

The graph is too big (more than 1000 nodes) to be displayed on the screen.
Switching to text mode.

(you can change this limit in the graph options dialog)

["] pon't display this message again

[|

=
I=<

dwerd [var_3t%h], Sxdesdboct

Sefldeziz

]

=
)

dverd [var_3%], Qxdcadhect
e o4acz

3= em, 2
lza cxz, [33]
cah o

loa cme, [
paah cme

all amamgatreyp

2 ozam, e 2z 3
a3 3t Teagmn. T @204a373 ; “Try agmin. * ; conat char % pazh 5 “Goed I ; cout cur e cust
=il ; ot puta(corat che- ex) all gaisgoits ; imt guta(enat chas *) eall
a=d 24 e, B0 2z
o exmMan o ex3Mcam i

What the (s)hell is
this abomination??!

9

Reverse engineering of
black-box binaries with
symbolic and concolic i
execution techniques \"‘“‘iiii”ﬂiiiiiii ’

or

“Why huge control-flow-graphs don’t scare me anymore”

-Mw

REcon Montreal 2022 | Jannis Kirschner

Jannis Kirschner

e Independent Vulnerability Researcher
e Reverse Engineer & Exploit Developer
e Passionate CTF Player

e Found major vulns in e-voting systems,

wifi routers and embedded devices with
my research team suid.ch

Views are my own and not related to my employer

m /in/janniskirschner

Who are you?

@0
@z9
'.\‘

Example: z3 robot (SharkyCTF2020)

| made a robot that can only communicate https://ctftime.org/event/1034
with "z3". He locked himself and now he is

asking me for a password !

Creator : Nofix
Pts: 189

Static Analysis

);
(_obj.pass);
(0x1589);
(_reloc.stdout);
(()&var_34h + 4, 0x19, _reloc
(()&var_34h + 4, 0x15
*(*)((J&var_34h + 1var2 + 4) = @
cvarl = ((*)(()&var_34h + 4));
(evarl =="\x01") {

|_I 11/7/\n>==()

h + 4);

x86 64 ELF Binary
Not Stripped

Main function reads 24
chars via stdin and
passes to “check flag”
function for validation

Trying to bruteforce

Binary asks for a 24
characters long passphrase

Brute-forcing it would be
infeasible!

)&var_34h +

9x19, _reloc.stdin);

Numerical
Numerical Upper & Lower case
Password Length Numerical Upper & Lower case | Upper & Lower case | Special characters

0-9 a-Z 0-9 a-Z 0-9 a-Z %S
1 instantly instantly instantly instantly
2 instantly instantly instantly instantly
3 instantly instantly instantly instantly
4 instantly instantly instantly instantly
5 instantly instantly instantly instantly
6 instantly instantly instantly 20 sec
7 instantly 2 sec 6 sec 49 min
8 instantly 1 min 6 min 5 days
9 instantly 1hr 6 hr 2 years
10 instantly 3 days 15 days 330 years
11 instantly 138 days 3 years 50k years
12 2 sec 20 years 162 years 8m years
13 16 sec 1k years 10k years 1bn years
14 3 min 53k years 622k years 176bn years
15 26 min 3m years 39m years 27tn years
16 4 hr 143m years 2bn years 4qdn years
17 2 days 7bn years 148bn years 619qdn years
18 18 days 388bn years 9tn years 94qtn years
19 183 days 20tn years 570tn years 14sxn years
20 5 years 1qdn years 35qdn years 2sptn years

Solving it manually

0760]> pdg-@ sym.check_flag

(*argl)

uVari;

“check_flag” routine
uvarz; .
*var_ghs contains a lot of
CCCCCCCCCCe)(argi[ox14] ~ 0x2bU) == arg1[7]) && ((EHE constraints to check for

515 ()argl[3] == - &&

(= "'\ 't && ((()argi[o R 1F
e Gl T o flag validity

((war2 = ()(argiexi1] >> 7) >> 5,
(Yargi[7] >> ((arg x11] + uvar2 & 7) - uvVar2 & 0xif) == 5
We can extract them by
((()(argl[6] ~ 6x53U) == argl[oxe] && (argi[8] == 'z2')))))) r]
((uvar2 = (T =T 55 Jargi[5] << ((arg1[9] Ear](j
uvar2 & 7) - uVar2 & 0xif) ==
&& ((((()argl z i)arg1[7] == 0x14 &&
(uvar2 = (Y(arg1[6x17] >> 7) >> 5,
(Jarg1[7] << ((argl[6x17] + uvar2 & 7) - uVar2 & 0xif)
Oxbe)) &&

(Yarg1i[2] - (Yargl[7] == -0x2b)) &&

cleaned.txt

Solving it manually - rean
5 (param_1[0x14] ~ 0x2b) == param 1[7] &&
6 param 1[0x15] - param 1[3] == -0x14 &&
7 param 1[2] >> 6 == '\0' &&
8 param 1[0xd] == 0x74 &&
9 (param 1[0xb] & Ox3fffffffu) == OX5f &&

10 bVar2 = (param_1[0x11] >> 7) >> 5,

11 param_1[7] >> ((param 1[6x11] + bVar2 & 7) - bvar2 & 0x1f) == 5 &&
12 (param _1[6] ~ 0x53) == param 1[0xe] &&

13 param 1[8] == Ox7a &&

14 bvVar2 = (param 1[9] >> 7) >> 5,

15 param 1[5] << ((param 1[9] + bVar2 & 7) - bVar2 & 0x1f) == 0x188 &&
16 param_1[0x10] - param 1[7] == 0x14 &&
I 17 bvar2 = (param_1[0x17] >> 7) >> 5,
A” ConStraIntS eXtraCted 18 param 1[7] << ((param 1[0x17] + bVar2 & 7) - bVar2 & 0x1f) == Oxbe &&
f d | d 19 param 1[2] - param 1[7] == -0x2b &&
20 param_1[0x15] == Ox5f &&
rom ecompl e 21 (param_1[2] ~ 0x47) == param 1[3] &&

22 *param_1 == 99 &&
pSGUdOCOde 23 param 1[0xd] == 0x74 &&

24 (param_1[0x14] & 0x45) == 0x44 &&

25 (param_1[8] & 0x15) == 0x10 &&

26 param_1[0xc] == Ox5f &&

27 param_1[4] >> 4 == '\a' &&

28 param_1[0xd] == 0x74 &&

29 bVar2 = (*param_1 >> 7) >> 5, *param_1 >> ((*param_1 + bVar2 & 7) -

bvar2 & 0x1f) == Oxc &&

30 param 1[10] == Ox5f &&

31 (param_1[8] & OxacU) == 0x28 &&

32 param 1[0x10] == 0x73 &&

33 (param_1[0x16] & 0x1ld) == 0x18 &&

34 param 1[9] == 0x33 &&

35 param 1[5] == 0x31 &&

36 (param 1[0x13] & Ox3fffffffu) == Ox72 &&

37 param_1[0x14] >> 6 == '\x01' &&

38 param 1[7] >> 1 == '/' &

PlainText ¥ Tab width:8 v Ln1,Col1 v INS

Solving it manually

/

(param_1[0x14]

A Ox2b) ==

= param_ 1[7]

param_1[0x15] - param_1[3] == -0x14
param_1[2] >> 6 =="0'

param_1[0xd] =

= 0x74

(param_ 1[0xb]&0x3ffffffo) = Ox5f

(param_1[6] A Ox53)

param_1[8] ==

Ox7a

= param_1[0xe]

param_1[0x10] - param_1[7] == 0x14
param_1[0x13] - param_1 [0x15] == 0x13

param_1[0xc] =

= Ox5f

param_1[0xf] >> 1 =="/"

param_ 1[0x14]
param_1[4] =

= 0x74
= 0x73

(param_ 1[0x17]"0x4a) == *param_1
(param_1[6] * 0x3c) =

param_1[0x15] ==

Ox5f

= param_1[0xb]

<- lower case t

<- lower case z

<- 0x13 + 0x5f = 0x72 (lower case r)
<- underscore

<- lower case t
<- lower case s

<- underscore

Overview over z3

The z3 theorem prover is an open
source SMT solver developed by
Microsoft Research

It's used to try and determine whether a
mathematical formula is satisfiable
using the boolean satisfiability (SAT)
problem

SMT solving builds the bases for most
modern symbolic execution frameworks

Ivers

So
[SMT } [Fixedpoint
[NLSat] [SAT

QSAT

Architecture diagram of z3

There is an island inhabited by knights
and knaves. Knights always tell the
truth while knaves always lie.

