

What the (s)hell is
this abomination??!

Reverse engineering of
black-box binaries with
symbolic and concolic
execution techniques

“Why huge control-flow-graphs don’t scare me anymore”

REcon Montreal 2022 | Jannis Kirschner

or

Jannis Kirschner

● Independent Vulnerability Researcher
● Reverse Engineer & Exploit Developer
● Passionate CTF Player

● Found major vulns in e-voting systems,
wifi routers and embedded devices with
my research team suid.ch

Views are my own and not related to my employer
@xorkiwi

/in/janniskirschner

Who are you?

Example: z3_robot (SharkyCTF2020)

https://ctftime.org/event/1034I made a robot that can only communicate
with "z3". He locked himself and now he is
asking me for a password !

Creator : Nofix
Pts: 189

Static Analysis

x86_64 ELF Binary

Not Stripped

Main function reads 24
chars via stdin and
passes to “check_flag”
function for validation

Trying to bruteforce

Binary asks for a 24
characters long passphrase

Brute-forcing it would be
infeasible!

Sooooo…how can we solve such challenge?

Solving it manually

“check_flag” routine
contains a lot of
constraints to check for
flag validity

We can extract them by
hand

Solving it manually

Now we got a nice list with all
the constraints that we can
work with

All constraints extracted
from decompiled
pseudocode

Solving it manually
 (param_1[0x14] ^ 0x2b) == param_1[7]
 param_1[0x15] - param_1[3] == -0x14
 param_1[2] >> 6 == '\0'
 param_1[0xd] == 0x74 <- lower case t
 (param_1[0xb] & 0x3fffffffU) == 0x5f
 (param_1[6] ^ 0x53) == param_1[0xe]
 param_1[8] == 0x7a <- lower case z
 param_1[0x10] - param_1[7] == 0x14
 param_1[0x13] - param_1[0x15] == 0x13 <- 0x13 + 0x5f = 0x72 (lower case r)
 param_1[0xc] == 0x5f <- underscore
 param_1[0xf] >> 1 == '/'
 param_1[0x14] == 0x74 <- lower case t
 param_1[4] == 0x73 <- lower case s
 (param_1[0x17] ^ 0x4a) == *param_1
 (param_1[6] ^ 0x3c) == param_1[0xb]
 param_1[0x15] == 0x5f <- underscore

_ _ _ _ s _ _ _ z _ _ _ __ t _ _ _ _ _ r t __ _ _

Overview over z3

The z3 theorem prover is an open
source SMT solver developed by
Microsoft Research

It’s used to try and determine whether a
mathematical formula is satisfiable
using the boolean satisfiability (SAT)
problem

SMT solving builds the bases for most
modern symbolic execution frameworks Architecture diagram of z3

A logic puzzle

There is an island inhabited by knights
and knaves. Knights always tell the
truth while knaves always lie.

Two people stand in front of you, Red
and Blue. Blue tells you “we are both
knaves”...who is the knight?

We are both
knaves!

A logic puzzle

Blue cannot be the knight. If blue was
a knight he would’ve told a lie which is
infeasible since knights cannot lie.

Our Knight

SAT/SMT solving

We can ask them questions like:

 “Given three booleans a,b,c - can the following formula return true: ”
 (a and not b) or (not a and c)

SAT/SMT solving

We can ask them questions like:

 “Given three booleans a,b,c - can the following formula return true: ”
 (a and not b) or (not a and c)

SAT: Fills a,b,c with ones and zeroes to prove SAT

SAT/SMT solving

We can ask them questions like:

 “Given three booleans a,b,c - can the following formula return true: ”
 (a and not b) or (not a and c)

SAT: Fills a,b,c with ones and zeroes to prove SAT

SMT: Fills a,b,c with new formulas using integers, strings & new functions

SAT Solving SMT Solving

SAT solvers solve constraints
written in propositional logic.

SMT solvers are more powerful
and extend them by solving
constraints written in predicate
(first-order) logic with quantifiers.

Sentences/Statements are
propositions (think knights and
knaves). Propositional logic
studies how they interact
irregardless of the contents of
the statement -> only logical
connections.

Predicate logic extends
propositional logic but replaces
atomical elements (propositional
letters) by properties to better
describe the subject of a
sentence. A quantified predicate
is a proposition (assigned values
to variables)

If you wanna deep-dive into the maths:

pip install z3-solver

Automating with SMT Solvers

Creating bitvectors
for keyspace

Placing all the
extracted constraints
by hand

Automating with SMT Solvers

Check if constraints
are satisfiable

Compute model and
convert solved
bitvector integers to
characters

Display flag

Solution script

~100 Lines of Code

91 Constraints

Any guesses to how many lines of code we can reduce it?

