc, etc)
o Or one critical bug early in the boot process

23

PoC on Samsung Device

e Samsung A225f and A226b

Cheap (V250€)

Mediatek SoC MT6769V and MT6833V
No security chip

Mix of Mediatek and Samsung code
Trustzone OS: TEEGRIS

Known critical Boot ROM vulnerability

O O O O O O

24

The Boot ROM Known Vulnerability

We use the project MTKClient* (by Bjoern Kerler — @viperbik)
e Exploit boot ROM bugs impacting plenty of Mediatek SoC

In short, we use it to
e Read/write all the partitions we need to patch
e Boot a patched preloader (BL2) image
e Bypass the secure boot checks done in boot ROM and preloader
e |t just works:)

[4]: https://github.com/bkerler/mtkclient o5

https://twitter.com/viperbjk
https://github.com/bkerler/mtkclient

Boot Process

ARM Trusted

Firmware
Boot ROM > Preloader — TEEGRIS
Secure World
Normal World
LK Android

26

Boot Process

ARM Trusted

Vulnerability
\ Firmware
Boot ROM‘%%‘ > Preloader — TEEGRIS
Secure World
Normal World
LK Android

27

Boot Process

Patched
Vulnerability ~| ARM Trusted
\ Ficrmware
Boot ROM @ > Preloader = TEEGRIS

Secure World

Normal World

— LK Android

28

Boot Process

Patched
Vulnerability ~| ARM Trusted
\ Firmware
Boot ROM @ > Preloader — TEEGRIS

Secure World

Normal World

— LK Android

29

Boot Process

Patched
Vulnerability ~| ARM Trusted
\ Firmware
Boot ROM @ > Preloader — TEEGRIS

Secure World

Normal World

— LK Android

30

Boot Process

Patched

Vulnerability ARM Trusted

\A Firmware

Boot ROH‘% > Preloader —=> TEEGRIS

Secure World

Normal World

LK Android

31

Little Kernel Patching

e Patching strategy: empirical

approach
o Reverse engineering and
identify checks

o Patch, test and repeat

e Inthe end we patch AVB to
launch a modified boot image

A

Security Error 245512

This phone has been
flashed with unauthorized software &
is locked. Call your mobile operator

for additional support. Please note
that repair/return for this issue may
have additional cost.

BB TRE T RENRG MR BE, 15
A EMIE & AR
ST RE BN, BT R EN 4B RE
BJRERE B1TAE, B

32

Little Kernel Patching

26
27
28
29
30
31
32
33
34
35

iVarl = do_hash(param_1,param_2,DAT_4c6463e@® - param_2,&hash,0x20);
if (ivVarl == 0) {
iVar2 = memcmp (&STORED_HASH,&hash,0x20) ;
if (iVar2 == 0) {
print(" [%s] [oem] img auth pass\n",6&s_SBC_030151a8);
goto LAB_02ff82e0;
}
iVarl = 0x7021,;

}
print("[%s] [oem] img auth fail (@x%x)\n",&s_SBC_030151a8,iVarl);

33

Little Kernel Patching

28 1iVarl = do_hash(param_1,param_2, DAT_4c6463e@ - param_2,&hash,0x20);
29| if (iVarl == 0) {

30 iVar2 = memcmp(&hash,&hash,0x20);

31 if (iVar2 == 0) {

32 print("[%s] [oem] img auth pass\n",&DAT_030151a8),;
33 goto LAB_02ff82e0;

34 }

35 iVarl = 0x7021;

36/ }
37| print("[%s][oem] img auth fail (@x%x)\n",&DAT_@30151a8,iVarl);

34

Rooting Android

Main partitions used by Android: boot and super
e Boot contains the kernel and a ramdisk (only used for first boot stage)

e Super is a Dynamic Partition that contains 4 logical partitions
o system, vendor, product, odm

