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WHO AM I?

•Takahiro Haruyama (@cci_forensics)
•Senior Threat Researcher at VMware Carbon Black TAU

•Past Research
•Anti-Forensics (e.g., exploiting EnCase’s Outside In)

•RE (e.g., defeating compiler-level obfuscations)

•Malware Analysis (e.g., Internet-wide C2 scanning)
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OVERVIEW

•Background and Motivation

•Test Environment Setup

• Implementation

•SpiMitm vs. Firmware Security Tools

•Countermeasures

•Wrap-up
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BACKGROUND AND MOTIVATION
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FIRMWARE THREATS
•Bootkits
• longer persistence and lower observability than OS-level implants

•UEFI Secure Boot and Intel Boot Guard can detect bootkits
• But they can be bypassed by vulnerability exploits
• e.g., CVE-2021-0157 & CVE-2021-0158
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Source: Rootkits and Bootkits

Detect MoonBounce

Detect Vector-EDK, 
LoJax

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://github.com/liba2k/Insomni-Hack-2022
https://nostarch.com/rootkits
https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468/
https://github.com/hackedteam/vector-edk
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/


FIRMWARE SCANNERS

•Several vendors provide an UEFI firmware scanner
•AV/EDR: CrowdStrike, Microsoft, ESET, Kaspersky

• firmware security: Eclypsium, Binarly

•The scanner behavior 
1. acquiring a firmware image inside a SPI flash memory

2. parsing and scanning the image with signatures
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https://www.crowdstrike.com/blog/crowdstrike-first-to-deliver-bios-visibility/
https://www.microsoft.com/security/blog/2020/06/17/uefi-scanner-brings-microsoft-defender-atp-protection-to-a-new-level/
https://help.eset.com/glossary/en-US/technology_uefi.html
https://www.kaspersky.com/antivirus-for-uefi
https://eclypsium.com/
https://www.binarly.io/


SOFTWARE-BASED APPROACH FOR 
FIRMWARE ACQUISITION

• I/O through the SPI flash 
interface
• Port I/O (IN/OUT instructions)
• Memory-Mapped I/O 

(MmMapIoSpace API)

• Steps for firmware acquisition
1. Get SPI Base Address Register 

(SPIBAR)
2. Read/write SPI registers
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Application

Kernel Driver

Firmware

OS user-mode

OS kernel-mode

SPI flash memory

DeviceIoControl()

IN/OUT &
MmMapIoSpace()



SPI REGISTER ACCESS FOR FIRMWARE 
ACQUISITION
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Source: UEFI Firmware Rootkits: Myths and Reality

https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf


SPI FLASH READ MITM ATTACK
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https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf


MOTIVATION

• This attack possibility was pointed out by researchers for 
years
• Xeno Kovah et al. “Copernicus 2: SENTER the Dragon!” in 2014

•But there has been no publicly-available PoC

•Know our enemy!
• Implement the attack PoC

• Test firmware scanners against the PoC
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https://www.mitre.org/publications/technical-papers/copernicus-2-senter-the-dragon


TEST ENVIRONMENT SETUP
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TESTED HARDWARE
• UP Squared
• Intel Atom x7-E3950, Apollo Lake 

SoC

• Intel distributes the open source
firmware debug image

• “The UP Squared Chronicles” by 
Alan Sguigna
• How to flash the image
• How to Build the image
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https://up-board.org/upsquared/specifications/
https://www.intel.com/content/www/us/en/developer/articles/tool/uefi-firmware-project-for-intel-atom-processor-e3900-series-processor-platforms.html
https://www.asset-intertech.com/resources/blog/2020/05/open-source-firmware-explorations-using-dci-on-the-aaeon-up-squared-board/
https://www.asset-intertech.com/resources/blog/2020/06/the-up-squared-chronicles-episode-2-building-the-uefi-image/


HARDWARE DEBUGGING

• Intel Direct Connect Interface (DCI)
•DCI enables to JTAG-debug an Intel CPU over a USB port

• Intel System Studio (ISS) provides the debuggers

• Intel System Debugger (embedded in ISS)

• Intel System Debugger (legacy, stand-alone)

•WinDbg extensions
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recommended!



