
Zooming in on Zero-click Exploits

Zooming in on Zero-click Exploits

How to Reverse Engineer a Giant Pile of
Code

or

About Me

● Natalie Silvanovich AKA natashenka
● Project Zero member
● Previously did mobile security on

Android and BlackBerry

What is Zoom

● Video conferencing meeting solution
● Can join meetings via clients or browser (or phone)
● Clients exist for Linux, Window, iOS, Android and more

Why Zoom?

Why Zoom?

Zoom Attack Surface

● Installed Zoom and manipulated UI
● Read website
● Lots of features I never expected

○ Messaging between Zoom Contacts
○ Meetings with many ways to start and join them
○ Webinars
○ On-prem (self-hosted) servers

Zoom Attack Surface

● Looked at past bugs
● Pwn2Own bug (CVE-2021-34407)

○ Memory corruption in crypto key exchange
○ Required target to be a Zoom Contact or join a Meeting
○ Reported by Daan Keuper and Thijs Alkemade

Zoom Attack Surface

● Code Snippet and Giphy Vulnerabilities
(CVE-2020-6109/CVE-2020-6110)
○ Directory traversal in special message formats
○ Required target to be a Zoom Contact
○ Reported by Talos

● A few others, mostly directory traversal

Attack Scenarios

● Attacker messages or calls target Zoom Contact
● Attacker convinces target to join their Zoom Meeting, or

joins a Zoom Meeting they have information for
● Server?????
● Zoom SDK (analysis only)

Loading Zoom in IDA

● Eek
● Very few symbols or strings
● One big binary in Linux
● Other platforms split out libraries

○ Used this to identify some functions
○ Different compilers have different symbols (ie vtables)
○ Now I know Zoom SDK has more logs

XMPP

● Zoom documents using XMPP for peer-to-peer and
peer-to-server communications

● Looked for XMPP libraries (in hopes of hooking)

gloox

● Third-party XMPP library I had never heard of

gloox

● Third-party XMPP library I had never heard of

yeah, right

gloox

● Third-party XMPP library I had never heard of

yeah, right

● Fuzzed and reviewed code with no results

gloox

● Third-party XMPP library I had never heard of

yeah, right

● Fuzzed and reviewed code with no results
● Wait a sec, what?

Other Messages

● gloox hooking was a pain
● Wireshark
● Located openssl in IDA by looking for specific log entries

○ Multiple copies
○ Really just tried all of them
○ Cipher names are a back-up

● Hooked SSL_write with Frida

Interceptor.attach(SSL_write,
{

 onEnter: function (args){
 //do stuff here

Other Messages

● Output outgoing packets
● Could see XMPP
● Also a lot of other stuff (more on this later)

Symbols!

● Tried to find bugs in XMPP processing but failed
● Located a version of the Zoom SDK with symbols

○ Five years old, but better than nothing
○ No core binary

● Still didn’t find anything
● Pwn2Own bug turned out to be in this area when write-up

was released

Realtime Transport Protocol (RTP)

● Leading source of
vulnerabilities in
video-conferencing
software

● Not zero-click, but I
was really curious

RTP Fuzzing

● RTP entry-point was challenging to locate
● Searched all platform binaries for log entries related to RTP

features
○ “Extensions” was the winner

● Loaded Zoom as a shared library (on Linux) and called into RTP
entry point

● Couldn’t figure out Zealot
○ Unfortunately, functions sprung from ‘context’ object
○ Future work?

RTP Fuzzing

● Used DrSancov for instrumentation
● https://github.com/googleprojectzero/DrSancov
● Found a bug with fuzzing, but couldn’t send RTP from

one peer to another

Server Time!

● Set up On-prem Zoom
server with help from
Zoom security team

Server Time!

● Multimedia Router (MMR) server transmits audio and video
content among peers

● MMR server (unsurprisingly) decodes and re-encodes RTP
● Client RTP bug still didn’t work due to unnoticed checks in

the pipeline
○ I was wrong about entry point

Sever Time!