To root it

e Magisk® to patch the boot image

e \We made few modifications to su

e Plus other little tricks to patch the super partition

[5]: https://github.com/topjohnwu/Magisk 35

https://github.com/bkerler/mtkclient

e Trustzone OS designed by Samsung
e For Mediatek and Exynos SoCs

e ROM images:

o teel.img: ATF, TEEGRIS kernel, userboot. so
O tzar.img: TEE root filesystem
o super.img: Android system, Trusted Applications and Drivers

e Excellent references online®

[6]: https://www.riscure.com/tee-security-samsung-teegris-part-1/

36

https://www.riscure.com/tee-security-samsung-teegris-part-1/

TEEGRIS Images Verification

ATF tee
Preloader Verifies
Kernel vserboot.so
/
| 7
Verifies Verifies
\/ /
tzar
libs
LK
root_task
| 1
Verifies Verifies

v

|
7 e

Verifiee——>| Gatekeeper | Keymaster

Android

Widevine 37

Patching TEEGRIS

ATF fee
Preloader Verifies——>
Kernel vserboot.so
Verifies “e",-‘ fres
\V/ B
tzar
libs
LK
root_task
Verifies W
! vendor
b '
Android Verifies—> Gatekeeper | Keymaster

Widevine 38

Reversing Gatekeeper

e TAs come in a slightly modified ELF format

o 8-bytes header and footer with signature
o Removing them allows to load a nice ELF in your favourite disassembler

e GlobalPlatform API

o Standard API for TEEs (memory allocation, crypto operations, etc.)
o Makes reversing easier

e Trusty reference implementation’
o Suggests what to expect from a TA

[7]: https://source.android.com/docs/security/features/trusty 39

https://source.android.com/docs/security/features/trusty

Gatekeeper Reference Implementation

e 2 Gatekeeper commands: Enroll and Verify

e \erify does two things:
o HMAC(pwd_handle) == expected?
o If so, create new authentication token

e What if we can leak the key used by HMAC?

1. pwd = generate new password
2. Value = HMAC(pwd_handle)
3. Value == expected

40

Reversing & patching Gatekeeper

e 2 Gatekeeper commands: Enroll and Verify

e \erify does two things:
o HMAC(pwd_handle) == expected?
o If so, create new authentication token

verify
uses an HMAC
to check
credentials

bruteforce
the credentials
offline!

SO we
are
going to

leak the key |

TEEGRIS' |
Gatekeeper |

doesn't
use a

¥
simple HMAC §}

41

Reversing & patching Gatekeeper

e This Gatekeeper implementation uses a KDF instead of a plain HMAC

o KDF implemented in a library
o which calls /dev/crypto
© many steps to leak the key

e Simpler strategy: patch to accept any credentials
e Always return valid auth token to continue the process
1. KPFpwd—handie)r—==—expected?

2. #se; create new auth_token

42

Reversing Gatekeeper

22
23

25
26

28
29

31
32
33

35
36
37

24

27

30

34

iVarl = TEE_AllocateOperation(&local_30,0x50000004,5,0);
if (ivarl == 0) {
iVarl = TEE_DigestDoFinal(local_30,param_1,param_2,auStack_28,&local_38);
TEE_FreeOperation(local_30);
if (ivarl == 0) {
uVar2 = TEE_AllocateTransientObject(0xa@000000,param_4 << 3,&local_30);
if (uvar2 == 0) {
uVar2 = TEES_DeriveKeyKDF(auStack_28,local_38,local_48,8,param_4,6local_30);
if (uvar2 == 0) {
uVar3 = 1;
uVar2 = TEE_GetObjectBufferAttribute(local_30,0xc0000000,param_5,&iStack_34);
if (uvar2 '= 0) {
uvar3 = 0;
printf("gatekeeper [ERR]
@x12a, (ulong)uVar2

(%s:%u) failed to get object attribute: %x","hal_pwd_hmac"
2);

43

Attack strategy

e Read the output of the first AES decrypt
e Bruteforce credentials to generate applicationId
e Thanks to GCM mode, AES decrypt complains if the key is wrong

[/data/system_de/<uvid>/spblob/<handle>.spblob]

synthetic_password <handle) |—Ke9 AES decrypt ;
: "application—id"
ZAES decrypt @Key I F;F;plicationld applicationld