4
lines of code

We can do the same in about

Efficiency Comparison

Implementation

Bruteforce Solving by hand SMT Symbolic Execution

Computation

Implementation

Implementation

Computation

Implementation

Computation

…

Problem State Recap

● Crackme input has to meet a lot of
constraints

● Brute-force is infeasible
→ We extracted constraints and
 manually searched for matches

● This is slow and time consuming
→ We automated the constraint solving
 with SMT solvers

● Extracting constraints by hand takes a long
time

→ We additionally automated constraint
 extraction with symbolic execution

Solving by hand

SMT Solving

Symbolic Execution

Bruteforce

Symbolic Execution
Introducing

Symbolic Execution is a

“System that walks through all possible paths of a program to
determine what inputs cause each of them to execute”

We want to find the input

leading to this state

Symbolic Execution is a

“System that walks through all possible paths of a program to
determine what inputs cause each of them to execute”

This input leads to
the correct state

We want to find the input

leading to this state

Concrete Execution

Program reads concrete input
value to size

Input gets used for conditional
branch and evaluated

Either a string is written to
stdout or the crash function is
called

void ValidSize()
{

var size = read()
if (size < 5):

printf(“Works”)
else:

crash()
}

Concrete Execution

Program reads concrete input
value to size

Input gets used for conditional
branch and evaluated

Either a string is written to
stdout or the crash function is
called

void ValidSize()
{

var size = read() ← 4
if (size < 5):

printf(“Works”)
else:

crash()
}

Concrete Execution

Program reads concrete input
value to size

Input gets used for conditional
branch and evaluated

Either a string is written to
stdout or the crash function is
called

void ValidSize()
{

var size = read() ← 4
if (size < 5): ← True

printf(“Works”)
else:

crash()
}

Concrete Execution

Program reads concrete input
value to size

Input gets used for conditional
branch and evaluated

Either a string is written to
stdout or the crash function is
called

void ValidSize()
{

var size = read() ← 4
if (size < 5): ← True

printf(“Works”) ← Executed
else:

crash()
}

“Static” Symbolic Execution

Instead of concrete input
symbolic value is assigned to
size

Symbolic value can take any
value so proceeds with both
paths by “forking”

After crash/normal termination
computes concrete value by
smt solving the accumulated
path constraints

void ValidSize()
{

var size = read()
if (size < 5):

printf(“Works”)
else:

crash()
}

“Static” Symbolic Execution

Instead of concrete input
symbolic value is assigned to
size

Symbolic value can take any
value so proceeds with both
paths by “forking”

After crash/normal termination
computes concrete value by
smt solving the accumulated
path constraints

void ValidSize()
{

var size = read() ← λ
if (size < 5):

printf(“Works”)
else:

crash()
}

“Static” Symbolic Execution

Instead of concrete input
symbolic value is assigned to
size

Symbolic value can take any
value so proceeds with both
paths by “forking”

After crash/normal termination
computes concrete value by
smt solving the accumulated
path constraints

void ValidSize()
{

var size = read() ← λ
if (size < 5):

printf(“Works”) ← λ < 5
else:

crash() ← λ >= 5
}

“Static” Symbolic Execution

Instead of concrete input
symbolic value is assigned to
size

Symbolic value can take any
value so proceeds with both
paths by “forking”

After crash/normal termination
computes concrete value by
smt solving the accumulated
path constraints

void ValidSize()
{

var size = read() ← λ
if (size < 5):

printf(“Works”) ← λ < 5
else:

crash() ← λ >= 5
}

The problem with static symbolic
execution…

It’s difficult for static symbolic execution to
reach deep into the execution tree

Path selection heuristics might choose paths
that won’t advance propagation

For example in a loop depending on a
symbolic variable it might not find the exit

“Dynamic” Concolic Testing

Concrete Testing
 + = Concolic Testing
Symbolic Execution

“Dynamic” Concolic Testing

Concrete Testing
 + = Concolic Testing
Symbolic Execution

Seed-driven concolic execution is able to favor paths and reach deep into the execution tree

Symbolic vs Concolic Execution

Explores all possible paths in a binary Explores adjacent paths along a main
branch based on seed input

● Main Path
● Adjacent Paths1.

2. 3.

4. 5.

6. 1.

2.

3.4.

5.

6.

“Dynamic” Concolic Testing

Run program with a concrete
(random) seed input

Collect the path constraint

Negate the last (not already
negated) constraint

SMT solve to inverse the latest
branch and discover a new path

Repeat until no new paths are
found

void ValidSize()
{

var size = read()
if (size < 5):

printf(“Works”)
else:

crash()
}

“Dynamic” Concolic Testing

Run program with a concrete
(random) seed input

Collect the path constraint

Negate the last (not already
negated) constraint

SMT solve to inverse the latest
branch and discover a new path

Repeat until no new paths are
found

void ValidSize()
{

var size = read() ← 4
if (size < 5): ←True

printf(“Works”)
else:

crash()
}

“Dynamic” Concolic Testing

Run program with a concrete
(random) seed input

Collect the path constraint

Negate the last (not already
negated) constraint

SMT solve to inverse the latest
branch and discover a new path

Repeat until no new paths are
found

void ValidSize()
{

var size = read() ← 4
if (size < 5): ←True

printf(“Works”) ←λ < 5
else:

crash()
}

“Dynamic” Concolic Testing

Run program with a concrete
(random) seed input

Collect the path constraint

Negate the last (not already
negated) constraint

SMT solve to inverse the latest
branch and discover a new path

Repeat until no new paths are
found

void ValidSize()
{

var size = read() ← 4
if (size < 5): ←True

printf(“Works”) ←λ < 5
else: ←¬(λ < 5)

crash()
}

“Dynamic” Concolic Testing

Run program with a concrete
(random) seed input

Collect the path constraint

Negate the last (not already
negated) constraint

SMT solve to inverse the latest
branch and discover a new path

Repeat until no new paths are
found

void ValidSize()
{

var size = read() ← 4
if (size < 5): ←True

printf(“Works”) ←λ < 5
else: ←¬(λ < 5)

crash() ←λ >= 5
}

“Dynamic” Concolic Testing

Run program with a concrete
(random) seed input

Collect the path constraint

Negate the last (not already
negated) constraint

SMT solve to inverse the latest
branch and discover a new path

Repeat until no new paths are
found

void ValidSize()
{

var size = read() ← 4
if (size < 5): ←True

printf(“Works”) ←λ < 5
else: ←¬(λ < 5)

crash() ←λ >= 5
}

Program Validation Tradeoffs

Cost (Computational Resources/Time/Manual Labor)

P
at

hs
 D

is
co

ve
re

d

“Solid”
Concrete Testing

“Liquid”
Symbolic Execution

“Slushie”
Concolic Testing

Manual Static Analysis

Where is Symbolic Execution Used?

Symbolic Execution Frameworks

Novel Tools (GUI’s, Attack Surface
Analysis, Taint Analysis, Rop Chain
Generation)

Integrations into your favorite reverse
engineering software

Augmented Fuzzers

Different symbolic execution frameworks

Full System: s2e

User: Angr
 Triton

Manticore

Code: KLEE

Different symbolic execution frameworks

Full System: s2e

User: Angr
 Triton

Manticore

Code: KLEE

S²E: The Selective Symbolic Execution Platform

Modular library that enriches virtual machines with
symbolic execution & program analysis capabilities.

Runs entire software stack including applications,
libraries, kernel, firmware and drivers (full system
emulation).

Extensible and able to analyze large, complicated
software like device drivers that have a lot of
complex interactions.

S2E Architecture Diagram

S2E Walkthrough

● Build with s2e build
● Edit s2e-config.lua
● Run launch-s2e.sh

state->
constraints
 .addConstraint()

OSMonitor for
example has
events
for process
creation, module
loading/unloading

onTranslateInstruct
ionStart and
executionSignal
can trigger on
certain
address (for PID
load module and
calculate relative)

s2e new_project libs2eplugins/src/
Plugins/yourplugin.cpp

s2e()->
getExecutor()->
terminateStateEarly()

ProcessExecution-D
etector plugin can
track single process

!s2e()->
getExecutor()->g
etSymbolic-
Solution()

Different symbolic execution tools

Full System: s2e

User: Angr
 Triton

Manticore

Code: KLEE

Angr/Triton/Manticore

User-level dynamic binary analysis &
symbolic execution frameworks (often
based on z3).

Able to lift & instrument a number of binary
architectures like x86, x86-64, AArch64,
EVM Smart Contracts, ARM, MIPS,
WASM,PowerPC (yes, even BrainFuck)

Great mix between convenience, speed
and instrumentability - perfect for CTF

Triton Architecture

User-Level Workflow

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Setting up:

● Target address
● Target condition

(value in stdout)

Setting up:

● Avoid addresses
● Avoid condition
● Check coverage

 Limiting constraints:

● Human readable
● Prefixing/Suffixing
● Patterns

Use functions like
SimProcedures &
Hooking to mock
library/complex

functions

Run tool and retrieve
input/output

User-Level Workflow

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Setting up:

● Target address
● Target condition

(value in stdout)

Setting up:

● Avoid addresses
● Avoid condition
● Check coverage

 Limiting constraints:

● Human readable
● Prefixing/Suffixing
● Patterns

Use functions like
SimProcedures &
Hooking to mock
library/complex

functions

Run tool and retrieve
input/output

Workshop Content

Different symbolic execution tools

Full System: s2e

User: Angr
 Triton

Manticore

Code: KLEE

KLEE

LLVM-based symbolic execution engine
for code-level analysis

Requires target function to be re-/coded
in C and instrumented

High performance due to smaller
overhead compared with other
frameworks, as well as nifty features
such as coverage, test case and path
exporting KLEE Architecture Diagram

KLEE Walkthrough

int main()
{
 int inp, result;
 klee_make_symbolic(&inp,
 sizeof(inp), "inp");
 result = extracted_routine(inp);
 if (result == 1337)
 klee_assert(0);
}

int main()
{
 char sym[your_size];
 klee_make_symbolic(sym,
 sizeof sym, "sym");
 return extracted_routine(sym);
}

clang -emit-llvm \
 -g -o test.ll -c test.c klee test.ll ktest-tool --write-ints \

 klee-last/test000001.ktest“File” -> “Produce file” ->
Create C file…

What framework
should I use?