Two people stand in front of you, Red
and Blue. Blue tells you “we are both
knaves’...who is the knight?

We are both
knaves!

Our Knight

N\

Blue cannot be the knight. If blue was
a knight he would’ve told a lie which is
infeasible since knights cannot lie.

SAT/SMT solving

We can ask them questions like:

“Given three booleans a,b,c - can the following formula return true: ”
(a and not b) or (not a and c)

SAT/SMT solving

We can ask them questions like:

“Given three booleans a,b,c - can the following formula return true: ”
(a and not b) or (not a and c)

SAT: Fills a,b,c with ones and zeroes to prove SAT

SAT/SMT solving

We can ask them questions like:

“Given three booleans a,b,c - can the following formula return true: ”
(a and not b) or (not a and c)

SAT: Fills a,b,c with ones and zeroes to prove SAT

SMT: Fills a,b,c with new formulas using integers, strings & new functions

SAT Solving

SAT solvers solve constraints
written in propositional logic.

Sentences/Statements are
propositions (think knights and
knaves). Propositional logic
studies how they interact
irregardless of the contents of
the statement -> only logical
connections.

SMT Solving

SMT solvers are more powerful
and extend them by solving
constraints written in predicate
(first-order) logic with quantifiers.

Predicate logic extends
propositional logic but replaces
atomical elements (propositional
letters) by properties to better
describe the subject of a
sentence. A quantified predicate
is a proposition (assigned values
to variables)

If you wanna deep-dive into the maths:

HTTPSY/BRILLIANT.ORG/]
WIKI/PREDICATEXLOGIC/

RODU |
DROPOS

=

AT-PROE

D-KNOWLEG

HTTPS://MEDI

o=t

pip install z3-solver

Automating with SMT Solvers

from z3 import *

al = [Bitvec(f'{i}', 8) for i in range(0x19)]
s = Solver()

.add((a1[20] ~ 0x2B) == al[7])
.add(al[21] - al[3] == -20)
.add((al[2] >> 6) == 0)
.add(al[13] == 116

.add(4 * al[ll] == 380)
.add(al[7] >> (al[17] % 8) == 5)

== INSERT --

Creating bitvectors
for keyspace

Placing all the
extracted constraints
by hand

Automating with SMT Solvers

.add(al[14] >> 4 =
.add((al[12] & Ox

.add(al[8] << (al[le€
.add(al[20] == 116)

.add(al[é6 22
.add(al[22] - al[5] =
.add(al[7] << (al[22] % 8
.add(al[22] == 58)

.add(al[16] 115)
.add((al[23] ~ 0x1D)
.add(al[23] + al[14]
.add((al[5]) & al[2])
.add((al[15] & Ox9F)
.add(al[4] 5

.add((al[2: 4A) al[o])
.add((al[6] 0x3C) == al[11])

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

is satisfiable
model
solution array
flag

s.check()

s.model()

[chr(int(str(model[al[i]]))) for i in range(len(model))]
''.join(solution array)

- INSERT --

Check if constraints
are satisfiable

Compute model and
convert solved
bitvector integers to
characters

Display flag

Solution script

~100 Lines of Code

91 Constraints

BN AR A N NN MY Y YGRS EGEENE G omaouau s

Il tistianle
o

| for 1 i v

-ty

et 1411

Python v

Tab width: 8 v

Ln 105, Col 1

INS

= Another Random Twitter User &
2 @somedog

| saw a guy reversing a crackme today.
No symbolic execution.

No dynamic binary instrumentation.
No instruction counting.

He just sat there.

Extracting constraints by hand.

Like a Psychopath.

@ These materials may have been obtained through hacking
12:00 PM - Jun 10, 2021 - Twitter Web App

40.3K Retweets 11.3K Quote Tweets 196.9K Likes

O 0 Q

Any guesses to how many lines of code we can reduce it?

We can do the same in about

lines of code

o kiwi@doghouse: ~/insomnihack/00_z3

Hmport angr, claripy

proj = angr.Project('./z3 robot', load_options={"auto_load_libs": False}, main_opts={"base addr
simgr = proj. factory smgr()

simgr.explore(find=0x¢ 1407, avoid=0x0

prtnt(smgr found[©] posxx dumps(9))

I Efficiency Comparison

Bruteforce Solving by hand Symbolic Execution

Problem State Recap

e Crackme input has to meet a lot of
constraints

e Brute-force is infeasible
— We extracted constraints and
manually searched for matches

e Thisis slow and time consuming
— We automated the constraint solving
with SMT solvers

e Extracting constraints by hand takes a long
time
— We additionally automated constraint
extraction with symbolic execution

Solving by hand

-

SMT Solving

Symbolic Execution

Symbolic Execution

Introducing

Symbolic Execution is a

“System that walks through all possible paths of a program to
determine what inputs cause each of them to execute”

Symbolic Execution is a

“System that walks through all possible paths of a program to
determine what inputs cause each of them to execute”

Concrete Execution

Program reads concrete input
value to size

Input gets used for conditional
branch and evaluated

Either a string is written to
stdout or the crash function is
called

void ValidSize()

{
var size = read()
if (size < 5):
printf(“Works”)
else:
crash()
}

Concrete Execution

Program reads concrete input void ValidSize()
value to size {
var size = read() —4

Concrete Execution

void ValidSize()
{

var size = read() — 4

Input gets used for conditional i (size < 5) ST

branch and evaluated

Concrete Execution

void ValidSize()
{

var size = read() — 4
if (size < 5): «— True
printf(“Works”) <« Executed

Either a string is written to
stdout or the crash function is)
called

“Static” Symbolic Execution

Instead of concrete input
symbolic value is assigned to
size

Symbolic value can take any
value so proceeds with both
paths by “forking”

After crash/normal termination
computes concrete value by
smt solving the accumulated
path constraints

void ValidSize()

{
var size = read()
if (size < 5):
printf(“Works”)
else:
crash()
}

“Static” Symbolic Execution

Instead. of conc.rete input void ValidSize()
symbolic value is assigned to {
size var size = read() — A

“Static” Symbolic Execution

void ValidSize()

{
var size = read() — A
Symbolic value can take any 1 (S = 5?‘: .
, printf(“Works”) «— A <5
value so proceeds with both -

paths by “forking” crash() — A>=5

“Static” Symbolic Execution

After crash/normal termination
computes concrete value by
smt solving the accumulated
path constraints

void ValidSize()

{

var size = read()
if (size < 5):

else:

printf(“Works”)

crash()

— A

—A<5

—A>=5

The problem with static symbolic
execution...

It's difficult for static symbolic execution to
reach deep into the execution tree

Path selection heuristics might choose paths
that won’t advance propagation

For example in a loop depending on a
symbolic variable it might not find the exit

“Dynamic” Concolic Testing

Concrete Testing
+ = Concolic Testing
Symbolic Execution

“Dynamic” Concolic Testing

Concrete Testing
+ = Concolic Testing
Symbolic Execution

Seed-driven concolic execution is able to favor paths and reach deep into the execution tree

Symbolic vs Concolic Execution

a e Main Path
1. 6. e Adjacent Paths
So@mo

o ou

5

“Dynamic” Concolic Testing

Run program with a concrete void ValidSize()
(random) seed input {
Collect the path constraint ;ﬁ;;ﬁi;;.ead()
Negate the last (not already printf("Works”)
negated) constraint else: ”

cras

SMT solve to inverse the latest }
branch and discover a new path

Repeat until no new paths are
found

“Dynamic” Concolic Testing

Run program w.ith a concrete void ValidSize()
(random) seed input {
var size = read() —4
if (size < 5): —True

“Dynamic” Concolic Testing

void ValidSize()
{
var size = read() — 4
if (size < 5): —True
printf(“Works”) —AN<5

Collect the path constraint

“Dynamic” Concolic Testing

Negate the last (not already
negated) constraint

void ValidSize()
{
var size = read()
if (size < 5):
printf(“Works”)
else:

—4
«—True
—A<5b5
—7(A<9)

“Dynamic” Concolic Testing

SMT solve to inverse the latest
branch and discover a new path

void ValidSize()

{
var size = read()
if (size < 5):
printf(“Works”)
else:
crash()
}

—4
—True
—A<5b5
—(A<5H)
«—A>=5

“Dynamic” Concolic Testing

Repeat until no new paths are
found

void ValidSize()

{
var size = read()
if (size < 5):
printf(“Works”)
else:
crash()
}

—4
—True
—A<5b5
—(A<5H)
«—A>=5

Program Validation Tradeoffs

; “
m Manual Static Analysis

\

“Liquid”
Symbolic Execution

“Slushie”
Concolic Testing

Paths Discovered

“Solid”
Concrete Testing

Cost (Computational Resources/Time/Manual Labor)

Where is Symbolic Execution Used?