SMM CODE DEBUGGING TIPS
• Instruction Stepping Mode
• essential for step into/over

• How to break the SMM code
• Break by SMMEntry then enable the 

hardware breakpoint manually
• It’s noisy if any periodic timer SMI

• Insert CpuIceBreakpoint (INT1)
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IMPLEMENTATION
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SPIMITM SMM MODULE SUMMARY
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Root SMI handler

SPI SMI handler
Periodic timer 
SMI handler

SW SMI handler

Entry Point

(2) Hook the BIOS lock 
SW SMI and register

Turn on/off
MitM

(1) Register

SPI Controller
(4) SPI read MitM

(3) Keep enabling FSMIE and 
clearing BIOS Decode Enable 
(BDE)



REGISTERING PERIODIC TIMER / SPI SMI 
HANDLERS
• I wanted to register the SMI handlers in the late stage 

•Hook the BIOS Lock Software SMI before the OS boot 
• Triggered in the SC initialization routine ScOnReadyToBoot
• 0xA9 (SW_SMI_BIOS_LOCK)

• The SW SMI handler registers the TCO BIOSWR SMI handler 
disabling the BCR.BIOSWE bit
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SW_SMI_BIOS_LOCK

https://github.com/tianocore/edk2-platforms/blob/2c15135d5d766b276bc1a6d41385230d4aeeb7ea/Silicon/BroxtonSoC/BroxtonSiPkg/SouthCluster/ScInit/Dxe/ScInit.c


PERIODIC TIMER SMI HANDLER 

•The Flash SPI SMI# Enable (HSFC.FSMIE) bit can be 
cleared by a kernel driver using MMIO
•CHIPSEC clears the bit when setting the size (FDBC) per 

SPI command cycle

•The periodic timer SMI handler keeps enabling it
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https://github.com/chipsec/chipsec/blob/8878dbefb2d0b17d7ef86740bfe818620de1c3a5/chipsec/hal/spi.py


PERIODIC TIMER SMI HANDLER (CONT.)

•We can set the interval 
based on the definition

•64ms or shorter required to 
generate the SPI SMI
• The shorter the interval the 

more negative impact to 
system performance
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https://github.com/tianocore/edk2-platforms/blob/2c15135d5d766b276bc1a6d41385230d4aeeb7ea/Silicon/BroxtonSoC/BroxtonSiPkg/SouthCluster/ScSmiDispatcher/Smm/ScSmmPeriodicTimer.c


PERIODIC TIMER SMI HANDLER (CONT.)
• The firmware acquisition performance in 64ms
• Time overhead = 11%, Ratio of data overwritten by SPI SMI = 1.89%
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PERIODIC TIMER SMI HANDLER (CONT.)

•The msec interval SMIs prevent the OS boot?

•SpiMitm initally registers the 8sec handler then 
registers the 64 msec handler later after the boot
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SPI SMI HANDLER
•Is this caused by FSMIE?
•SPI SMI Status bit (SMI_STS.SPI_SMI_STS)
•Flash Cycle Done bit (HSFS.FDONE)

•Overwrite Flash Data (FDATA0-15) registers

•Disable FSMIE to hide the MitM
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SPI SMI HANDLER (CONT.)

•No SPI logic definition 
in the firmware L

•I added the logic for 
the SMI
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ASSERT [ScSmiDispatcher] c:\work\edk2-platforms\Silicon\BroxtonSoC\BroxtonSiPkg
\SouthCluster\ScSmiDispatcher\Smm\ScxSmmHelpers.c(573): ((BOOLEAN)(0==1))

https://github.com/tianocore/edk2-platforms/blob/2c15135d5d766b276bc1a6d41385230d4aeeb7ea/Silicon/BroxtonSoC/BroxtonSiPkg/SouthCluster/ScSmiDispatcher/Smm/ScSmmIchn.c


SEQUENCING

•Two types of SPI register access methods
• “Hardware Sequencing” means the hardware picks the 

actual SPI commands that get sent for read/write
• hides the details of SPI flash opcodes

• “Software Sequencing” means we pick the actual SPI 
commands
• offers a little more fine-grain control

• I’ve referred to only Hardware Sequencing so far
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Source: Advanced x86: BIOS and System Management Mode Internals 
SPI Flash Programming

https://opensecuritytraining.info/IntroBIOS_files/Day2_00_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Programming.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day2_00_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Programming.pdf


SEQUENCING (CONT.)