Do you want to analyze complex
systems & drivers?

Do you want to quickly analyze c
source code?

Do you want to analyze smart
contracts?

Do you require C++ bindings for
user mode analysis?

S²E

KLEE

Manticore

TritonAngr

yesno

no

no

no

yes

yes

yes

What framework
should I use?

Do you want to analyze complex
systems & drivers?

Do you want to quickly analyze c
source code?

Do you want to analyze smart
contracts?

Do you require C++ bindings for
user mode analysis?

S²E

KLEE

Manticore

TritonAngr

yesno

no

no

no

yes

yes

yes

A wonderful solution for most generic cases & CTF

Tools/Angr-Management

The official GUI to angr,
useful for reverse
engineering and binary
analysis

https://github.com/angr/angr-management

Tools/one_gadget

Search for magic gadgets/one
gadgets in a target binary.
(Single rop gadget to
execve('/bin/sh', NULL, NULL))

https://github.com/david942j/one_gadget

Tools/symbiotic

https://github.com/staticafi/symbiotic

Program validation and vulnerability
discovery (assertion violations,
invalid pointer dereference, double
free, memory leaks, etc…) using the
KLEE framework

Integrations/AngryGhidra

A plugin that combines
the convenience of
ghidra with the power
of the angr framework

https://github.com/Nalen98/AngryGhidra

Integrations/IDAngr

Load and explore IDA
debugger state into
angr (using angrdbg)

https://github.com/andreafioraldi/IDAngr

Integrations/r4ge

We all like radare2/rizin, now
you can use angr functionalities
straight from your favorite
reverse engineering framework

https://github.com/gast04/r4ge

Fuzzing/Driller

Augments the afl-fuzz
capabilities with symbolic
execution to discover new,
interesting paths

https://github.com/shellphish/driller

Fuzzing/KleeFL

Similar to Driller but with
KLEE as the symbolic
execution provider

https://github.com/julieeen/kleefl

Fuzzing/LibKluzzer

https://link.springer.com/content/pdf/10.1007/978-3-030-45234-6_29.pdf

A LibFuzzer extension using
symbolic execution via the KLEE
framework

Limitations

Non-deterministic
control flow

State explosion
causing exponential
growth

Cryptographic
primitives are still
valid

Symbolic Execution Recap

● Symbolic execution tries to find inputs that cause
a program part to execute

● It works by:
 - traversing an execution tree
 - accumulating constraints at each branch
 - solving them using an SMT solver

● Concolic execution is seed-driven symbolic
execution that trades higher performance for
potential coverage loss

● There are many symbolic execution frameworks,
integrations and tools

Further Readings

Demo

What we’ll learn at the Workshop

● The user-level symbolic execution workflow
in-depth

● Solve practical challenges using the angr
framework

● How to tackle performance issues

● Gaining a CTF edge via implicit constraints

● Exporting code coverage from angr runs

@xorkiwi

/in/janniskirschner
Complete slides will be shared at the workshop :)

Reverse engineering of
black-box binaries with
symbolic and concolic
execution techniques

“Why huge call-graphs don’t scare me anymore”

REcon Montreal 2022 | Jannis Kirschner

or

Reverse engineering of
black-box binaries with
symbolic and concolic
execution techniques

“Why huge call-graphs don’t scare me anymore”

REcon Montreal 2022 | Jannis Kirschner

or

Workshop

angr

Developed by UCSB

Won 3rd in DARPA
Cyber Grand Challenge

Used for reversing,
rop-chain building,
fuzzing and more

Extensive Binary Analysis Framework

Convenient Python3 Interface

Leverages VEX IR
(x86, ARM, MIPS, PowerPC...)