Symbolic Execution Frameworks

Novel Tools (GUI’'s, Attack Surface
Analysis, Taint Analysis, Rop Chain
Generation)

Integrations into your favorite reverse
engineering software

Augmented Fuzzers

Different symbolic execution frameworks

Full System: s2e

Code: KLEE

Different symbolic execution frameworks

Full System: s2e

Code: KLEE

S?E: The Selective Symbolic Execution Platform

(v
) [Apphcatlons
(Libraries

S2E

libs2e.so

(Kernel Dr|vers
(Virtual Hardware J J
_
*/dev/kvm

,{ KVM-compatible interface)\

Dynamic Symbolic
Binary Execution
Translator Engine

(Instrumentation Engine)

Path :
. Analysis
Selection Pluains
Plugins 9

S2E Architecture Diagram

Modular library that enriches virtual machines with
symbolic execution & program analysis capabilities.

Runs entire software stack including applications,
libraries, kernel, firmware and drivers (full system
emulation).

Extensible and able to analyze large, complicated
software like device drivers that have a lot of
complex interactions.

S2E Walkthrough

.) Limit the On success .
Create new Implement Define events K.'” after Track(Fllter constraint solve Engb le plpgun
S2E Project custom plugin to react to dgsnred ag Sesitd space of the constraints ih canfig
is reached process p ; 3 and launch s2e
symbolic variable and display
OSMonitor for - - I1s2¢e()->
example has s2e(}-> ProcessExecution-D | state-> ol oloq | © Build with s2e build
. A n getEXeCutOr()-> etector plug|n can constraints getexecu Or() g A q
s2e new_project I|b32_eplug|ns/src{ events h inateStateEarl . addConstraint() etSymbolic- . Edit s2e-config.lua
Plugins/yourplugin.cop | for process erminateStateEarly() | track single process 0 Solution() . B [Enneh-s2ea

creation, module
loading/unloading

onTranslatelnstruct
ionStart and
executionSignal
can trigger on
certain

address (for PID
load module and
calculate relative)

() unbreakable-ctf-s2e/Goc X

< C

O Why GitHub? - Team Enterprise Explore - Marketplace Pricing

& adrianherrera/ unbreakable-ctf-s2e P

<>Code (D) lssues 1 1% Pull requests

® Actions

A Proects [

P master - unbreakable-ctf-s2e

@ adrianherrera

added miss

At 1 contributor

44 lines (33 sloc) | 1.16 KB

f S2E_PLUGINS_GODGLE_CTF_UNBREAKABLE H

=
S2E_PLUGIN
a (S2E *s2e
Proce Detector *m_procDetector;

ate

e sta

t klee::Array *array)

QO B https://github.com/adrianhe

tor<klee::ref<klee::Expr>> Sexpr

EExecutionState *state, TranslationBlock *tb, uir

rera/unbreakable-ctf-s2e/blob/maste

) Notications

Wiki (@ Secuity |~ Insights

Plugins / GoogleCTFUnbreakable.h

string &name

t Xlee::MemoryDbject *mo

Y Fok o ¥ S 2
Go o file
2019 O History

Raw

Blame

O & https://github.com/adrianherrera/unbreakable-ctf-s2e/blob/m

CooguCTTUestate e

30% ©Y

Different symbolic execution tools

Full System: s2e

Code: KLEE

Angr/Triton/Manticore

Triton Architecture

User-level dynamic binary analysis &
symbolic execution frameworks (often
based on z3).

Able to lift & instrument a number of binary
architectures like x86, x86-64, AArch64,
EVM Smart Contracts, ARM, MIPS,
WASM,PowerPC (yes, even BrainFuck)

Great mix between convenience, speed
and instrumentability - perfect for CTF

User-Level

Workflow

Symbolic Stack

- . Optional Optional e .
Initialize Define target (.p) .(‘p) : Mock difficult Retrieve
rogram state state Delina:avold Limit copsiraint functions results
piog state space
Setting up: Setting up: Setting up: Limiting constraints: Use functions like
Sl TS Run tool and retrieve

° Base Address) Target address Avoid addresses Human readable Hooking to mock inout/outout
° Library Loading) Target condition Avoid condition Prefixing/Suffixing library/complex P P
° Symbolic (value in stdout) Check coverage Patterns functions

Filesystem

User-Level

Workflow

° Symbolic Stack

- . Optional Optional - .
Initialize Define target (.p) .(.p) : Mock difficult Retrieve
rogram state state Delhedvid Limit constraint functions results
P state space
Setting up: Setting up: Setting up: Use functions like
it DL Run tool and retrieve

° Base Address ° Target address ° Avoid addresses Hooking to mock inout/outout
° Library Loading ° Target condition ° Avoid condition library/complex P P
° Symbolic (value in stdout) ° Check coverage functions

Filesystem

X

©) angr-doc/solve.py at m:

&« C O 8 htty

50% T3 X

@ angr/angr-doc

< Code Pu ® v ocu
§ mass ~ | angrdoc solve.py »
P sk © Hisory
)
'

Different symbolic execution tools

Full System: s2e

Code: KLEE

KLEE

LLVM-based symbolic execution engine

for code-level analysis
=

. . =S = | sicose
Requires target function to be re-/coded C = t
in C and instrumented @
High performance due to smaller Symoolie | 51 KLEE | == | cenerates

. tests
overhead compared with other _pan @ ﬁ
frameworks, as well as nifty features
Constraint

such as coverage, test case and path el

eXpO I'tl ng KLEE Architecture Diagram

KLEE Walkthrough

: : Examine
Extract C Code : . Compile to Run with
: Define symbolic = . Test Cases
Routine from . LLVM klee .
= : Variables B q q with
ecompiler ecode comman o .
P y ktest-tool
int main()
{
int inp, result;
klee_make_symbolic(&inp,
sizeof(inp), "inp");
result = extracted_routine(inp); . -
“File” -> “Produce file” -> if (result == 1337) ElEle) Sl T klee test.ll el i

Create C file...

klee_assert(0);

int main()

char sym[your_size];

klee_make_symbolic(sym,
sizeof sym, "sym");

return extracted_routine(sym);

}

-g -o test.ll -c test.c

klee-last/test000001.ktest

& main.c - master - David M X 37 - o0 @

€ (&)

& GitLab

O 8 http

//gitlab.com/Manouchehri/Matryoshka

M Matryoshka-stage-2

@ Project information

B Repository
Files
Commits
Branches
Tags

Contributors

Locked Files
O Issues
3% Merge requests
& ajo
@ Deployments
= Monitor

1 Anal

ytics

& Collapse sidebar

Repository

master Matryoshka-Stage-2 / main.c Findfile || Blame | | History || Permalink

Make Klee friendly.
David Manouchehri

[mainc) 103ke

int main(int al, char **a2, char **a3)

intb4 v4;

signed int v5

if 2)

1
if (42 ¢)+ 1) t=)

goto LABEL 31;

if (*a2(1])

What framewo rk Do you want to analyze complex

systems & drivers?

should | use? o P \ e

2
Do you want to quickly analyze ¢ S2E -I

source code”?

