NNNNNNNN

Dotnetfile

Parsing .NET PE Files Has Never Been Easier

Yaron Samuel

RECON Montreal June 2022

Who am |

e Yaron Samuel - @yaron_samuel
e Principal Malware Reverse Engineer
e 10+ yearsin the cyber-security field

e \Works at Palo Alto Networks

& Soccer fan

" Dog person

Contributors

2000000000 0CCORRRNSNSY o
® 00000000 S0ONONOORRNNNNNS
o900 oo0o0ee 000000000
o 9000 00 G000 S0000000e
CO00000000000000NNINNNESE B0 LA A X LN J
CO00000000000000000KOESY SO0 LR X J LE
CO000000000COISOININININNSS oo .
900000000000 (XL X
LA L L LA LK] oo
oo LA L X J LA L X J
(LR X eoee

. 5%

sesss:Bob - Jung

*:Senior Manager & an

awesome Reverse Engineer

Palo “Alto ‘Networks
New Mexico, :USA

Dominik Reichel

Senior Reverse Engineer
@TheEnergyStory
*“Former Palo Alte.Networks

1 200000000 OCOOOOOOONONE 'YX) ®

.uﬁmul oyeﬁgeoaaonosooaaaaamaoooooeuu,.........

D 0000000000000 000000POCROOIOOORONONNONOOOOOOOS
0000000000000 0OCOCKOIIOIOIOIOLOIOLEYS [X] (X]

wﬂméh&:otculcooh'nceculennmo»aa L X]

A XA XA EE AN N AN NN NEENENENENN NENNSEZSNHE-R-NEH-RSESNSEHNHJ) L)

90000000000 o0
9000000 oo °
00000000 o e
'aooooooooa-olo
XY TY 00000

‘Yaron::Samuel

o900 L R N LN L N

e-Your Humble Serivant
Palo Alto Networks.

9 000 00000

@ LA X J
see Israel .
L - sewew0o

L] L] 200000000 o
ses00e L] (XXX R X RN NN
LL L X o000 0OSOONSS
LL LX) 0000 OOGOOOEDS
LN

® o
® o

Agenda

e Whatis.NET

o Background
o Execution and compilation
o File Format

e Dotnetfile Library - New open source Python Library

o Motivation

o Features

o Examples

What is .NET

e Software Framework

v Free
v Managed
v Open Source*
v/ Cross Platform*
e Supports C#, VB .NET, F# and a few other programming languages
v High-level
v May speed up development process compared to lower level languages

Ve Native code interface exists

e Primarily developed by Microsoft

e dotnet bot - the .NET community mascot -->

.NET compilation & execution

compilation

7

using System;

D\

namespace MyProject

class MyClass

_ J

\ Developer IDE J

— 1 5

.NET compatible
languages
compile to

platform neutral

CIL code

CIL code

(7

.assembly HelloWorld
.assembly extern mscorlib

o

.method public static void Main

D\

J

NET File

&

v

CIL = Common Intermediate Language

CLR = Common Language Runtime

execution

_I>
Platform specific
CLR compiles CIL

to machine
readable code

((Machine code \\

mov eax, 0x1337
mov edx, 0x99b
shl edx

inc edx

test edx, eax

J

&

CPU

)

.NET Executables

e The compiler compiles the programing language into CIL packaged into various
executable forms

e \We will concentrate on .NET PE executables for Windows

e The .NET PE file format extends the regular native Windows PE file format

e NET PE files usually have no native code, but only minimal native stubs alongside the
compiled CIL

.NET PE file format

Dos header

PE Header CLR Header
l #Strings

.NET Metadata CIL Code
Header #US

/Data Directorie\s

kN ET Directory/

% paloalto’

.NET PE file format

» B2 00 Module (1)
Dos header >) 01 TypeRef (339)
PE Header —> g - oor#- > 02 TypeDet I:If‘tlf":l.
* B Od Field (664)
g 06 Method (1115)
NET Metadata > Bg) 08 Param (912)

#US .
Header » B2 09 Interfacelmpl (1)

Data Directories l e HStrings

0A MemberRef (1049)