Symbolic + Concolic Execution

Let’s recap for a second

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Setting up:

● Target address
● Target condition

(value in stdout)

Setting up:

● Avoid addresses
● Avoid condition
● Check coverage

 Limiting constraints:

● Human readable
● Prefixing/Suffixing
● Patterns

Use functions like
SimProcedures &
Hooking to mock
library/complex

functions

Run tool and retrieve
input/output

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Basic example
int main()
{
 char input[0x19];
 sym.imp.fgets(input, 0x19, _reloc.stdin);

 int result = check_flag(input);

 if (result == 0) { puts(“Solved”); }
 else { puts(“Nope”); }

 return 0;
}

Validate input
(constraint check
function)

Print result

Provide input

Basic example
import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

Initialize project

Basic example
import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

simgr = proj.factory.simgr()

Initialize project

Initialize simulation manager

Basic example
import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

simgr = proj.factory.simgr()

simgr.explore(find=0x00001407)

Initialize project

Initialize simulation manager

Explore until required address

Basic example
import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

simgr = proj.factory.simgr()

simgr.explore(find=0x00001407)

print(simgr.found[0].posix.dumps(0))

Initialize project

Initialize simulation manager

Explore until required address

Print concretized result

int main()
{

 char input[0x19];
 sym.imp.fgets(input, 0x19, _reloc.stdin);

 int result = check_flag(input);

 if (result == 0) { puts(“Solved”); }
 else { puts(“Nope”); }

 return 0;
}

Managing state

Validate input
(constraint check
function)

Print result

Provide input

int main()
{
 complicated_timewaste_function(); //sleeps forever

 char input[0x19];
 sym.imp.fgets(input, 0x19, _reloc.stdin);

 int result = check_flag(input);

 if (result == 0) { puts(“Solved”); }
 else { puts(“Nope”); }

 return 0;
}

Managing state

Time waste
function

Validate input
(constraint check
function)

Print result

Provide input

Managing state

Up to now the initial state was
always defined as the binary
entry point

We can also specify a custom
start address to speed up
execution:

- Save time by directly
running main

- Skip large function
- Define custom input

start_addr = 0x00001337
initial_state = proj.factory.blank_state(addr=start_addr)
simgr = proj.factory.simgr(initial_state)

Managing state

Up to now the initial state was
always defined as the binary
entry point

We can also specify a custom
start address to speed up
execution:

- Save time by directly
running main

- Skip large function
- Define custom input

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

start_addr = 0x00001337
initial_state = proj.factory.blank_state(addr=start_addr)
simgr = proj.factory.simgr(initial_state)

simgr.explore(find=0x00001407)

print(simgr.found[0].posix.dumps(0))

What if input is...

...complex format string?

...consisting of multiple parameters?

...over memory/file/network?

Custom Symbol Injection

password = claripy.BVS('password', 8*input_length)

Registers:
 initial_state.regs.eax = password
 initial_state.regs.ebx = password
 initial_state.regs.edx = password

Memory:
initial_state.memory.store(password_address, password, endness=project.arch.memory_endness)

Stack:
initial_state.stack_push(password)

Argv:
initial_state = project.factory.entry_state(args=[‘binary_name’, password])

int main()
{

int input1;
int input2;

scanf("%x %x", &input1, &input2);

int result1 = check_flag1(input1);
int result2 = check_flag2(input2):

if ((result1 == 0) && (result2 == 0)) { puts(“Solved”); }
else { puts(“Nope”); }

return 0;
}

Symbolic Stack

Provide complex
format string
input

Validate input 1
function

Validate input 2
function

Print result

Symbolic Stack

start_addr = 0x000013cc
initial_state = proj.factory.blank_state(addr=start_addr)

Set start address
after input was
provided

Symbolic Stack

start_addr = 0x000013cc
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp

Set start address
after input was
provided
Initialize stack
frame

Symbolic Stack

start_addr = 0x000013cc
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp

password0 = claripy.BVS('password0', 4*8)
password1 = claripy.BVS('password1', 4*8)

Set start address
after input was
provided
Initialize stack
frame
Define password
bitvectors

Symbolic Stack

start_addr = 0x000013cc
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp

password0 = claripy.BVS('password0', 4*8)
password1 = claripy.BVS('password1', 4*8)

padding_length_in_bytes = 0x08
initial_state.regs.esp -= padding_length_in_bytes

Set start address
after input was
provided
Initialize stack
frame
Define password
bitvectors
Align stack pointer

Symbolic Stack

start_addr = 0x000013cc
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp

password0 = claripy.BVS('password0', 4*8)
password1 = claripy.BVS('password1', 4*8)

padding_length_in_bytes = 0x08
initial_state.regs.esp -= padding_length_in_bytes

initial_state.stack_push(password0)
initial_state.stack_push(password1)

Set start address
after input was
provided
Initialize stack
frame
Define password
bitvectors
Align stack pointer
Push password
bitvectors to stack

Symbolic Stack

start_addr = 0x000013cc
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp

password0 = claripy.BVS('password0', 4*8)
password1 = claripy.BVS('password1', 4*8)

padding_length_in_bytes = 0x08
initial_state.regs.esp -= padding_length_in_bytes

initial_state.stack_push(password0)
initial_state.stack_push(password1)

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=0x00001407)

solution0 = (simgr.found[0].solver.eval(password0))
solution1 = (simgr.found[0].solver.eval(password1))

print('{0},{1}'.format(solution0,solution1))