" N KLEE

Do you want to analyze smart
contracts?

no / yes
N Manticore %

Do you require C++ bindings for
user mode analysis?

no / \ yes
Angr Triton TR J.O SSSSSSS

What framework Do you want to analyze complex

systems & drivers?

should | use? o P \ e

2
Do you want to quickly analyze ¢ S E _.

source code?
o & \yes

Do you want to analyze smart
contracts?

no/

Do you require C++ bindings for
user mode analysis?

Tools/Angr-Management

fauxware — angr management

File View Analyze Plugins Help

@ Newstate Intermupt
| Functions

Hex

Disassembly | Proximity | Pseudocode | Patches | Symbolic Execution States | Interaction

EE
080485b0 05 b8 00 00 00 00 8b

Name B _IIIIIIIL_ P

3 08048652 mov [espl {5 40), 0
oBoiaes] call 080485d0 04 24 cc 87 04
b_80483d0 08048666 mov }, 8x804880c

= ogodgses call 080485¢0 83 ec 18 b8
GBoiters len o laapio9) (s 080485T0 7 04 24 01
0804083 moy Leop) (o 467, b 08048600 e4 f0 83
GBoiaess call ress

A A 0804868 mov [espsOx8] (s 38}, Ox1 08048610 00 00
— - 08048696 lea eax, [esp+8x24] {s 1c a
e OlTicla O ar |g I, = rey T i g osoiss20 3

Gaoitese mov lesp) (o 401, 6r6

_gmon_start_ 0804865 call read 08048630
GBoiten lea o [esprox3d) (5 &)

. O80daac mov (espsded) (s 3¢}, sax 08048640

= oBoasshy lea cax, [espi0idal (s 16)
080486b6 mov. [esp) {s 46}, eax

usetul 10r reverse s, s S b

GBoiaste mov (espedad] (5 16}, eox

_start 080486c2 mov. eax, [esp+0x24] {s 1c} 8 0 00 00
oBoisece test son, cox

sub 8035491 680486c8 je 0x80486d1

_do_global_... shift

engineering and binary =

Loc oxeasssea: Loc_6x8048601:

accepted 080486ca call accepted e
= 6B04s6Ct jmp 0xB0486ds osriecI oot jected
. rejected -
a n a I S I S = el l Address: 08048609 Options -
libc_csu_init shift Loc_0x80486d6:
e — 08048606 mov edx, [esprox3c] (s 4} Strings
sub_8048751 080486da xor edx, gs:(0x14] . z T
< aalid easiseer jo s Function: Al functions Regex
ibe_csu_fini
= Address « Length String
Sl (T 0x804880c 11
—do_global. 0x8048301 11
30486e3:
fini 3 all stack_chk_fail 0x80487f8 Go away!
il 0xgoa87cc ne to the admin trusted user!
L - [¥ 0x80487c0 9 SOSNEAKY

€« o~ e = = = = 0x8048154 fib/ld-linux.s0.2
S unttons Function 80485fc Save image.... Graph Disassembly ~ | |Machine Code Option:

| Console Log

Jupyter qtconsole 5.1.0 Source Content
Python 3.8.10 (default, Jun 2 2621, 10:49:15) angranalyse... Failed to calculate the stack pointer offset at pc 0x80486a5. You may find redundant Store statemen
gsfhu"\"g*;;?;{l A,‘\'::;;;(e:’m};:;‘ﬁve“;;J'gE Ty;:”‘”f?’?gr Teln: angranalyse... Failed to calculate the stack pointer offset at pc 0x80486b9. You may find redundant Store statements.
angranalyse... Unsupported expression type DirtyExpr
n [l 94 angranalyse... Unsupported expression type Dirtyi
angranalyse... Unsupported expression type DirtyExpression.

angranalyse... Unsupported expression type Dirty!

https://github.com/angr/angr-management

Tools/one_gadget

Search for magic gadgets/one
gadgets in a target binary.
(Single rop gadget to
execve(/bin/sh’, NULL, NULL))

-+ one_gadget /1ib/x86_64-1inux-gnu/libc.s0.6
Ox4f2cS execve("/bin/sh", rsp+0x4Q, environ)
constraints:

rcx == NULL

Ox4f322 execve("/bin/sh", rsp+0x40, environ)

onstrailnt:

[rsp+0x4Q] == NULL

@x10a38c execve("/bin/sh", rsp+@x70, environ)
constraints:

[rsp+0x70] == NULL

https://github.com/david942j/one gadget

Tools/symbiotic

Program validation and vulnerability
discovery (assertion violations,
invalid pointer dereference, double
free, memory leaks, etc...) using the
KLEE framework

staticafi/symbiotic

Symbiotic is a tool for finding bugs in computer
programs based on instrumentation, program
slicing and KLEE

R 12 O 41 % 246 ¥ 41

Contributors Issues Stars Forks

https://github.com/staticafi/symbiotic

Integrations/AngryGhidra

A plugin that combines
the convenience of
ghidra with the power
of the angr framework

wEalon Se

. Azahus hant 1Th Sepct Taok JMOZow Lep
| - PBED JIDULFERE: Q&% o VENSuGLOBe

 CodeBrowser: AGSFairlight

W g s — >
fra oz B Parn pon
e St oes
& .yt
..... o
Pogrirr i
) Arguares X L9
& o
...........
o
tex
= T Qo
Shic
Ry
T Gk Sergony
" -
[Awwrs i m—

https://github.com/Nalen98/AngryGhidra

Integrations/IDANngr

andrea\IDAN,

104 View &P 3 100 Pl 8 Gene regters 00
wov [rbprvar_10], rsi [RAX00007FFC3895A197 ™ [stack] 00007FFC3895A197 2lip 04

o [rbpevar_a), REX 0000000000000000 . P o

2 short loc_4005€8 = e wIr 0

= . RDXOD0OTFFC38957FAD % [5tack]-0000TFFC3895TFAD 0

e RSI 00007FFC38957F88 % (stack]-00007FFC38957F 88 st

loc_4005E8 RDI 00007FFC3895A197 pr2

mov. rax, [rbpeva RBP 0000TFFCIBISTEAD Borio

Rad rax. 8 RSP OO0OTFFCI8ISTESD i

mov rax. [rax) RIP 00000000004005F9 be o

mov rdi. rax IF 1

fcal L — R9 00007FCB7OCABO so_01_rtd_d_serinfo+7460 e
test eax, eax i B
oad and explore e ,
[v Base.
edi, offset aCorrectThatlsT S momermarew i examses/an_cachme pre—

_puts S (33 008664t g 2230 cocorsca7sioaonn ooannx

. Short_loc_400618 iy eal) offast sTSorryThatsTh 133 neiash 64 gt 22330 cooorrcaTsaccom o000 _

3 ol pressitsbonsssy coonos

debugger state into g e :

edi, offset s
puts

[: deosme " T
™ 6t o etrences . [oeees
loc_400618 Ustor refepaen e Ore) [Decmu [Hex [state]
o ax, OFFFFFFEFh mov. ea f ot ncten arep [Wema 1848 Reody
Jmp short locret_400610 |

= thce Cotetumpads

angr (using angrdbg) o =

locret_40061D:
leave

retn
} /1 starts at 4005C5|

Sprvonze wen .
e Swtch to source
 jupto P

main endp e n
O to s "

Hwrets guonto

|

Hex View-1 ERI
f R RAREAR R TTTBF (3 06 D W 1% Hutg o FORTFFCS ™ o
| X FE FF FF BS FF FF FE_FF EB 12 45 &8 45 FO 4 ¥ I

| 8 48 8B 00 48 89 C7 E8 22 FF FF FF &5 CO ..H.H. b
0000000400600 RN BF FO 06 40 00 X E4 FD FF FF EB OA BF 15 1 {

I 0790 00 ES DS FD FF FFBS 00 00 00 00 €9 C a I

| # 6 24 # 64 24 EO 48 8D 2D CF 0 His_.ds b

| o 4C D 00 4C 89 6C 24 EX 4C 8978 Las Lt D
00000600 00000000004G06D: mane 36 vlle >
- Output wodow, aes
#uswussss 10ANgr GUI Weswwssvs a
Flushing buffers, please wait...ok S

Python
AU e Down Disk: 5768

https://github.com/andreafioraldi/IDAngr

0x0040056b sub rsp, 0x10

n e
I nte ratl O n S/ r4 e 0x0040056f] mov dword [local 4h], edi
0x00400572 mov qword [local 16h], rsi

0x00400576 mov rax, qword [local_ 10h]
0x0040057a add rax, 8
0x0040057e mov rax, qword [rax]
0x00400581 lea rsi, str.LosFuzzys
0x00400588 C mov rdi, rax
0x0040058b = 1 call sym.imp.strcmp [1] t
5 iME SirE
0x00400590 eax, eax 1: rl
0x00400592 jne 0x4005a2 [
. . . 0x00400594 lea rdi, str.your are a advanced Hacker
We all like radare2/rizin, now e L s s
) ; int puts

0x004005a0 jmp 0x4005ae

you can use angr functionalities vy e Gl 873 SR
. . 0x004005a9 f call sym.imp.puts
straight from your favorite

'; int pufs

0x004005ae mov eax, O
1 1 0x004005b3 leave
reverse engineering framework x06400554
ress <enter> to return to Visual mode. [rax + rax]
1> . (rdge)
WARNING | 2017-07-15 15:17:10,199 |
start r4ge in DYNAMIC mode...