OB Constant (11)

g 0L CustomAttnbute (1110)
~.NET Directory » &2 0D FieldMarshal (10)

3 OF ClassLayout (1)

11 StandAloneSig (809)

wm #GUID

4o paloalto

.NET PE file format

Dos header

PE Header CLR Header
l #Strings

.NET Metadata CIL Code
Header #US

/Data Directorie\s

kN ET Directory/

% paloalto’

Native vs .NET

Native PE .NET PE
Native Code V4 X
in some cases there is native code
Import table V4 X
Usually meaningful oftentimes contains only mscoree.dll
Export table v X
Exist in DLLs Usually don't exist

Strings V4 V4
NET header X v
CIL X v

Dotnetfile Library

Dotnetfile Library - Motivation

Malware authors like .NET
Static analysis of .NET files using engines meant for native PE files has shortcomings
Parsing the rich set of .NET fields can assist us in various applications

Requirements:

o Static analysis of .NET PE files
o OSagnostic
o Using our lingua franca - Python

We could not find an alternative that did not depend on .NET

o By the time we have finished “dnfile” and “dncil” were released

o We believe that none of the libraries, including ours, is superior

o Each library has its own advantages

Dotnetfile Library

Named based on the legendary pefile library

Usage is also very similar, in fact the main object - DotNetPE inherits from PE

dn = dotnetfile.DotNetPE(

dn.Assembly.get_assembly_name()
"NjRat 0.7D'

dn.Assembly.get_assembly_version_information()
Struct.AssemblyInfo(MajorVersion=0, MinorVersion=0, BuildNumber=0, RevisionNumber=7)

https://github.com/erocarrera/pefile

Dotnetfile - Overview
v .NET metadata header parsing
v .NET Streams parsing

o Metadata Tables
o Strings
o Methods
v/ Advanced features
o Fingerprinting techniques
o Entry points discovery

o “Anti-Metadata”
v .NET Resource parsing

A Only raw resources, no deserialization

x Decompilation is not part of the library

Strings & User strings

e NET has 2 types of strings, held in 2 streams

o #strings - System strings

] Class names, methods names, member names, etc.

[Strings are stored next to one another

(@]

#US - User strings

m String literals that are being used by the code P— 4
—

T E AIIS'UU#NET STRING
~LENGTH ENCODING

. If the first one byte of the 'blob' is 0bbbbbbb,, then the rest of the 'blob’ contains the
bbbbbbb, bytes of actual data.

. If the first two bytes of the 'blob' are 10bbbbbb, and x, then the rest of the 'blob’
contains the (bbbbbb, << 8 + x) bytes of actual data.

= Strings are stored in the form of length+value

[String length encoding is somewhat strange

. If the first four bytes of the 'blob’ are 110bbbbb,, x, y, and z, then the rest of the
'blob’ contains the (bbbbb, << 24 + x << |6 + y << 8 + z) bytes of actual data.

Strings & User strings

dn.get_user_stream_strings()[:]
['Chat', '"!~Hacker~!', 'Enter Your NickName',

dn.get_strings_stream_strings()[:]
['', "<Module>', 'mscorlib', 'Microsoft.VisualBasic', 'MyApplication']

4o paloalto

Metadata tables

e The “#~" stream contains up to 56 metadata tables
e The tables contain most of the .NET metadata
e The tables reveal tons of useful information

e Notable tables:

o TypeRef - Referenced types
o TypeDef - Defined types (classes)