Set start address
after input was
provided
Initialize stack
frame
Define password
bitvectors
Align stack pointer
Push password
bitvectors to stack
Solve bitvectors

Symbolic Stack
import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

start_addr = 0x000013cc
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp

password0 = claripy.BVS('password0', 4*8)
password1 = claripy.BVS('password1', 4*8)

padding_length_in_bytes = 0x08
initial_state.regs.esp -= padding_length_in_bytes

initial_state.stack_push(password0)
initial_state.stack_push(password1)

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=0x00001407)

solution0 = (simgr.found[0].solver.eval(password0))
solution1 = (simgr.found[0].solver.eval(password1))

print'{0},{1}'.format(solution0,solution1))

Set start address
after input was
provided
Initialize stack
frame
Define password
bitvectors
Align stack pointer
Push password
bitvectors to stack
Solve bitvectors

Set state after user
input

Emulate stack
frame

Solve/concretize
output

Symbolic Filesystem

Validate input
(constraint check
function)

Print result

Provide input via
file

int main()
{
 FILE *fp;
 char input[0x19];

 fp = fopen("./inputfile.txt", "r");
 fgets(input, 0x19, (FILE*)fp);
 fclose(fp);

 int result = check_flag(input);

 if (result == 0) { puts("Solved"); }
 else { puts("Nope"); }

 return 0;
}

Symbolic Filesystem

start_addr = 0x000013ccSet start address before input

Symbolic Filesystem

start_addr = 0x000013cc

filename = './inputfile.txt'
sym_file_size = 64

password = claripy.BVS('password', sym_file_size * 8)

Set start address before input

Define symbolic bitvector

Symbolic Filesystem

start_addr = 0x000013cc

filename = './inputfile.txt'
sym_file_size = 64

password = claripy.BVS('password', sym_file_size * 8)

password_file = angr.SimFile(filename,
content = password,
size = sym_file_size
)

Set start address before input

Define symbolic bitvector

Define symbolic file with
bitvector as content

Symbolic Filesystem

start_addr = 0x000013cc

filename = './inputfile.txt'
sym_file_size = 64

password = claripy.BVS('password', sym_file_size * 8)

password_file = angr.SimFile(filename,
content = password,
size = sym_file_size
)

initial_state = proj.factory.blank_state(
addr = start_addr,
fs = {filename: password_file}

)

Set start address before input

Define symbolic bitvector

Define symbolic file with
bitvector as content

Define initial state with start
address and filesystem

Symbolic Filesystem

start_addr = 0x000013cc

filename = './inputfile.txt'
sym_file_size = 64

password = claripy.BVS('password', sym_file_size * 8)

password_file = angr.SimFile(filename,
content = password,
size = sym_file_size
)

initial_state = proj.factory.blank_state(
addr = start_addr,
fs = {filename: password_file}

)

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=0x00001407)

solution = (simgr.found[0].solver.eval(password,cast_to=bytes))
print(solution)

Set start address before input

Define symbolic bitvector

Define symbolic file with
bitvector as content

Define initial state with start
address and filesystem

Solve symbolic memory

Symbolic Filesystem

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}

)

start_addr = 0x000013cc

filename = './inputfile.txt'
sym_file_size = 64

password = claripy.BVS('password', sym_file_size * 8)

password_file = angr.SimFile(filename,
content = password,
size = sym_file_size
)

initial_state = proj.factory.blank_state(
addr = start_addr,
fs = {filename: password_file}

)

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=0x00001407)

solution = (simgr.found[0].solver.eval(password,cast_to=bytes))
print(solution)

Set start address before input

Define symbolic bitvector

Define symbolic file with
bitvector as content

Define initial state with start
address and filesystem

Solve symbolic memory

Set state before
user input Emulate filesystem Solve/concretize

output

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Setting up:

● Target address
● Target condition

(value in stdout)

Target state definition

Define target address(es)

Explore until solution is found
or whole graph was explored

simgr = proj.factory.simgr()
simgr.explore(find=0x00001407)

Target state definition

Define target address(es)

Explore until solution is found
or whole graph was explored

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

simgr = proj.factory.simgr()
simgr.explore(find=0x00001407)

print(simgr.found[0].posix.dumps(0))

Can also be value

Sometimes your target is not
necessarily an address

You can also specify arbitrary
conditions for finding/avoiding
conditions

A common use-case is setting
your target based on values
written to stdout

def is_successful(state):
 stdout_output = state.posix.dumps(sys.stdout.fileno())
 return 'Solved' in stdout_output

simgr.explore(
 find=is_successful
)

Can also be value

Sometimes your target is not
necessarily an address

You can also specify arbitrary
conditions for finding/avoiding
conditions

A common use-case is setting
your target based on values
written to stdout

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

simgr = proj.factory.simgr()

def is_successful(state):
 stdout_output = state.posix.dumps(sys.stdout.fileno())
 return 'Solved' in stdout_output

simgr.explore(
 find=is_successful
)

print(simgr.found[0].posix.dumps(sys.stdin.fileno()))