No Heap section
start symbolic execution, find:0x400594, avoid:['0x4005a9']
PathGroup Results: <PathGroup with 1 avoid, 1 active, 1 found>

You want to set debugsession to find address (y/n)? li

https://github.com/gast04/r4ge

Fuzzing/Driller

american fuzzy lop 1.86b (test)

process timing overall results
0 days, 0 hrs, 0 min, 2 sec
- none seen yet 1
Augments the afl-fuzz et [.
Mo . . none seen yet 0
capabilities with symbolic cycle progress ———
0 (0.00%) 2 (0.00%)
; : 0 (0.00%) 1.00 bits/tuple
execution to discover new, i prag findings in depth
. . havoc 1 (100.00%)
|nterest|ng paths 1464/5000 (29 1 (100.00%)

1697 39 (1 unique)
626.5/sec 0 (0 unique)

fuzzing strategy yields path geometry
0/16, 1/15, 0/13 1
0/2, 0/1, 0/0 1 1
0/112, 0/25, 0/0 3l
0/10, 0/28, 0/0 0
0/0, 6/0, 0/0 n/a
0/0, 0/0 0
n/a, 0.00%

https://github.com/shellphish/driller

Fuzzing/KleeFL

Similar to Driller but with
KLEE as the symbolic
execution provider

Source
Code

Build Target
Binaries

American Fuzzy Lop

Build Target
Binaries

Run
Symbolic
Execution

Concrete
Solutions

Output

KleeFL

https://github.com/julieeen/kleefl

Select
Source
Code

Build Projects
LLVM bitcode &
AFL binary

Run KLEE
symbolic
execution

Automatically
setup AFL
instances &
inputs

Run AFL
fuzzing

Generate
Coverage &
Crash Report

Fuzzing/LibKluzzer

LLVM-based Hybrid Fuzzing with LibKluzzer
(Competition Contribution)

Hoang M. Le®

Insitute of Computer Science
University of Bremen, Germany
hle@uni-brezen.de

A LibFuzzer extension using
Sym bOI|C executlon Vla the KL E E Abstract. LibKluzzer is a novel implementation of hybrid fuzzing, which

combines the strengths of coverage-guided fuzzing and dynamic symbolic

framewo rk execution (a.k.a. whitebox fuzzing). While coverage-guided fuzzing can
discover new execution paths at nearly native speed, whitebox fuzzing
is capable of getting through complex branch conditions. In contrast
to existing hybrid fuzzers, that operate directly on binaries, LibKluzzer
leverages the LLVM compiler framework to work at the source code
level. It employs LibFuzzer as the coverage-guided fuzzing component
and KLUZZER, an extension of KLEE, as the whitebox fuzzing compo-
nent.

Keywords: Hybrid Fuzzing - Coverage-guided Fuzzing - Symbolic Ex-
ecution - LLVAL

https://link.springer.com/content/pdf/10.1007/978-3-030-45234-6_29.pdf

Limitations

Non-deterministic State explosion Cryptographic
control flow causing exponential primitives are still
growth valid

Symbolic Execution Recap

e Symbolic execution tries to find inputs that cause
a program part to execute

e |t works by:
- traversing an execution tree
- accumulating constraints at each branch
- solving them using an SMT solver

e Concolic execution is seed-driven symbolic
execution that trades higher performance for
potential coverage loss

e There are many symbolic execution frameworks,
integrations and tools

@’°o° =

Further Reading

-
.

/05! el
e*g nd-\'\e‘ﬁ’rc\/s

=]

github.commmphiﬂ/clmree/mustbr/ =

2019.10.05-Bq\sn CTF 2019/ =
imple sol aeg .

==
=

The graph is too big (more than 1000 nodes) to be displayed on the screen.
Switching to text mode.

(you can change this limit in the graph options dialog)

["] pon't display this message again

[|

=
I=<

dwerd [var_3t%h], Sxdesdboct

Sefldeziz

]

=
)

dverd [var_3%], Qxdcadhect
e o4acz

3= em, 2
lza cxz, [33]
cah o

loa cme, [
paah cme

all amamgatreyp

2 ozam, e 2z 3
a3 3t Teagmn. T @204a373 ; “Try agmin. * ; conat char % pazh 5 “Goed I ; cout cur e cust
=il ; ot puta(corat che- ex) all gaisgoits ; imt guta(enat chas *) eall
a=d 24 e, B0 2z
o exmMan o ex3Mcam i

Demo

Do we get to
mess With him now?

No. We wait until the

worst possible moment.

N

I

What we’'ll learn at the Workshop

e The user-level symbolic execution workflow /
in-depth

e Solve practical challenges using the angr
framework

e How to tackle performance issues
e (Gaining a CTF edge via implicit constraints

e Exporting code coverage from angr runs

y @xorkiwi

m /in/janniskirschner

Complete slides will be shared at the workshop :)

Reverse engineering of
black-box binaries with
symbolic and concolic i
execution techniques \"‘“‘iiii”ﬂiiiiiii ’

or

“Why huge call-graphs don’t scare me anymore”
— ‘.

-Mw

REcon Montreal 2022 | Jannis Kirschner

Reverse engineering g
black-box binarigs SN Y
symbolic apg “ P (
execul V‘ Tael BN

anymore”

REcon Montr¥ Jannis Kirschner

angr

Extensive Binary Analysis Framework

Convenient Python3 Interface

Leverages VEX IR
(x86, ARM, MIPS, PowerPC...)

Symbolic + Concolic Execution

Developed by UCSB

Won 3rd in DARPA
Cyber Grand Challenge

Used for reversing,
rop-chain building,
fuzzing and more

Let’s recap for a second

fUn-py Save

Open

M kiwi@doghouse: ~/Insomnihack/00_z3

ﬂmport angr, claripy

angr.Project(, load_options={"auto_load_libs": False}, main_opts={
= proj.factory.simgr()
simgr.explore(find= 001407, avoid=0x

print(simgr.found[0].posix.dumps(0))

Python v Tab width:8 v Ln 105, Col 1 2 INS

. . Optional Optional . .
Initialize Define target (_p) .(_p) - Mock difficult Retrieve
rogram state state Relte anid Lirlk consirain; functions results
Prog state space
Setting up: Setting up: Setting up: Limiting constraints: Use functions like
SIS ¢ Run tool and retrieve
Base Address Target address ° Avoid addresses Human readable Hooking to mock inout/out tl v
Library Loading Target condition ° Avoid condition Prefixing/Suffixing library/complex inputioutpu
Symbolic (value in stdout) ° Check coverage Patterns functions
Filesystem

Symbolic Stack

Initialize
program state

)

Define target
state

(Optional) (Optional)

Define avoid
state

Limit constraint
space

Mock difficult
functions

Retrieve
results

Setting up:

Base Address
Library Loading
Symbolic
Filesystem
Symbolic Stack

Basic example

int main()
_ {
RS char input[0x19];
Validate input sym.imp.fgets(input, 0x19, reloc.stdin);
(constraint check
function)

int result = check_flag(input);

Print result

if (result == 0) { puts(“Solved”); }
else { puts(“Nope”); }

return O;

Basic example

import angr, claripy

proj = angr.Project('./z3 robot',
load_options={'auto_load libs": False},
main_opts={'base_addr"