SYNTHETIC
PASSWORD 44

Hooking system_server

[/data/system_de/<vid>/spblob/<handle>.pwd }

I 7 7
N R, P, salt [/data/agatem_de/ <u|d>/5pblob/<handle>.5ecd.s}

any
credentials * >| token "secdiscardable—

traneform® |l
secdis

| /data/system_de/<uidy/spblob/<handle>.opblob |
fsuas@?

always

synthetic_password_<handle> 1—keg AES decrypt ;
' ’ application—id"
Hook here / AES decrypt; % ‘€Y M Il applicationld

hashed secret

SYNTHETIC
PASSWORD

45

Retrieving intermediate key with Frida

e Use Frida to hook system_server
e Retrieve intermediate buffer decrypted by TEE

o Possible thanks to the auth token

rida -U system_server -l system_server.]s

Frida 16.0.19 - A world-class dynamic instrumentation toolkit

Commands :
help -> Displays the help system
object? -> Display information about 'object'
exit/quit -> Exit

More info at https://frida.re/docs/home/

Connected to SM A226BR (id=ROWTAOBYDPL)

[SM A226BR::system_server]-> SyntheticPasswordCrypto.decrypt called!
ciphertext = 641a3ed0a68abdae99976b5aff32f8d5aa4d18127272af6ff638c1e88d57cd157fd6T75b46884651]
470bd4cc81081215e912085e4b8ea22e0e8f0ed32a381f641d5cd071d2e177c4a8alb6e68241521251366F 730166
b7cfd72f11f9761efc5e0cf68bd7bdec00456e07dfb9f1a7f720e97aa262c0507bc87ef46e603a265c821cblaldch
c6f6beb6fd43ac3431d0d013de8c9

::system_server]->

::system_server 1-> |

{ /data/system_de/<uid>/opblob/<handley.pwd

)

N,R, P, salt

credentials

{ /data/system_de/<uvid>/opblob/<handled.secdis }

S ot f

[Ldatn/eystem_de/<uid>/apblob/<handle>.apblob

synthetic_passilord. <handie> ’—Key AES decrypt ;

token

(if authentication is successful)

ZAE‘;‘: decrypt z Key / SHASI2 A]

——/ /

"application=id" I
applicationld

/ |

SYNTHETIC PASSWORD

some strings

as context..

applicationfd

"secdiscardable-
transform® Il secdis

hashed secret

[/dnta/mioc/vD(d/UBEr‘_kega/Ce/(uid>/currentlse£diacardAbIE}

L *Android
ecdiscardable SHAS12"
Il secdiscardable

‘ secdis_hash |l seccet Il seed? [

TAG_APPLICATION_ID

“Android key wWrapping
key generation
SHAS12" Il appld

AES decrypt

key (first 32 bytes)

[/data/misc/vaId/u&er_kesfw/ce/(uid>/current/encrgpted_key}

47

[/data/system_de/<uid>/epblob/<handley.pwd }

N, R, P, salt

credentials | W { token

n: /data/system_de/<vid>/spblob/<handle>.secdis]

“secdiscardable-
transform® Il secdis

[ldata/ﬂyﬂﬂn_dﬁ(uid)lbph(ob/<handle>.spblob

(if authentication is successful)

hashed secret

synthetic_passiord. <handle> ‘—Key%ecrgpt ;

AES decrypt L Key SHASI2 A | apphc'atw.n—;d 1
—/ "/ applicationld

SYNTHETIC PASSWORD

Bruteforce of the password

{ /data/system_de/<uvid>/spblob/<handle>.pwd]

|
N, R, P, salt

credentials

{ /data/system_de/ <uid>/spblob/<handle),secdis]

token "secdiscardable—

[/data/system_de/<uvid>/spblob/<handle>.spblob]

synthetic_password <handle> |—Ke9 AES decrypt ;

, "application—id"
@@Keg - E Il applicationld

SYNTHETIC
PASSWORD

(if authentication is successful)

transform® Il
secdis

/

fSHRSIé;

hashed secret

applicat.'snld

49

Bruteforce of the password

"application—id"
/AES de@'@y Il applicationld

SYNTHETIC
PASSWORD

[/data/system_de/<uvid>/spblob/<handle>.pwd]