• I also implemented the SPI SMI handler for SW Sequencing
• Enable the SPI SMI# Enable (SSFC.SME) bit
• Define the SPI logic for SW Sequecing

• But SW Sequencing is usually disabled after POST using the FLOCKDN bit
• I checked HSFS.FLOCKDN was enabled by the CHIPSEC spi_lock module

• It’s not supported in Apollo Lake SoC?
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https://igor-blue.github.io/2021/02/04/secure-boot.html
https://usermanual.wiki/Document/APLBXTSPISMIPProgramingGuideRev1p0.1888570826/html


SPIMITM VS. FIRMWARE SECURITY 
TOOLS
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TEST STEPS

1. Build the firmware image with SpiMitm

2. Embed Hacking Team’s Vector-EDK with debug 
messages
• rkloader and fsbg modules (no NTFS driver)

3. Acquire or scan the firmware using the security tools

•Can the tools detect the Vector-EDK modules?
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https://github.com/hackedteam/vector-edk


VS. OPEN-SOURCE TOOL (CHIPSEC)

•Demo
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VS. CLOSED-SOURCE TOOLS

•4 firmware scanners including commercial products

•I don’t disclose the tested scanner names :-)
•The purpose of this research is not to blame any 

specific product, but to check the actual efficacy
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RESULT

•The 3 scanners couldn’t discover Vector-EDK even if 
the MitM was disabled
•They don’t support the Atom platform

•Or simply the detection capabilities are poor

•The last one detected Vector-EDK with the MitM!
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RESULT (CONT.)

•I reversed the scanner then identified this had 2 
methods for the firmware acquisition
•Hardware Sequencing that programs a SPI flash

•MMIO of the BIOS region based on the BIOS Decode 
Enable (BDE) register value

•The latter one was not covered by SpiMitm initially
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RESULT (CONT.)

•I added a code clearing BDE to SpiMitm

•The improved SpiMitm could prevent the tool from 
detecting Vector-EDK :-)
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SpiMitm
improved



COUNTERMEASURES
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HARDWARE-BASED ACQUISITION

•Use a SPI programmer
•not affected by SMM 

rootkits

•but not scalable L
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SMRAM FORENSICS

•Dump SMRAM using hardware debugger
• It’s hard to enable the Intel DCI on normal platforms :-(
• The dump takes long time (8MB SMRAM in a few hours)

•Parse the SMRAM then detect malicious SMI handlers
• smram_parse.py by Dmytro Oleksiuk
• The SMM structures are different for different firmware L
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0x7b4e0c18: periodic timer SMI 0x7b530640 with Period 1000000 and SmiTickInterval
640000 (image = SpiMitm, link error = False)
...
0x7b4ebd18: Ichn/IchnEx SMI 0x7b5304c8 with context type 0x2e (image = SpiMitm, link 
error = False)

https://github.com/Cr4sh/smram_parse/blob/master/smram_parse.py


OTHER SOFTWARE-BASED DETECTIONS

•Notice the MitM attack possibility
•Detect the SMM code modification using Measured Boot
• compare hash values of the OEM code (TPM PCR[0])

• Periodically check the FSMIE bit

•Detect FV decompress/parse errrors after the acquisition

•We can’t identify the malicious implants but we can 
recognize “something is wrong” at least
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WRAP-UP
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WRAP-UP

• The reality of the firmware security tools 
• Only one scanner could detect VEDK without the MitM
• SpiMitm could hide VEDK from the scanner

• Every firmware doesn't always implement the SPI logic for the SMI
• Attackers have to not only bypass BootGuard but also append the 

logic by the RE

•Once the MitM module is installed, it’s hard to detect the threat 
explicitly using software-based approaches
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ANY QUESTIONS?

•https://github.com/TakahiroHaruyama/SpiMitm
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