
DETECT ME IF YOU CAN -
ANTI-FIRMWARE FORENSICS

TAKAHIRO HARUYAMA

VMWARE THREAT ANALYSIS UNIT



WHO AM I?

•Takahiro Haruyama (@cci_forensics)
•Senior Threat Researcher at VMware Carbon Black TAU

•Past Research
•Anti-Forensics (e.g., exploiting EnCase’s Outside In)

•RE (e.g., defeating compiler-level obfuscations)

•Malware Analysis (e.g., Internet-wide C2 scanning)
RECON2022 2



OVERVIEW

•Background and Motivation

•Test Environment Setup

• Implementation

•SpiMitm vs. Firmware Security Tools

•Countermeasures

•Wrap-up

RECON2022 3



BACKGROUND AND MOTIVATION

RECON2022 4



FIRMWARE THREATS
•Bootkits
• longer persistence and lower observability than OS-level implants

•UEFI Secure Boot and Intel Boot Guard can detect bootkits
• But they can be bypassed by vulnerability exploits
• e.g., CVE-2021-0157 & CVE-2021-0158

RECON2022 5

Source: Rootkits and Bootkits

Detect MoonBounce

Detect Vector-EDK, 
LoJax

https://edk2-docs.gitbook.io/understanding-the-uefi-secure-boot-chain/secure_boot_chain_in_uefi/intel_boot_guard
https://github.com/liba2k/Insomni-Hack-2022
https://nostarch.com/rootkits
https://securelist.com/moonbounce-the-dark-side-of-uefi-firmware/105468/
https://github.com/hackedteam/vector-edk
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/


FIRMWARE SCANNERS

•Several vendors provide an UEFI firmware scanner
•AV/EDR: CrowdStrike, Microsoft, ESET, Kaspersky

• firmware security: Eclypsium, Binarly

•The scanner behavior 
1. acquiring a firmware image inside a SPI flash memory

2. parsing and scanning the image with signatures

RECON2022 6

https://www.crowdstrike.com/blog/crowdstrike-first-to-deliver-bios-visibility/
https://www.microsoft.com/security/blog/2020/06/17/uefi-scanner-brings-microsoft-defender-atp-protection-to-a-new-level/
https://help.eset.com/glossary/en-US/technology_uefi.html
https://www.kaspersky.com/antivirus-for-uefi
https://eclypsium.com/
https://www.binarly.io/


SOFTWARE-BASED APPROACH FOR 
FIRMWARE ACQUISITION

• I/O through the SPI flash 
interface
• Port I/O (IN/OUT instructions)
• Memory-Mapped I/O 

(MmMapIoSpace API)

• Steps for firmware acquisition
1. Get SPI Base Address Register 

(SPIBAR)
2. Read/write SPI registers

RECON2022 7

Application

Kernel Driver

Firmware

OS user-mode

OS kernel-mode

SPI flash memory

DeviceIoControl()

IN/OUT &
MmMapIoSpace()



SPI REGISTER ACCESS FOR FIRMWARE 
ACQUISITION

RECON2022 8

Source: UEFI Firmware Rootkits: Myths and Reality

https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf


SPI FLASH READ MITM ATTACK

RECON2022 9Source: UEFI Firmware Rootkits: Myths and Reality

https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf


MOTIVATION

• This attack possibility was pointed out by researchers for 
years
• Xeno Kovah et al. “Copernicus 2: SENTER the Dragon!” in 2014

•But there has been no publicly-available PoC

•Know our enemy!
• Implement the attack PoC

• Test firmware scanners against the PoC

RECON2022 10

https://www.mitre.org/publications/technical-papers/copernicus-2-senter-the-dragon


TEST ENVIRONMENT SETUP

RECON2022 11



TESTED HARDWARE
• UP Squared
• Intel Atom x7-E3950, Apollo Lake 

SoC

• Intel distributes the open source
firmware debug image

• “The UP Squared Chronicles” by 
Alan Sguigna
• How to flash the image
• How to Build the image

RECON2022 12

https://up-board.org/upsquared/specifications/
https://www.intel.com/content/www/us/en/developer/articles/tool/uefi-firmware-project-for-intel-atom-processor-e3900-series-processor-platforms.html
https://www.asset-intertech.com/resources/blog/2020/05/open-source-firmware-explorations-using-dci-on-the-aaeon-up-squared-board/
https://www.asset-intertech.com/resources/blog/2020/06/the-up-squared-chronicles-episode-2-building-the-uefi-image/


HARDWARE DEBUGGING

• Intel Direct Connect Interface (DCI)
•DCI enables to JTAG-debug an Intel CPU over a USB port

• Intel System Studio (ISS) provides the debuggers

• Intel System Debugger (embedded in ISS)

• Intel System Debugger (legacy, stand-alone)

•WinDbg extensions

RECON2022 13

recommended!