● Decided to fuzz MMR server RTP processing
● MMR did not have ASLR
● Fuzzed server by executing it on the command line and

loading fuzz driver stub using LD_PRELOAD and redefining
fopen

MMR Fuzzing

0x4000 MMR binary

…

0x???? fuzz_stub

…

0x??? libc.so

…

fopen

MMR Fuzzing

0x4000 MMR binary

…

0x???? fuzz_stub

…

0x??? libc.so

…

fopendo_fuzz

Sever Time!

● “This approach has a lot of downsides”
○ Had to do a lot if initialization

● No results

Packet Processing

● Another type of packet found in the SSL_write dump
appeared to be processed in libssb_sdk.so in the SDK

● Many classes had load_from and save_to defined
● Confirmed that these are part of the remote attack

surface with Frida
● Reviewed entire interface

CVE-2021-34423

ssb::i_stream_t<ssb::msg_db_t,ssb::bytes_convertor>::operator>>(

msg_db, &this->str_len, consume_bytes, error_out);

 str_len = this->str_len;

 if (str_len)

 {

 mem = operator new[](str_len);

 out_len = 0;

 this->str_mem = mem;

 ssb::i_stream_t<ssb::msg_db_t,ssb::bytes_convertor>::

read_str_with_len(msg_db, mem, &out_len);

CVE-2021-34423

int __fastcall ssb::i_stream_t<ssb::msg_db_t,ssb::bytes_convertor>::

read_str_with_len(msg_db_t* msg, signed __int8 *mem,

unsigned int *len)

{

 if (!msg->invalid)

 {

ssb::i_stream_t<ssb::msg_db_t,ssb::bytes_convertor>::operator>>(msg, len, (int)len, 0);

 if (!msg->invalid)

 {

 if (*len)

 ssb::i_stream_t<ssb::msg_db_t,ssb::bytes_convertor>::

read(msg, mem, *len, 0);

 }

 }

 return msg;

}

CVE-2021-34423

● Tested the bug on the MMR server
● Vulnerable code was behind a flag
● Traced it in IDA and determined it was for Webinar features
● Enabled bug for $81.73/month
● Not willing to try bug on public server

CVE-2021-34424

● The dyna para table is similar to JSON
○ Object with named properties of different types
○ Property values are variants

ssb::dyna_para_table_t

CVE-2021-34424

struct variant{

char type;

short length;

var_data data;

};

union var_data{

 char i8;

 char* i8_ptr;

 short i16;

 short* i16_ptr;

 int i32;

 int* i32_ptr;

 long long i64;

 long long i64*;

};

CVE-2021-34424

● Identified functions that return value from table
○ Type checks were stringent

● Hooked these functions with Frida to see which values were
accessed by the server, and investigated how there were
used

CVE-2021-34424

● user_name string did not check null terminator
● String is displayed in web client with subsequent memory

values appended
● Bug worked on server and client

○ Evidence that CVE-2021-34423 also worked on server

Exploit Attempt

● Tried to exploit server with both bugs
○ CVE-2021-34423 to move IP

■ Not very reliable, as overwritten vtable was not
consistent

○ Two missing pieces
■ Controllable buffer I know the address of
■ Heap manipulation to control vtable

○ CVE-2021-34424 for extra pointer leakage

Exploit Attempt

● Got fairly close, but didn’t succeed
● Challenges were:

○ Lack of heap manipulation opportunities
■ Anti-abuse features

○ Threads with separate heap arenas
○ MMR server restart has exponential backoff

Conclusion

● Zoom fixed both reported bugs in November,
2021

● Zoom enabled ASLR in the MMR server
● Zoom has improved auto-updates

Conclusion

● Zoom was a challenging target that took a lot of effort to find
viable attack surfaces, mostly due to the sheer quantity of
code
○ Would have saved time if I’d focused on entry-points

● Locating symbols, even old ones, made this effort much easier
○ We also found symbols for WhatsApp and Viber

● IDA, Frida and DrSanCov are great tools that made this project
easier

Questions

http://googleprojectzero.blogspot.com/
@natashenka

natalie@natashenka.ca