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Setting up:

● Target address
● Target condition

(value in stdout)

Setting up:

● Avoid addresses
● Avoid condition
● Check coverage

State Explosion

Branches double per condition

Growth of problem is exponential
relating to program size

Slows down symbolic execution

Just exclude, it’s easy

A great way to reduce complexity
is by entirely avoiding unneeded
paths

Selecting those paths works best
with reverse engineering & human
intuition

simgr.explore(find=0x00001407, avoid=[0x0000142d])

Just exclude, it’s easy import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0})

simgr = proj.factory.simgr()

simgr.explore(find=0x00001407, avoid=[0x0000142d])

print(simgr.found[0].posix.dumps(0))

A great way to reduce complexity
is by entirely avoiding unneeded
paths

Selecting those paths works best
with reverse engineering & human
intuition

Code Coverage Collection Process

Retrieve Coverage
Export basic block
coverage from
angr exploration

Disassemble/Decompile to
discover bottlenecks

Load into
Lighthouse

Use “File” -> “Load file” ->
“Load coverage file/batch…”

● Avoid bottleneck code
● Use Hooks & SimProcedures
● Manually apply constraints

Fix Bottlenecks
Investigate

Bottlenecks

Code Coverage def get_coverage(*args, **kwargs):
 sm = args[0]
 stashes = sm.stashes
 i = 0
 for simstate in stashes['active']:
 state_history = ''

 for addr in simstate.history.bbl_addrs.hardcopy:
 write_address = hex(addr)
 state_history += '{0}\n'.format(write_address)
 raw_syminput = simstate.posix.stdin.load(0, state.posix.stdin.size)

 syminput = simstate.solver.eval(raw_syminput, cast_to=bytes)
 print(syminput)
 ip = hex(state.solver.eval(simstate.ip))
 uid = str(uuid.uuid4())
 sid = str(i).zfill(5)
 filename = '{0}_active_{1}_{2}_{3}'.format(sid,syminput, ip, uid)

 with open(filename, 'w') as f:
 f.write(state_history)
 i += 1

simgr.explore(find=0x00001407, step_func=get_coverage)

Load into lighthouse to find bottlenecks…

…and guide angr into resolving them

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Setting up:

● Target address
● Target condition

(value in stdout)

Setting up:

● Avoid addresses
● Avoid condition
● Check coverage

 Limiting constraints:

● Human readable
● Prefixing/Suffixing
● Patterns

Limiting Constraints

Import the constraint solver engine

import angr, claripy

Limiting Constraints

Import the constraint solver engine

Create new symbolic password bitvector

Create state and pass bitvector to it (argv,
symbolic stack, symbolic file...)

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

password = claripy.BVS('password', 8*8) #8 chars
initial_state = proj.factory.entry_state(args=['crackme', password])

Limiting Constraints

Import the constraint solver engine

Create new symbolic password bitvector

Create state and pass bitvector to it (argv,
symbolic stack, symbolic file...)

Add custom constraints to bitvector:
- Only printable characters

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

password = claripy.BVS('password', 8*8) #8 chars
initial_state = proj.factory.entry_state(args=['crackme', password])

only printable characters
for byte in password.chop(8):
 initial_state.add_constraints(byte != '\x00') # null
 initial_state.add_constraints(byte >= ' ') # '\x20'
 initial_state.add_constraints(byte <= '~') # '\x7e'

Limiting Constraints

Import the constraint solver engine

Create new symbolic password bitvector

Create state and pass bitvector to it (argv,
symbolic stack, symbolic file...)

Add custom constraints to bitvector:
- Only printable characters
- Password starts with “CTF{“

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

password = claripy.BVS('password', 8*8) #8 chars
initial_state = proj.factory.entry_state(args=['crackme', password])

only printable characters
for byte in password.chop(8):
 initial_state.add_constraints(byte != '\x00') # null
 initial_state.add_constraints(byte >= ' ') # '\x20'
 initial_state.add_constraints(byte <= '~') # '\x7e'

starts with CTF{
initial_state.add_constraints(password.chop(8)[0] == 'C')
initial_state.add_constraints(password.chop(8)[1] == 'T')
initial_state.add_constraints(password.chop(8)[2] == 'F')
initial_state.add_constraints(password.chop(8)[3] == '{')

Limiting Constraints

Import the constraint solver engine

Create new symbolic password bitvector

Create state and pass bitvector to it (argv,
symbolic stack, symbolic file...)