SMM CODE DEBUGGING TIPS
• Instruction Stepping Mode
• essential for step into/over

• How to break the SMM code
• Break by SMMEntry then enable the 

hardware breakpoint manually
• It’s noisy if any periodic timer SMI

• Insert CpuIceBreakpoint (INT1)

RECON2022 14



IMPLEMENTATION

RECON2022 15



SPIMITM SMM MODULE SUMMARY

RECON2022 16

Root SMI handler

SPI SMI handler
Periodic timer 
SMI handler

SW SMI handler

Entry Point

(2) Hook the BIOS lock 
SW SMI and register

Turn on/off
MitM

(1) Register

SPI Controller
(4) SPI read MitM

(3) Keep enabling FSMIE and 
clearing BIOS Decode Enable 
(BDE)



REGISTERING PERIODIC TIMER / SPI SMI 
HANDLERS
• I wanted to register the SMI handlers in the late stage 

•Hook the BIOS Lock Software SMI before the OS boot 
• Triggered in the SC initialization routine ScOnReadyToBoot
• 0xA9 (SW_SMI_BIOS_LOCK)

• The SW SMI handler registers the TCO BIOSWR SMI handler 
disabling the BCR.BIOSWE bit

RECON2022 17

SW_SMI_BIOS_LOCK

https://github.com/tianocore/edk2-platforms/blob/2c15135d5d766b276bc1a6d41385230d4aeeb7ea/Silicon/BroxtonSoC/BroxtonSiPkg/SouthCluster/ScInit/Dxe/ScInit.c


PERIODIC TIMER SMI HANDLER 

•The Flash SPI SMI# Enable (HSFC.FSMIE) bit can be 
cleared by a kernel driver using MMIO
•CHIPSEC clears the bit when setting the size (FDBC) per 

SPI command cycle

•The periodic timer SMI handler keeps enabling it

RECON2022 18

https://github.com/chipsec/chipsec/blob/8878dbefb2d0b17d7ef86740bfe818620de1c3a5/chipsec/hal/spi.py


PERIODIC TIMER SMI HANDLER (CONT.)

•We can set the interval 
based on the definition

•64ms or shorter required to 
generate the SPI SMI
• The shorter the interval the 

more negative impact to 
system performance

RECON2022 19

https://github.com/tianocore/edk2-platforms/blob/2c15135d5d766b276bc1a6d41385230d4aeeb7ea/Silicon/BroxtonSoC/BroxtonSiPkg/SouthCluster/ScSmiDispatcher/Smm/ScSmmPeriodicTimer.c


PERIODIC TIMER SMI HANDLER (CONT.)
• The firmware acquisition performance in 64ms
• Time overhead = 11%, Ratio of data overwritten by SPI SMI = 1.89%

RECON2022 20



PERIODIC TIMER SMI HANDLER (CONT.)

•The msec interval SMIs prevent the OS boot?

•SpiMitm initally registers the 8sec handler then 
registers the 64 msec handler later after the boot

RECON2022 21



SPI SMI HANDLER
•Is this caused by FSMIE?
•SPI SMI Status bit (SMI_STS.SPI_SMI_STS)
•Flash Cycle Done bit (HSFS.FDONE)

•Overwrite Flash Data (FDATA0-15) registers

•Disable FSMIE to hide the MitM

RECON2022 22



SPI SMI HANDLER (CONT.)

•No SPI logic definition 
in the firmware L

•I added the logic for 
the SMI

RECON2022 23

ASSERT [ScSmiDispatcher] c:\work\edk2-platforms\Silicon\BroxtonSoC\BroxtonSiPkg
\SouthCluster\ScSmiDispatcher\Smm\ScxSmmHelpers.c(573): ((BOOLEAN)(0==1))

https://github.com/tianocore/edk2-platforms/blob/2c15135d5d766b276bc1a6d41385230d4aeeb7ea/Silicon/BroxtonSoC/BroxtonSiPkg/SouthCluster/ScSmiDispatcher/Smm/ScSmmIchn.c


SEQUENCING

•Two types of SPI register access methods
• “Hardware Sequencing” means the hardware picks the 

actual SPI commands that get sent for read/write
• hides the details of SPI flash opcodes

• “Software Sequencing” means we pick the actual SPI 
commands
• offers a little more fine-grain control

• I’ve referred to only Hardware Sequencing so far
RECON2022 24

Source: Advanced x86: BIOS and System Management Mode Internals 
SPI Flash Programming

https://opensecuritytraining.info/IntroBIOS_files/Day2_00_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Programming.pdf
https://opensecuritytraining.info/IntroBIOS_files/Day2_00_Advanced%20x86%20-%20BIOS%20and%20SMM%20Internals%20-%20SPI%20Programming.pdf


SEQUENCING (CONT.)