)

Initialize project

Basic example

import angr, claripy
proj = angr.Project('./z3 robot',
load_options={'auto_load libs": False},

Initialize simulation manager main_opts={base_addr"
)

simgr = proj.factory.simgr()

Initialize project

Basic example

import angr, claripy
proj = angr.Project('./z3 robot',
load_options={'auto load libs

Initialize simulation manager main_opts={base_addr"
)

simgr = proj.factory.simgr()

Initialize project

: False},

Explore until required address

simgr.explore(find=)

Basic example

Initialize project
Initialize simulation manager
Explore until required address

Print concretized result

import angr, claripy

proj = angr.Project('./z3 robot',
load_options={'auto_load libs": False},
main_opts={'base_addr"

)
simgr = proj.factory.simgr()
simgr.explore(find=)

print(simgr.found[0].posix.dumps(0))

Managing state int main()
{

char input[0x19];
sym.imp.fgets(input, 0x19, _reloc.stdin);

Provide input
int result = check_flag(input);

Validate input

]53‘;23;?;“ e if (result == 0) { puts(*Solved”); }
else { puts(“Nope”); }

Print result

return O;

Managing state int main()

{

complicated timewaste function(); //sleeps forever

Time waste
function

char input[0x19];
sym.imp.fgets(input, 0x19, _reloc.stdin);

Provide input
int result = check_flag(input);

Validate input

éﬁ‘;gtsigs)i”t B if (result == 0) { puts(“Solved”); }

else { puts(“Nope”); }

Print result

return O;

Managing state

Up to now the initial state was
always defined as the binary
entry point

We can also specify a custom
start address to speed up
execution:

Save time by directly
running main

Skip large function
Define custom input

start_addr =
initial_state = proj.factory.blank_state(addr=start_addr)
simgr = proj.factory.simgr(initial_state)

Managing state

Up to now the initial state was
always defined as the binary
entry point

We can also specify a custom
start address to speed up
execution:

Save time by directly
running main

Skip large function
Define custom input

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto load libs': False},
main_opts={'base addr"

)

start_addr =
initial_state = proj.factory.blank_state(addr=start_addr)
simgr = proj.factory.simgr(initial_state)

simgr.explore(find=)

print(simgr.found[0].posix.dumps(0))

What if input is...

...complex format string?
...consisting of multiple parameters?
...over memory/file/network?

Custom Symbol Injection

password = claripy.BVS(‘password’, 8*input_length)

Registers:

initial_state.regs.eax = password
initial_state.regs.ebx = password
initial_state.regs.edx = password

Memory:
initial_state.memory.store(password_address, password, endness=project.arch.memory_endness)

Stack:
initial_state.stack_push(password)

Argv:
initial_state = project.factory.entry_state(args=[‘binary_name’, password])

Symbolic Stack int main()

int input1;
Provide complex int input2;
format string
Input scanf("%x %Xx", &nput1, &input2);
Validate input 1
function int result1 = check_flag1(input1);

int result2 = check flag2(input2):
Validate input 2
function if ((result1 == 0) && (result2 == 0)) { puts(“Solved”); }
else { puts(“Nope”); }

Print result

return O;

Symbolic Stack

Set start address
after input was
provided

start_addr =
initial_state = proj.factory.blank_state(addr=start_addr)

Symbolic Stack

Set start address
after input was
provided

Initialize stack
frame

start_addr =
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp

Symbolic Stack

Set start address
after input was
provided

start_addr =
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp

Initialize stack

passwordO = claripy.BVS('‘password0’, 4*8)
frame password1 = claripy.BVS('password1’, 4*8)

Define password
bitvectors

Symbolic Stack

Set start address
after input was
provided

Initialize stack
frame

Define password
bitvectors

Align stack pointer

start_addr =
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp
passwordO = claripy.BVS('‘password0’, 4*8)
password1 = claripy.BVS('password1’, 4*8)

padding_length_in_bytes =
initial_state.regs.esp -= padding_length_in_bytes

Symbolic Stack

Set start address
after input was
provided

Initialize stack
frame

Define password
bitvectors

Align stack pointer

Push password
bitvectors to stack

start_addr =
initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp
passwordO = claripy.BVS('‘password0’, 4*8)
password1 = claripy.BVS('password1’, 4*8)

padding_length_in_bytes =
initial_state.regs.esp -= padding_length_in_bytes

initial_state.stack_push(password0)
initial_state.stack_push(password1)

Symbolic Stack

Set start address
after input was
provided

Initialize stack
frame

Define password
bitvectors

Align stack pointer

Push password
bitvectors to stack

Solve bitvectors

start_addr =

initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp
passwordO = claripy.BVS('‘password0’, 4*8)
password1 = claripy.BVS('password1’, 4*8)

padding_length_in_bytes =
initial_state.regs.esp -= padding_length_in_bytes

initial_state.stack_push(password0)
initial_state.stack_push(password1)

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=)

solution0 = (simgr.found[(O].solver.eval(password0))
solution1 = (simgr.found[0].solver.eval(password1))

print('{0},{1} .format(solution0,solution1))

Symbolic Stack

Set start address
after input was
provided

Initialize stack
frame

Define password
bitvectors

Align stack pointer

Push password
bitvectors to stack

Solve bitvectors

import angr, claripy
proj = angr.Project('./z3 robot',

load_options={'auto load libs': False},
main_opts={'base_addr"

start_addr =

initial_state = proj.factory.blank_state(addr=start_addr)

initial_state.regs.ebp = initial_state.regs.esp
passwordO = claripy.BVS('‘password0’, 4*8)
password1 = claripy.BVS('password1’, 4*8)

padding_length_in_bytes =
initial_state.regs.esp -= padding_length_in_bytes

initial_state.stack_push(password0)
initial_state.stack_push(password1)

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=)

solution0 = (simgr.found[(O].solver.eval(password0))
solution1 = (simgr.found[0].solver.eval(password1))

print'{0},{1}".format(solution0,solution1))

Set state after user Emulate stack Solve/concretize

input frame output

Symbolic Filesystem

Provide input via
file

Validate input
(constraint check
function)

Print result

int main()

{

FILE *fp;
char input[0x19];

fp = fopen("./inputfile.txt", "r");
fgets(input, 0x19, (FILE*)fp);
fclose(fp);

int result = check_flag(input);

if (result == 0) { puts("Solved"); }
else { puts("Nope"); }

return O;

Symbolic Filesystem

Set start address before input o e

Symbolic Filesystem

Set start address before input o e

Define symbolic bitvector filename = ' /inputfile.txt’

sym_file_size =

password = claripy.BVS(‘password’, sym_file_size * 8)

Symbolic Filesystem

Set start address before input o e

Define symbolic bitvector filename = ' /inputfile.txt’

sym_file_size =
Define symbolic file with

) password = claripy.BVS('password’, sym_file_size * 8)
bitvector as content
password_file = angr.SimFile(filename,
content = password,
size = sym_file_size

)

Symbolic Filesystem

Set start address before input o e

Define symbolic bitvector filename = ' /inputfile.txt’

sym_file_size =
Define symbolic file with

) password = claripy.BVS(‘password’, sym_file_size * 8)
bitvector as content
password_file = angr.SimFile(filename,
. Y . content = password,
Define initial state with start size = sym file. size

address and filesystem)

initial_state = proj.factory.blank_state(
addr = start_addr,
fs = {filename: password_file

Symbolic Filesystem

Set start address before input o e

Define symbolic bitvector filename = ' /inputfile.txt’

sym_file_size =
Define symbolic file with

) password = claripy.BVS(‘password’, sym_file_size * 8)
bitvector as content
password_file = angr.SimFile(filename,
. Y . content = password,
Define initial state with start size = sym file. size

address and filesystem)

initial_state = proj.factory.blank_state(
addr = start_addr,
fs = {filename: password_file

Solve symbolic memory

)

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=)

solution = (simgr.found[0].solver.eval(password,cast_to=bytes))
print(solution)

import angr, claripy

proj = angr.Project('./z3_robot',

Symbolic Filesystem e v R
)