o ImplMap - Unmanaged methods

o ModuleRef - External Libraries

Metadata tables

14 dn.metadata_tables_lookup
14

{'Module': <dotnetfile.parser.MetadataTable at 0x1073f6760>,
'TypeRef': <dotnetfile.parser.MetadataTable at 0x10740e610>,
'TypeDef': <dotnetfile.parser.MetadataTable at 0x107424b50>,
'Field': <dotnetfile.parser.MetadataTable at 0x107601a90>,
'MethodDef': <dotnetfile.parser.MetadataTable at 0x10774dfdo>,
'Param': <dotnetfile.parser.MetadataTable at 0x107a926a0>,
'Interfacelmpl': <dotnetfile.parser.MetadataTable at 0x107c2e430>,
'MemberRef': <dotnetfile.parser.MetadataTable at 0x107c2e640>,
'Constant': <dotnetfile.parser.MetadataTable at 0x107e84550>,
'CustomAttribute': <dotnetfile.parser.MetadataTable at 0x107e8a670>,
'FieldMarshal': <dotnetfile.parser.MetadataTable at 0x1080e51f0>,
'ClassLayout’': <dotnetfile.parser.MetadataTable at 0x1080e5dc@>,
'StandAloneSig': <dotnetfile.parser.MetadataTable at 0x1080e5f10>,
'PropertyMap': <dotnetfile.parser.MetadataTable at 0x1081d7e20>,
'Property': <dotnetfile.parser.MetadataTable at 0x1081e5fd@>,
'MethodSemantics': <dotnetfile.parser.MetadataTable at 0x108289b20>,
'MethodImpl': <dotnetfile.parser.MetadataTable at 0x1083bd3do>,
'ModuleRef': <dotnetfile.parser.MetadataTable at 0x1083bd4f0>,
'TypeSpec': <dotnetfile.parser.MetadataTable at 0x1083bd730>,
'ImplMap’': <dotnetfile.parser.MetadataTable at 0x1083c3a60>,
'Assembly': <dotnetfile.parser.MetadataTable at 0x1083ccbe®>,
'AssemblyRef': <dotnetfile.parser.MetadataTable at 0x1083ccfdo>,
'ManifestResource': <dotnetfile.parser.MetadataTable at 0x1083d2430>,
'NestedClass': <dotnetfile.parser.MetadataTable at 0x1083debb®>,
'GenericParam': <dotnetfile.parser.MetadataTable at 0x1083e8730>,
'MethodSpec': <dotnetfile.parser.MetadataTable at 0x1083ec430>,
'GenericParamConstraint': <dotnetfile.parser.MetadataTable at 0x1084007c0

b & 00 Module (1): Genera
b G 01 TypeRef (339
b 48 02 TypeDef
P @ 04 Field (66

> (@) 08 Param (912): |
P =@ 09Interfacelmpl (1 ‘
b (&P 0A MemberRef (1049): Class -
P @ 08 Constant (11): Type-1b | Pa
> 3 0C CustomAttribute (1110
D & 0D FieldMarshal (10
o2 % OF ClassLayout (1): P
> % 11 StandAloneSig (@
P 15 PropertyMap (29): Paren
b [E 17 Property (322): Flags - 2b | Nar
> @ 18 MethodSemantics (625): S
> & 19 MethodImpl (1): Class - T
b & 1A ModuleRef (3): Name

b %IqupeSpec 31): S
> &) 1CImplMap (8
D <0 20 Assembly (1): Ha g]
> BP 23 AssemblyRef (6): MajorVersion - 2b |
P f_;]:: ManifestResource (21): Offs

P @29 NestedClass (23): Neste

b 49 2A GenericParam (7):

larshal | NativeType -

1od - MethodDef | Ass

iBody - MethodDefOrRef | MethodDe

ImpIMap & ModuleRef - the hidden import table

e ImplMap holds information about unmanaged methods that can be reached from
Mmanaged code

e ModuleRef contains the respective module information

e Malware may use it for obvious reasons

52 dn.ImplMap.get_ platform invoke_ 1nformat10n()
52
['msvcrt.memcpy’,
"kernel32.beginupdateresource’,
'kernel32.endupdateresource’,

'kernel32.updateresource’,
'user32.getlastinputinfo’,
'kernel32.beginupdateresource’,
'kernel32.updateresource’,
'kernel32.endupdateresource’]

4o paloalto

Resource access

NET allows to pack resources into the executable
And even sub-resources are supported
Resources are stored in serialized form

Dotnetfile doesn’'t deserialize the resources

res in dn.get_resources():
res_data.append([res[1,res[

.RGv.resources
.port.resources
.notf.resources
.Mic.resources
.Resources.resources public
.FURL.resources public
.Cam.resources public
.Manager.resources public

MemberRef Hash

e Innovative fingerprinting technique
o Can help group, cluster and detect .NET samples
e The MemberRef table contains mostly .NET runtime constructs

o methods, properties, fields and so on

o can't be easily obfuscated

e Foreach row we take the member name and the table name of the corresponding class

e \We textually concatenate all the resulting values and hash the result

99 dn.MemberRef.get_memberref_hash()

'8dd194d530279bee74d4ec981098398a06f404deb8a82bbld4e5a4f45137fcof’

4% paloalto’

MemberRef Hash - Contd.