Add custom constraints to bitvector:
- Only printable characters
- Password starts with “CTF{“

Solve bitvector to get password

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

password = claripy.BVS('password', 8*8) #8 chars
initial_state = proj.factory.entry_state(args=['crackme', password])

only printable characters
for byte in password.chop(8):
 initial_state.add_constraints(byte != '\x00') # null
 initial_state.add_constraints(byte >= ' ') # '\x20'
 initial_state.add_constraints(byte <= '~') # '\x7e'

starts with CTF{
initial_state.add_constraints(password.chop(8)[0] == 'C')
initial_state.add_constraints(password.chop(8)[1] == 'T')
initial_state.add_constraints(password.chop(8)[2] == 'F')
initial_state.add_constraints(password.chop(8)[3] == '{')

simgr = proj.factory.simgr(initial_state)

simgr.explore(find=0x00001407)

print(simgr.found[0].solver.eval(password,cast_to=bytes))

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Setting up:

● Target address
● Target condition

(value in stdout)

Setting up:

● Avoid addresses
● Avoid condition
● Check coverage

 Limiting constraints:

● Human readable
● Prefixing/Suffixing
● Patterns

Use functions like
SimProcedures &
Hooking to mock
library/complex

functions

SimProcedures

You can use SimProcedures to
overwrite binary functions with
python code

This helps with controlling
complicated, low-level library
functions

For example useful to overwrite
secure PRNG with insecure
implementation/static values

class NewOverwrittenFunc(angr.SimProcedure):
 # arguments automatically extracted
 def run(self, argc, argv):
 if argc > 0:
 print('This is python code now {0}'.format(argv[0]))
 return 0
 return 1

proj.hook_symbol('function_to_overwrite', NewOverwrittenFunc())

SimProcedures

You can use SimProcedures to
overwrite binary functions with
python code

This helps with controlling
complicated, low-level library
functions

For example useful to overwrite
secure PRNG with insecure
implementation/static values

import angr, claripy

class NewOverwrittenFunc(angr.SimProcedure):
 # arguments automatically extracted
 def run(self, argc, argv):
 if argc > 0:
 print('This is python code now {0}'.format(argv[0]))
 return 0
 return 1

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

proj.hook_symbol('function_to_overwrite', NewOverwrittenFunc())

simgr = proj.factory.simgr()

simgr.explore(find=0x00001407)

print(simgr.found[0].posix.dumps(0))

User Hooks

User Hooks can be used if
overwriting a whole function
seems to extensive
(SimProcedure)

Just specify at what address to
hook and how many bytes to
skip

length determines how many bytes get skipped/overwritten
@proj.hook(0x1337, length=5)
def set_rax(state):
 state.regs.rax = 1

User Hooks

User Hooks can be used if
overwriting a whole function
seems to extensive
(SimProcedure)

Just specify at what address to
hook and how many bytes to
skip

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

simgr = proj.factory.simgr()

length determines how many bytes get skipped/overwritten
@proj.hook(0x1337, length=5)
def set_rax(state):
 state.regs.rax = 1

simgr.explore(find=0x00001407)
print(simgr.found[0].posix.dumps(0))

Setting up:

● Base Address
● Library Loading
● Symbolic

Filesystem
● Symbolic Stack

Setting up:

● Target address
● Target condition

(value in stdout)

Setting up:

● Avoid addresses
● Avoid condition
● Check coverage

 Limiting constraints:

● Human readable
● Prefixing/Suffixing
● Patterns

Use functions like
SimProcedures &
Hooking to mock
library/complex

functions

Run tool and retrieve
input/output

Concretizing results

simgr.found[0].posix.dumps(0)

simgr.found[0].posix.dumps(sys.stdin.fileno())

simgr.found[0].solver.eval(your_bitvector, cast_to=bytes)

After simulation manager has
found a satisfied result you can
dump stdin or evaluate your
symbolic bitvector

Improve Performance

Veritesting

Algorithm to
automatically reduce
state explosions

Relies on heuristics to
merge states

simgr = proj.factory.simgr(inital_state, veritesting=True)

Veritesting

Algorithm to
automatically reduce
state explosions

Relies on heuristics to
merge states

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs' : False},
main_opts={'base_addr':0}
)

initial_state = project.factory.entry_state()
simgr = proj.factory.simgr(inital_state, veritesting=True)

simgr.explore(find=0x00001407)

print(simgr.found[0].posix.dumps(0))

PyPy

Maslow’s Hierarchy of Symbolic Execution

Angr Recap

● The angr framework features a nice
python3 api

● To reach your desired condition you’ll need
to reduce state explosion

→ You can avoid code, hook, and
 manually guide the framework

● Angr is incorporated into many tools from
advanced fuzzers to modern binary
analysis suites

● Symbolic Execution isn’t magic though
→ We have to keep performance
 limitations in mind

Build “Symbolic
Execution Harness”

Continuously monitor
and improve

performance (avoiding,
hooking, manual

constraints…)

Run to retrieve your flag

Now is your turn!
Solve the challenges and
decipher the mystery of a
strange distress signal!

@xorkiwi

/in/janniskirschner

github.com/JannisKirschner/REcon-Workshop-Public