• I also implemented the SPI SMI handler for SW Sequencing
• Enable the SPI SMI# Enable (SSFC.SME) bit
• Define the SPI logic for SW Sequecing

• But SW Sequencing is usually disabled after POST using the FLOCKDN bit
• I checked HSFS.FLOCKDN was enabled by the CHIPSEC spi_lock module

• It’s not supported in Apollo Lake SoC?

RECON2022 25

https://igor-blue.github.io/2021/02/04/secure-boot.html
https://usermanual.wiki/Document/APLBXTSPISMIPProgramingGuideRev1p0.1888570826/html


SPIMITM VS. FIRMWARE SECURITY 
TOOLS

RECON2022 26



TEST STEPS

1. Build the firmware image with SpiMitm

2. Embed Hacking Team’s Vector-EDK with debug 
messages
• rkloader and fsbg modules (no NTFS driver)

3. Acquire or scan the firmware using the security tools

•Can the tools detect the Vector-EDK modules?

RECON2022 27

https://github.com/hackedteam/vector-edk


VS. OPEN-SOURCE TOOL (CHIPSEC)

•Demo

RECON2022 28



VS. CLOSED-SOURCE TOOLS

•4 firmware scanners including commercial products

•I don’t disclose the tested scanner names :-)
•The purpose of this research is not to blame any 

specific product, but to check the actual efficacy

RECON2022 29



RESULT

•The 3 scanners couldn’t discover Vector-EDK even if 
the MitM was disabled
•They don’t support the Atom platform

•Or simply the detection capabilities are poor

•The last one detected Vector-EDK with the MitM!

RECON2022 30



RESULT (CONT.)

•I reversed the scanner then identified this had 2 
methods for the firmware acquisition
•Hardware Sequencing that programs a SPI flash

•MMIO of the BIOS region based on the BIOS Decode 
Enable (BDE) register value

•The latter one was not covered by SpiMitm initially
RECON2022 31



RESULT (CONT.)

•I added a code clearing BDE to SpiMitm

•The improved SpiMitm could prevent the tool from 
detecting Vector-EDK :-)

RECON2022 32

SpiMitm
improved



COUNTERMEASURES

RECON2022 33



HARDWARE-BASED ACQUISITION

•Use a SPI programmer
•not affected by SMM 

rootkits

•but not scalable L

RECON2022 34



SMRAM FORENSICS

•Dump SMRAM using hardware debugger
• It’s hard to enable the Intel DCI on normal platforms :-(
• The dump takes long time (8MB SMRAM in a few hours)

•Parse the SMRAM then detect malicious SMI handlers
• smram_parse.py by Dmytro Oleksiuk
• The SMM structures are different for different firmware L

RECON2022 35

0x7b4e0c18: periodic timer SMI 0x7b530640 with Period 1000000 and SmiTickInterval
640000 (image = SpiMitm, link error = False)
...
0x7b4ebd18: Ichn/IchnEx SMI 0x7b5304c8 with context type 0x2e (image = SpiMitm, link 
error = False)

https://github.com/Cr4sh/smram_parse/blob/master/smram_parse.py


OTHER SOFTWARE-BASED DETECTIONS

•Notice the MitM attack possibility
•Detect the SMM code modification using Measured Boot
• compare hash values of the OEM code (TPM PCR[0])

• Periodically check the FSMIE bit

•Detect FV decompress/parse errrors after the acquisition

•We can’t identify the malicious implants but we can 
recognize “something is wrong” at least

RECON2022 36



WRAP-UP

RECON2022 37



WRAP-UP

• The reality of the firmware security tools 
• Only one scanner could detect VEDK without the MitM
• SpiMitm could hide VEDK from the scanner

• Every firmware doesn't always implement the SPI logic for the SMI
• Attackers have to not only bypass BootGuard but also append the 

logic by the RE

•Once the MitM module is installed, it’s hard to detect the threat 
explicitly using software-based approaches

RECON2022 38



ACKNOWLEDGMENT

•Satoshi Tanda

•Alex Matrosov

•Brian Baskin

RECON2022 39



ANY QUESTIONS?

•https://github.com/TakahiroHaruyama/SpiMitm

RECON2022 40