Table ID Enum Table ID = Ox44 & (Ob1M) = 4 - TypeSpec //> A\\
O TypeDef Row Index = Ox44 >>3 =8 — SHA256
1 TypoRef . g TupeSpec m : ;
2 MycfduleRef ‘[ﬁl:;se'. c;);z;zz,s W #Strings Heap Offset w :
i)
3 MethodDef Table ID = 0x299 & (ObT11) = 1- TypeRef +
4 TypeSpec Row Index = 0x299 >>3 = Ox53

TypeRef

Class: ox299
Name: 0x5979 #Strings Heap Offset
J

>

“TypeRef-Enter”

.

Table ID = 0x44 & (0b111) = 4 - TypeSpec
Row Index = Ox44 >> 3 =8

TypeSpec

Class: ox44)
Name: ox597f #Strings Heap Offset

“TypeSpec-get_Count”

+

.

MemberRefHash

8dd194d530279bee74d4ec981098398a06£404deb8a82bbld4e5a4£45137£fc6f

49 paloalto

MemberRef Hash - Example

4 7 tmpl450.tmp (0.0.0.0)
45 Ao

2000001

BVEi- 0?7 A
luABVfjz @0200000A

ase Type and Interfaces

@06000026

@06000027

r‘\.
() :

=

r %
al J o
\ /

@06000025
@06000023

@06000024

g
A

tmp58D4.tmp (0.0.0.0)

oo

b= PE
P =B References
P Ml Resources
4 {} -
b % <Module> @
4 #3 |aThfZeeq @0200000A
P B Base Type and Interfaces
P Ml Derived Types

v

~AANAYT
/

;OOUUUO_/
(): @06000025
I(string) : @06000024

Bwi() : @06000023
v 2

@0400

E @02000008

VLUV

4o paloalto

WHENIMARVIAREBAUNHORSIKEER
MemberRef Hash - Example CREATINGISAN BIESIVIINHATHE
SAME MEMBERREF- HVAS'H

33]: dnl

34|: dn2

dotnetfile.DotNetPE(

dotnetfile.DotNetPE(} A
35 . dnl.MemberRef.get_memberref_hash()
35 '2297027b715e172bb32de9641078bac067d2638af701a297a8a7619c27fd65b4 "

36 - dn2.MemberRef.get_memberref_hash()
36 '2297027b715e172bb32de9641078bac@67d2638af701a297a8a7619c27fd65b4 '

4o paloalto

MemberRef Hash - Example

TypeSpec-.ctor
TypeSpec-.ctor
TypeSpec-get_GetInstance
TypeSpec-get_GetInstance
TypeSpec-get_GetInstance
TypeSpec-get_GetInstance
TypeRef-.ctor
TypeRef-.ctor
TypeRef-.ctor
TypeRef-GetObjectValue
TypeRef-Equals
TypeRef-GetHashCode
TypeRef-GetTypeFromHandle
TypeRef-ToString
TypeRef-Createlnstance
TypeRef-.ctor
TypeRef-.ctor
TypeSpec-m_ThreadStaticValue
TypeRef-.ctor

TypeRef-.ctor
TypeRef-.ctor
TypeRef-Concat
TypeRef-Contains
TypeRef-get_Length
TypeRef-ToString
TypeRef-CompareString
TypeRef-Delete
TypeRef-SetProjectError
TypeRef-ClearProjectError
TypeRef-GetExecutingAssembly
TypeRef-.ctor
TypeRef-GetObject
TypeRef-Load
TypeRef-get_EntryPoint
TypeRef-Invoke
TypeRef-.ctor
TypeRef-.ctor
TypeRef-CopyArray
TypeRef-Read
TypeRef-.ctor
TypeRef-GetCurrentProcess
TypeRef-get_MainModule
TypeRef-get_FileName
TypeRef-ToString
TypeRef-.ctor