Set start address before input I

Define symbolic bitvector filename = ' /inputfile.txt’

sym_file_size =
Define symbolic file with
bitvector as content

password = claripy.BVS(‘password’, sym_file_size * 8)

password_file = angr.SimFile(filename,

- o ArE - content = password,
Define initial state with start S = i . G

address and filesystem)

initial_state = proj.factory.blank_state(
addr = start_addr,
fs = {filename: password_file

Solve symbolic memory

)

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=)

solution = (simgr.found[0].solver.eval(password,cast_to=bytes))
print(solution)

Solve/concretize
output

Set state before
user input

Emulate filesystem

Initialize
program state

Define target
state

(Optional)
Define avoid
state

/

(Optional)
Limit constraint
space

Mock difficult
functions

Retrieve
results

Setting up:

Base Address
Library Loading
Symbolic
Filesystem
Symbolic Stack

Setting up:

Target address
Target condition
(value in stdout)

Target state definition

Define target address(es)

Explore until solution is found simgr = proj.factory.simgr()
or whole graph was explored simgr.explore(find=

Target state definition import angr, claripy

proj = angr.Project('./z3 robot',
load_options={'auto_load libs': False},
main_opts={'base_addr’

Define target address(es))

Explore until solution is found simgr = proj.factory.simgr()
or whole graph was explored simgr.explore(find=)

print(simgr.found[0].posix.dumps(0))

Can also be value

Sometimes your target is not
necessarily an address

You can also specify arbitrary
conditions for finding/avoiding
conditions

A common use-case is setting
your target based on values
written to stdout

def is_successful(state):

stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Solved' in stdout_output

simgr.explore(

)

find=is_successful

Can also be value

Sometimes your target is not
necessarily an address

You can also specify arbitrary
conditions for finding/avoiding
conditions

A common use-case is setting
your target based on values
written to stdout

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load libs': False},
main_opts={'base_addr"

)

simgr = proj.factory.simgr()

def is_successful(state):
stdout_output = state.posix.dumps(sys.stdout.fileno())
return 'Solved' in stdout_output

simgr.explore(
find=is_successful

)

print(simgr.found[0].posix.dumps(sys.stdin.fileno()))

. . Optional Optional . .
Initialize Define target (.p) .(_p) - Mock difficult Retrieve
rogram state state Dolifte dvoid Limit consirain: functions results
P state space
Setting up: Setting up: Setting up:
° Base Address Target address ° Avoid addresses
° Library Loading Target condition ° Avoid condition
° Symbolic (value in stdout) ° Check coverage
Filesystem

Symbolic Stack

State Explosion

Branches double per condition

Growth of problem is exponential
relating to program size

Slows down symbolic execution

Just exclude, it's easy

A great way to reduce complexity
is by entirely avoiding unneeded
paths

Selecting those paths works best
with reverse engineering & human
intuition

simgr.explore(find=

, avoid=[

Just exclude, it's easy

A great way to reduce complexity
is by entirely avoiding unneeded
paths

Selecting those paths works best
with reverse engineering & human
intuition

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto load libs': False},
main_opts={'base addr0})

simgr = proj.factory.simgr()

simgr.explore(find= , avoid=|[

print(simgr.found[0].posix.dumps(0))

Code Coverage Collection Process

Load into
Lighthouse

Use “File” -> “Load file” ->
“Load coverage file/batch...”

Retrieve Coverage

Export basic block
coverage from
angr exploration

Investigate
Bottleneckg
Disassemble/Decompile to

discover bottlenecks

Fix Bottlenecks

e Use Hooks & SimProcedures
e Manually apply constraints

def * =g
COde COVG I’age esr%]et:_g?g\]/;ﬂi}ge(args, **kwargs)

stashes = sm.stashes

i=

for simstate in stashes['active']
state_history ="

for addr in simstate.history.bbl_addrs.hardcopy
write_address = hex(addr)
state_history += '{0}\n".format(write_address)
raw_syminput = simstate.posix.stdin.load(", state.posix.stdin.size)

syminput = simstate.solver.eval(raw_syminput, cast_to=bytes)
print(syminput)

ip = hex(state.solver.eval(simstate.ip))

uid = str(uuid.uuid4())

sid = str(i).zfill(©)

filename = {0} active {1} {2} {3} .format(sid,syminput, ip, uid)

with open(filename, 'w') as f
f.write(state_history)

i +=

simgr.explore(find= , step_func=get_coverage)

Load into lighthouse to find bottlenecks...

File Edit Jump Search View Debugger Lumina Options Windows Help
D RO igm T e X > W Nodebuger

Library function [l Regular function Instruction [ll Data Ml Unexplored Ml External symbol [l Lumina function
B Functions 1DA View-A, Pseudocode-C, Pseudocode-8, Pseudocode-A, Coverage Overview X [&1 Hex View-1 ® R Structures ® B Enums ® & L]
Function name B pavens @ |18 pedoodec M FB Poevdoodes B FB Psevdocoden B T8 Coverage Overview
_BOOL8 _ fastcall check_flag(char *al)
Cov% Func Name Address Blocks Hit Instr. Hit Func Size
28.57 |_init_proc 0x6C0 ZWis 23
__stack_chk fail 8] > 00 sub 6E0 0/1
B _printf ; 100.00 | _pucs, 0650 T
g i . : 35 - stack chk fail
croch 1 1 — o] 10000 | e
B _iflush B
i _oxa_finalize
B stert

A deregister_tm_clones

)
1S

& ol e e o il

__cxa_finalize 0x750

»
& o

Bd register tm_clones
[_do_global_dtors_aux
B frame_dummy

B check flag

B main :
B _ibc_csu_init 1 T o

B _ibc_csu fini 6 x check flag 0x86R
B _term proc 5 main 0x1337
H puts 5 __1ibc csu init 0x1450
Bd _stack_chk fail E __libc csu fini 0x14C0

_start 0x760
deregister_tm clones 02790
register_tm clones 0x7D0

__do_global dtors_aux 0x820

bl

_tem proc ox14ca
puts 0x202048
B4 _libc_start_main 2 2 __stack chk fail 0x202050
H fgets : - 5 printf 0x202058
B fflush .00 strcspn 0x202060
B _imp__ocxa finalize ’ .00 _ libc_starc_main 0x202068
B _gmon_start_ S . z fgets 0x202070

@

fflush 0x202078
__imp__cxa_finalize 0x202080

__gmon_start__ 0x202090

[P e | M

[DIPNDINDIPNEDINIONNY | BN BN |

HH R
o000

((unsigned _ints)ai[
((unsigned _int8)al
Line 8 of 28 S

", Graph overview

(unsigned _ int8)a1[21])

a1[1s]
Composer B - 3.61% - unsat.txt |v| g
000008€A check_flag:1 (8€3)

...and guide angr into resolving them

B S) AIBeina £ r W e
I

E osta B tecloss 1 o fncen
o8, P b 8 e B T
e, st
8 8t

s
[
2 it

B o o i
B foers

W s

s
st

B gime

o o 1Y PR
Il

®® e

T8 4 vens

socks Ht

. . Optional Optional . .
Initialize Define target (.p) .(_p) - Mock difficult Retrieve
rogram state state Dolifte dvoid Limit consirain: functions results
P state space
Setting up: Setting up: Setting up: Limiting constraints:
° Base Address Target address ° Avoid addresses Human readable
° Library Loading Target condition ° Avoid condition Prefixing/Suffixing
° Symbolic (value in stdout) ° Check coverage Patterns
Filesystem

Symbolic Stack

Limiting Constraints

Import the constraint solver engine

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs': False},
main_opts={'base addr"

)

Limiting Constraints

Import the constraint solver engine password = claripy.BVS(‘password’, 5*8) #8 chars

. . initial state = proj.factory.entry state(args=['crackme’, password
Create new symbolic password bitvector . Prel ry-entry_state(args=| P D

Create state and pass bitvector to it (argv,
symbolic stack, symbolic file...)

Limiting Constraints

Import the constraint solver engine
Create new symbolic password bitvector

Create state and pass bitvector to it (argv,
symbolic stack, symbolic file...)