I
N, R, P, salt

credentials

- S

token

(if authentication is successful)

hashed secret

applicationld

50

Bruteforce of the password

pwd = generate new password

token = scrypt(pwd, R, N, P, Salt)
Application_id = token || Prehashed value

Key = SHA512("application_id" || application_id)
AES_Decrypt(value_from_keymaster, key)

o WN o

51

Bruteforce of the password

pwd = generate new password

token = scrypt(pwd, R, N, P, Salt)
Application_id = token || Prehashed value

Key = SHA512("application_id" || application_id)
AES_Decrypt(value_from_keymaster, key)

o WN o

S python3 bruteforce-tee.py

workers will cycle through the last 5 chars

Found it: 1234

the plaintext is '1234'

Done in 18.031058311462402s

Throughput: 1478.448992816657 tries/s 52

Demo 1

https://docs.google.com/file/d/17VtjrAHl9ZwU2ny6Do9dK3U9bqQZyCYX/preview

Architecture w/ Trusted Chip

Non—-Secure World Secure World
Untrusted Untrusted Untrusted Trusted Trusted Trusted
App App App App App App

Security Chip

— Ly Rich 05 . x, Trusted 05
A o sihinr

v Vi VAR,

Protected hardware
resources

Separate hardware Secure Monitor

54

The Titan M Chip

e Security chip made by Google for Pixel phones

e From Pixel 3 to Pixel 5a

o In this PoC we use a Pixel 3a
o Titan M2 introduced from Pixel 6

e Based on Arm Cortex-M3
e Most of the code is divided into tasks
o Keymaster (Strongbox), Weaver, AVB, etc

° Separate memory and resources
o Communicates with Android on SPI bus

55

Trusted chip vs TrustZone

e |n TrustZone, secure and normal world run on the same CPU
o Shared hardware (cache, RAM)
o Side-channel attacks are possible (e.g. Rowhammer)

e Titan M relies on tamper-resistant hardware

e Separate firmware
o Limited in size
o Conceptually simple
o Isolated from the rest of the system

56

Communication with the chip

Protobuf
mV} HALS
stadeld
/ daemon
Titan M i 18P o per
I0CTL

lecccccccccceccsss========s==e==--

57

Memory Layout

0x80000
0X40000
‘Certs: ;
RO_A : - RW_A + SFS RO_B :Data: RW_B . SFS
: Data : : . : :
0x44000 0x70000 . OX8'l'|000 0Xa0000

58

// Read

e Key/Value storage

o Storedin slots
o In two differents places in the flash

message ReadRequest {

uint32 slot = 1;

bytes key = 2;
memory }
® 4 commands: GetConfig, Read,
message ReadResponse {
Write, Erase Error error = 1;
e |Implements throttling as well uint32 throttlemsec = 2;
bytes value = 3;
}

59

synthetic_password_<handle>

[/data/system_de/<uid>/spblob/<handle>.pud)

N,R, P, salt

credentials }— / scrypt o/

/data/system_de/<uid>/spblob/<handle>.spblob]

key AES decrypt ;

/ SHASI2

token Il hashed secret

f AES decrypt ,2 Key , SHASI2 /

SYNTHETIC PASSWORD

some strings
as context...

"application-id" Il
I

applicationld

secret

"weaver_key" Il token

“weayer_pwd” Il valve

se hash |l secret Il seed?

(/data/system_de/<vid>/spblob/<handle>.weaver]

|

T
slot

y Weaver Rend/

secure hu

[/data/misc/vc(d/uﬁeukegﬁ/ce/ (u:d>/current/5ecd=scardnble]

“Android
iecdiscardable SHASI2"
Il secdiscardable

[/data/misc/vald/ user_keys/ce/<uvid>/current/encrypted_key

TAG_APPLICATION_ID

appld

“Android key wrapping
key generation
SHAZ12" Il appld

AES decrypt

SHASI2
key (first 32 bytes)

60

(/data/system_de/<uvid>/spblob/<handle>.weaver]

| “weaver_key" Il token ellot

f SHASI2 / ur Weaver Read

secure hw
[/data/system_de/<uid>/spblob/<handle>.pwd J

N, R, P, salt

credentials } / scrupt /:

—“wenver_pud' Il value

hashed secret

token Il hashed secret

applicationld

61

CE key derivation with Weaver

- . [/data/system_de/<uid>/ spblob/(handle).ueaver]
weaver_key |l - i

token | gpTTmmmmmmeess slot

l /data/sgstem_de/<uid)/spb(ob/<handle>.pwcg

l —
N, R, P, salt HASIZ

credentials token ST (TN,

"weaver_pwd” |l
value

[oHR12/

hashed secret

token Il hashed /

secret

| applicationld | 62

PoC on Google Pixel

We consider the device being already rooted

Weaver relies on the security chip Titan M

Here we exploit CVE-2022-20233 to execute code on the chip
Out-of-bounds write of 1 byte to 0x1

o Can be repeated multiple times
o Huge constraints on the offset
o We managed to overwrite a global field and cause another corruption

e Full exploit write-up in our blog®

[8]: https://blog.quarkslab.com/attacking-titan-m-with-only-one-byte.html

63

https://source.android.com/docs/security/features/trusty

Nosclient and the leak command

e \We built a client to communicate with Titan M, nosclient

e “Leak” feature:
o ./nosclient leak <address> <size>
0 Read <size> bytes from <address>
= Arbitrary read in Titan M’'s memory
e Weaver slots and values are stored in flash

o Reverse engineering to understand a memory range
o Then search for 16 bytes digests
o Weaver Write and Read help out

64

Our

Strategy

- s {/data/sgstem_de/<u:d>/5pblob/<hand(e>.weaver]
weaver_key |l - |

token proTToTIeee B aaes ;

{ /data/SQstem_de/<uid>/spb(ob/<handle>,pwi] | 22 secureihw
| — Weaver
N, R, P, salt HASIZ Key— Read

credentials |

- token

1. Leak the Weaver key
2. Use it to compare our generated credentials

65

Bruteforce of the password

pwd = generate new password

token = scrypt(pwd, R, N, P, Salt)
key = SHA512("weaver_key" || token)
Compare with leaked Weaver key

H WN o

S python3 bruteforce.py

workers will cycle through the last 5 chars
Found it: 1106

the plaintext is'1106'

Done in 15.063793659210205 s

Throughput: 1491.722504195411 tries/s

66

Demo 2

https://docs.google.com/file/d/1uOs9DGXk6zD6CIwHDwXqvuPqoSXWTA3D/preview

FBE is very well designed

Ingredients from “everywhere” are used to derive the key

o Files owned by privileged users
o TEE-protected keys
o Weaver values (when available)

Multiple bugs needed to break it

o Or avery powerful one
You still need to bruteforce credentials in the end

“my very secret password example for REcon 2023”
will be hard to guess)

68

Thank you!

@DamianoMelotti

contact@quarkslab.com

Quarkslab

@max_r_b

https://twitter.com/@DamianoMelotti
https://twitter.com/@max_r_b

Little Kernel

LK: Android bootloader based on Little Kernel
e Allows to boot Android or other modes (Recovery)
e Loads TZAR image in TEEGRIS

e Implements Android Verified Boot v2

o Verification of Android images
o Involving boot and vbmeta images
o Anti-rollback

70

TZAR image

— bin
I: 00000005-0005-0005-0505-050505050505
00000007-0007-0007-0707-070707070707

TrustZone ARchive: contains a root filesystem [etc
propd
. . L— build_sl.pro
e Shared libraries oinitd

crypto.tzrc
init.release.tzrc

[Blﬂal’leS init.tzrc

— 1ib32

L tZlnltd (|n|t blnal‘y) — libaudit_aux.so

— libc++.so

® root_task L libes

— libaudit_aux.so
— libc++.so0

— sbin

— propd

— root_task

— tzinitd

71

Patching TEEGRIS

Our final goal is to run a modified Gatekeeper TA
e Patch userboot.so from the teel partition
o Disable verification of TZAR image
e Patch root_task from the TZAR image
o Disable verification of TA
e Patch the Gatekeeper TA
o Accept any credentials and return a valid auth token

72