TypeRef-AddResource
TypeRef-AddResource
TypeRef-Generate
TypeRef-Close
TypeRef-Dispose
TypeRef-GetTempFileName
TypeRef-Replace
TypeRef-.ctor
TypeRef-Next
TypeRef-Randomize
TypeRef-StrReverse
TypeRef-.ctor
TypeRef-SetCreationTime
TypeRef-SetLastAccessTime
TypeRef-SetLastWriteTime
TypeRef-.ctor
TypeRef-set_WindowStyle
TypeRef-set_FileName
TypeRef-set_Arguments
TypeRef-Start
TypeRef-Kill
TypeRef-.ctor
TypeRef-ToCharArray
TypeRef-Rnd

TypeRef-Int
TypeRef-Round

TypeRef-Append
TypeRef-ToString
TypeRef-get_Default
TypeRef-GetBytes
TypeRef-ToBase64String
TypeRef-FromBase64String
TypeRef-GetString
TypeRef-.ctor
TypeRef-CreateCompiler
TypeRef-.ctor
TypeRef-set_GenerateExecutable
TypeRef-set_OutputAssembly
TypeRef-get_ReferencedAssemblies
TypeRef-Add
TypeRef-get_EmbeddedResources
TypeRef-set_CompilerOptions
TypeRef-CompileAssemblyFromSource
TypeRef-CreateProjectError
TypeRef-Empty

TypeRef-Concat

TypeRef-.ctor

TypeRef-Append

TypeRef-.ctor

TypeRef-.ctor

TypeRef Hash

e Full credit to GDATA for the original idea
e The main idea is to calculate sha256 over all the referenced .NET types

e Re-implementation of typeref hash with small improvements

o Our version uses the resolution scope names instead of the namespace names as they're
always present

o Optional flag to skip types that reference each other as added by some .NET protectors

TypeRef Hash - Example

TypeRef entries that reference each other - likely garbage
No "Namespace”

0x0001A444

0x0001A446

0x0001A448

0x0001A43E

0x0001A440

0x0001A442

ResolutionScope sxeHhPBNraWIHeFoxc (ResolutionScope: TypeRef[18], 0x01000012)

Name 6SFRArCsVqhLk4jhGT (#Strings Heap Offset)

Namespace #Strings Heap Offset

ResolutionScope 6SFRArCsVqghLk4jhGT (ResolutionScope: TypeRef[19], 0x01000013)
Name sxeHhPBNraWIHeFoxc (£5trings Heap Offset)

Namespace #Strings Heap Offset

Out of bound “Resolution Scope”, No “Name” and “Namespace”

0x0001A7CE ResolutionScope . ™2B3 ResolutionScope: Typel =f[172], 0 010000AC
m.Runtime.Interop B

em.Runtime.InteropServices 0x0001A7D0 Name 0 #Strings Heap Offset

tribute - System

0x0001A7D2 Namespace 0 #Strings Heap Offset

49 paloalto

TypeRef Hash - Example

TypeRef entries t
Al sxcHhPBNraWIHeFoxc (ResolutionScope: Typ

0x0001A444
0x0001A446

0x0001A448

0x0001A43E

0x0001A440

0x0001A442

Out of

@ 166 -

@ 167 - UnmanagedFunctionPointerAtt
(“] 162 _ CallingConvent

€ 169 - NagsAttr

2 170 -

ResolutionScops 18], 0x01000012)

Name 6SFRArCsVqhLk4jhGT (#5trings Heap Offset)

Namespace

Resolutionscopell SFRArCsVghLk4jhGT (ResolutionScope: TypeRg. *0100001)

Name

Namespace sxeHhPBNraWIHeFoxc (#5trings Heap Offset)

bound “Resolution Scope”, No “Name” and “Namespace”

: 0x0001A7CE ResolutionScope . ™2B3 ResolutionScope: Typel =f[172], 0 010000AC
Poi ibute - System.Runtime.Interop