Add custom constraints to bitvector:
- Only printable characters

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs': False},
main_opts={'base addr"

)

password = claripy.BVS(‘password’, 5*8) #8 chars
initial_state = proj.factory.entry state(args=['crackme’, password])

only printable characters

for byte in password.chop(2):
initial_state.add_constraints(byte != "x00") # null
initial_state.add_constraints(byte >="") # "x20'
initial_state.add_constraints(byte <= '~'") # "x7¢e'

Limiting Constraints

Import the constraint solver engine
Create new symbolic password bitvector

Create state and pass bitvector to it (argv,
symbolic stack, symbolic file...)

Add custom constraints to bitvector:
- Only printable characters
- Password starts with “CTF{"

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs': False},
main_opts={'base addr"

)

password = claripy.BVS(‘password’, 5*8) #8 chars
initial_state = proj.factory.entry state(args=['crackme’, password])

only printable characters

for byte in password.chop(2):
initial_state.add_constraints(byte != "x00") # null
initial_state.add_constraints(byte >="") # "x20'
initial_state.add_constraints(byte <= '~'") # "x7¢e'

starts with CTF{

initial_state.add_constraints
initial_state.add_constraints
initial_state.add_constraints
initial_state.add_constraints

password.chop(8)[0]
password.chop(8)[1]
password.chop(2)[2] == 'F")
password.chop(8)[3]

o~~~ A~

import angr, claripy

proj = angr.Project('./z3_robot',
load_options={'auto_load_libs': False},
main_opts={'base addr"

)

Limiting Constraints

IporBideiconsitdinisalvenengine password = claripy.BVS('password', 8*8) #8 chars

. . initial_state = proj.factory.entry_state(args=['crackme’, password
Create new symbolic password bitvector . Prel ry-entry_state(args=| P D
_ _ # only printable characters

Create state and pass bitvector to it (argv, for byte in password.chop(3):

symbolic stack, symbolic file...) initial_state.add_constraints(byte != "x00") # null
initial_state.add_constraints(byte >="") # "x20'

Add custom constraints to bitvector: initial_state.add_constraints(byte <= '~") # "\x7¢'

- Only printable characters # starts with CTF{

- Password starts with “CTF{* initial_state.add_constraints
initial_state.add_constraints

Solve bitvector to get password initial_state.add_constraints
initial_state.add_constraints

password.chop(8)[0]
password.chop(8)[1]
password.chop(2)[2] == 'F")
password.chop(8)[3]

o~~~ A~

simgr = proj.factory.simgr(initial_state)
simgr.explore(find=)

print(simgr.found[0].solver.eval(password,cast_to=bytes))

. . Optional Optional . .
Initialize Define target (.p) .(_p) - Mock difficult Retrieve
rogram state state Dolifte dvoid Limit consirain: functions results
P state space
Setting up: Setting up: Setting up: Limiting constraints: Use functions like
SimProcedures &

° Base Address Target address ° Avoid addresses Human readable Hooking to mock
° Library Loading Target condition ° Avoid condition Prefixing/Suffixing library/complex
° Symbolic (value in stdout) ° Check coverage Patterns functions

Filesystem

Symbolic Stack

SimProcedures

You can use SimProcedures to
overwrite binary functions with
python code

This helps with controlling
complicated, low-level library
functions

For example useful to overwrite
secure PRNG with insecure
implementation/static values

class NewOverwrittenFunc(angr.SimProcedure):
arguments automatically extracted
def run(self, argc, argv):
if argc >
print(‘This is python code now {0} .format(argv[0]))
return
return

proj.hook_symbol(‘function_to_overwrite', NewOverwrittenFunc())

SimProcedures

You can use SimProcedures to
overwrite binary functions with
python code

This helps with controlling
complicated, low-level library
functions

For example useful to overwrite
secure PRNG with insecure
implementation/static values

import angr, claripy

class NewOverwrittenFunc(angr.SimProcedure):
arguments automatically extracted
def run(self, argc, argv):
if argc >
print(‘This is python code now {0} .format(argv[0]))
return
return

proj = angr.Project('./z3 robot',
load_options={'auto load libs": False},
main_opts={'base addr"

)

proj.hook_symbol(‘function_to_overwrite', NewOverwrittenFunc())
simgr = proj.factory.simgr()
simgr.explore(find=)

print(simgr.found[0].posix.dumps(0))

User Hooks

User Hooks can be used if
overwriting a whole function
seems to extensive

(SimProcedure)
length determines how many bytes get skipped/overwritten

Just specify at what address to @proj.hook(, length=5)

def set_rax(state):
hook and how many bytes to state.regs.rax =
skip

User Hooks

User Hooks can be used if
overwriting a whole function
seems to extensive
(SimProcedure)

Just specify at what address to
hook and how many bytes to
skip

import angr, claripy

proj = angr.Project('./z3 robot’,
load_options={'auto load libs': False},
main_opts={'base addr":

)
simgr = proj.factory.simgr()

length determines how many bytes get skipped/overwritten
@proj.hook(, length=5)
def set_rax(state):

state.regs.rax =

simgr.explore(find=)
print(simgr.found[C].posix.dumps(0))

. . Optional Optional . .
Initialize Define target (.p) .(_p) - Mock difficult Retrieve
rogram state state Deline-avid Lirlk consirain; functions results
Prog state space
Setting up: Setting up: Setting up: Limiting constraints: Use functions like
SIS ¢ Run tool and retrieve

° Base Address Target address ° Avoid addresses Human readable Hooking to mock input/out tl v
° Library Loading Target condition ° Avoid condition Prefixing/Suffixing library/complex inputioutpu
° Symbolic (value in stdout) ° Check coverage Patterns functions

Filesystem

Symbolic Stack

Concretizing results

After simulation manager has
found a satisfied result you can
dump stdin or evaluate your
symbolic bitvector

simgr.found[(].posix.dumps(0)
simgr.found[C].posix.dumps(sys.stdin.fileno())

simgr.found[(].solver.eval(your_bitvector, cast _to=bytes)

..
.

n af s
| ell mij &) <t o

S

 mE

]
Bl
s
—
B
B
—
-
[f==
s

— ——e Y
A 4

Veritesting

Algorithm to
automatically reduce
state explosions

Relies on heuristics to
merge states

simgr = proj.factory.simgr(inital_state, veritesting=True)

Veritesting

Algorithm to
automatically reduce
state explosions

Relies on heuristics to
merge states

import angr, claripy

proj = angr.Project('./z3 robot',
load_options={'auto load libs': False},
main_opts={'base addr"

)

initial_state = project.factory.entry state()
simgr = proj.factory.simgr(inital_state, veritesting=True)

simgr.explore(find=)

print(simgr.found[0].posix.dumps(0))

Time to solve

PyPy

45 sec.-
40 sec.-
35sec.-
30 sec.-
25 sec.—
20 sec.-
15sec.-
10 sec.-

5sec.—

real Om7.803s
user O0m6.844s
sys Om0.750s

real Om4.500s
user Om3.781s
sys O0mO0.453s

1
Easy (pathfinder)

Profiling results

real O0m22.509s
user 0m9.734s
sys O0ml.344s real Om5.743s
user Om5.141s
sys O0mo0.359s

real 0mi1.643s
user 0m10.656s
sys 0Om0.688s

real Om5.277s
user 0m4.531s
sys O0mo0.625s

1
Medium (10_angr_simprocedures) Complex (01_angr_avoid)

Sample complexity

M cpython
N oyey

Maslow’s Hierarchy of Symbolic Execution

~ Use SimProcedures & Hooks for heavy

2
Don't load unneeded shared libraries

1

Angr Recap

e The angr framework features a nice
python3 api

e To reach your desired condition you'll need
to reduce state explosion
— You can avoid code, hook, and
manually guide the framework

e Angris incorporated into many tools from
advanced fuzzers to modern binary
analysis suites

e Symbolic Execution isn’t magic though
— We have to keep performance
limitations in mind

Build “Symbolic
Execution Harness”

Continuously monitor
and improve
performance (avoiding,
hooking, manual
constraints...)

Run to retrieve your flag

NOW 'S you r tu rn "-ﬁ L E T
Solve the challenges and 11 5
“deciphorthe myslary ot g 1-‘-f T O
’strange dlstress Slgnall o e

s ___ github.com/JannisKirschner/REcon-Workshop-Public

y @xork|W| :

|n /|n/jann|sk|rschner ‘