St System.Runtime InteropServices 0x0001A7D00 Name 0 #Strings Heap Offset
bute - System

0x0001A7D2 Namespace 0 #Strings Heap Offset

. ef (33)

TypeRef Hash - Example

TypeRef entries that reference each other - likely garbage
No "Namespace”

0x0001A444 ResolutionScope sxeHhPBNraWIHeFoxc (ResolutionScope: TypeRef[18], 0x01000012)

0x0001A446 Name 6SFRArCsVqghLk4jhGT (#Strings Heap Offset)

0x0001A448 Namespace #Strings Heap Offset

ResolutionScope

0x0001A43E ResolutionScope

Name

Namespace

0x0001A7CE ResolutionScope . ™2B3 ResolutionScope: Typel =f[172], 0 010000AC

ute - System.Runtime.Interop
m.Runtime InteropServices

0x0001A7D0 Name 0 #Strings Heap Offset

0x0001A7D2 Namespace 0 #Strings Heap Offset

49 paloalto

Entry Points Discovery

e .NET Assemblies usually have no defined entry-point

e Dotnetfile provides means to easily locate the possible entry-point
o Searches for public classes or nested public classes
o Filters out methods with non-EP characteristics
o Parses out the method signature for a small but prevalent subset of signatures
o Itis not bulletproof but works pretty well

125 dn.MethodDef.get_entry_points()
125 [Struct.EntryPoint(Method="Main', Signature={'hasthis': False, 'return': 'System.Void',

'parameter': 'System.String[]'}, Type="MyApplication', Namespace="NJRAT.My')]

ep_struct dn_assembly.MethodDef.get_entry_points():
(f"{ep_struct.Type}-{ep_struct.Method} ')

wbemcon_RES-Sygtxa_FiceAnawgsis

wbemcon_RES-Systec_WkpeColleotor Real EP
wbemcon_RES-AphRModec_3006

wbemcon_RES-mmcws_Scfg

wbemcon_RES-1n41_ws_syafWCN

%o paloalto

Anti-Metadata

Packers and malware often try to break parsing

We devised some logic to identify abnormal .NET metadata structure
The feature was named Anti-Metadata

The logic includes

O

O

O

Checks if there are fake .NET streams

Validates whether the Module and Assembly table has more than 1 entry

Detects invalid string entries - added by ConfuserEx

Checks if there are extra bytes in the .NET metadata header

Looks for invalid TypeRef entries

Checks if the data directories number (OPTIONAL_HEADER.NumberOfRvaAndSizes) was
tampered, so it effectively hides the .NET data directory

Detects self referencing TypeRef entries - by examining the corresponding resolution scope

Documentation

dotnetifle API

. Docs
documentation

Filter

(A Welcome

(=] Overview v

Introduction

Project structure

g7/ Get started v

Requirements
Installation

Usage

Q. File identification v

MemberRef hash

(M Home (lIssues [J)Discussions

Welcome

Welcome to the documentation of do

files built in Python. The CLR header is |

stores a plethora of metadata informc
pefile but for NET samples.

This website gives an overview of the
meaning we'll continuously expand it \

If you find any issues or have any sugc¢

references

Source code: https:/github.com/pan-unit42/dotnetfile/

Documentation: https:/pan-unit42.github.io/dotnetfile/

Common Language Infrastructure Spec:
https:/MWww.ecma-international.ora/wp-content/uploads/ECMA-335_6th_edition_june_2012.pdf

GDATA - Introducing the typeref hash:
https://mwww.gdatasoftware.com/blog/2020/06/36164-introducing-the-typerefhash-trh

https://github.com/pan-unit42/dotnetfile/
https://pan-unit42.github.io/dotnetfile/
https://www.ecma-international.org/wp-content/uploads/ECMA-335_6th_edition_june_2012.pdf
https://www.gdatasoftware.com/blog/2020/06/36164-introducing-the-typerefhash-trh

NNNNNNNN

Dotnetfile

Parsing .NET PE Files Has Never Been Easier

Yaron Samuel

RECON Montreal June 2022

