
Dotnetfile
Parsing .NET PE Files Has Never Been Easier

Yaron Samuel

RECON Montreal June 2022

Who am I

● Yaron Samuel - @yaron_samuel

● Principal Malware Reverse Engineer

● 10+ years in the cyber-security field

● Works at Palo Alto Networks

⚽ Soccer fan

🐶 Dog person

Contributors

Bob Jung
Senior Manager & an
awesome Reverse Engineer
Palo Alto Networks
New Mexico, USA

Dominik Reichel
Senior Reverse Engineer
@TheEnergyStory
Former Palo Alto Networks
employee
Germany

Yaron Samuel
Your Humble Servant
Palo Alto Networks
Israel

Agenda

● What is .NET

○ Background

○ Execution and compilation

○ File Format

● Dotnetfile Library - New open source Python Library

○ Motivation

○ Features

○ Examples

What is .NET

● Software Framework

✓ Free

✓ Managed

✓ Open Source*

✓ Cross Platform*

● Supports C#, VB .NET, F# and a few other programming languages

✓ High-level

✓ May speed up development process compared to lower level languages

✓ Native code interface exists

● Primarily developed by Microsoft

● dotnet bot - the .NET community mascot -->

.NET compilation & execution

CIL = Common Intermediate Language

CLR = Common Language Runtime

Developer IDE

using System;

namespace MyProject
{
 class MyClass
 {
...

CPU

push rax
push rbx
push rcx
push rdx
...

Machine code

.NET compatible
languages
compile to

platform neutral
CIL code

Platform specific
CLR compiles CIL

to machine
readable code

.NET File

.assembly HelloWorld

.assembly extern mscorlib

.method public static void Main

...

CPU

mov eax, 0x1337
mov edx, 0x99b
shl edx
inc edx
test edx, eax

CIL code Machine code

compilation execution

.NET Executables

● The compiler compiles the programing language into CIL packaged into various
executable forms

● We will concentrate on .NET PE executables for Windows

● The .NET PE file format extends the regular native Windows PE file format

● .NET PE files usually have no native code, but only minimal native stubs alongside the
compiled CIL

.NET PE file format

Dos header

PE Header

Data Directories

.NET Directory

CLR Header

.NET Metadata
Header

#~ or #-

#Strings

#US

#GUID

#Blob

CIL Code

.NET PE file format

Dos header

PE Header

Data Directories

.NET Directory

CLR Header

.NET Metadata
Header

#~ or #-

#Strings

#US

#GUID

#Blob

CIL Code

.NET PE file format

Dos header

PE Header

Data Directories

.NET Directory

CLR Header

.NET Metadata
Header

#~ or #-

#Strings

#US

#GUID

#Blob

CIL Code

Native vs .NET

Native PE .NET PE

Native Code ✓ ✗
in some cases there is native code

Import table ✓
Usually meaningful

✗
oftentimes contains only mscoree.dll

Export table ✓
Exist in DLLs

✗
Usually don’t exist

Strings ✓ ✓

.NET header ✗ ✓

CIL ✗ ✓

Dotnetfile Library

Dotnetfile Library - Motivation

● Malware authors like .NET

● Static analysis of .NET files using engines meant for native PE files has shortcomings

● Parsing the rich set of .NET fields can assist us in various applications

● Requirements:

○ Static analysis of .NET PE files

○ OS agnostic

○ Using our lingua franca - Python

● We could not find an alternative that did not depend on .NET

○ By the time we have finished “dnfile” and “dncil” were released

○ We believe that none of the libraries, including ours, is superior

○ Each library has its own advantages

Dotnetfile Library

● Named based on the legendary pefile library

● Usage is also very similar, in fact the main object - DotNetPE inherits from PE

https://github.com/erocarrera/pefile

Dotnetfile - Overview
✓ .NET metadata header parsing

✓ .NET Streams parsing

○ Metadata Tables

○ Strings

○ Methods

✓ Advanced features

○ Fingerprinting techniques

○ Entry points discovery

○ “Anti-Metadata”

✓ .NET Resource parsing

乄 Only raw resources, no deserialization

✗ Decompilation is not part of the library

Strings & User strings

● .NET has 2 types of strings, held in 2 streams

○ #strings - System strings

■ Class names, methods names, member names, etc.

■ Strings are stored next to one another

○ #US - User strings

■ String literals that are being used by the code

■ Strings are stored in the form of length+value

■ String length encoding is somewhat strange

Strings & User strings

Metadata tables

● The “#~” stream contains up to 56 metadata tables

● The tables contain most of the .NET metadata

● The tables reveal tons of useful information

● Notable tables:

○ TypeRef - Referenced types

○ TypeDef - Defined types (classes)

○ ImplMap - Unmanaged methods

○ ModuleRef - External Libraries

Metadata tables

ImplMap & ModuleRef - the hidden import table

● ImplMap holds information about unmanaged methods that can be reached from
managed code

● ModuleRef contains the respective module information

● Malware may use it for obvious reasons

Resource access

● .NET allows to pack resources into the executable

○ And even sub-resources are supported

● Resources are stored in serialized form

○ Dotnetfile doesn’t deserialize the resources

MemberRef Hash

● Innovative fingerprinting technique

○ Can help group, cluster and detect .NET samples

● The MemberRef table contains mostly .NET runtime constructs

○ methods, properties, fields and so on

○ can't be easily obfuscated

● For each row we take the member name and the table name of the corresponding class

● We textually concatenate all the resulting values and hash the result

SHA256

MemberRef Hash - Contd.

Table ID = 0x44 & (0b111) = 4 - TypeSpec
Row Index = 0x44 >> 3 = 8

#Strings Heap Offset
TypeSpec

.ctor
Table ID = 0x299 & (0b111) = 1 - TypeRef
Row Index = 0x299 >> 3 = 0x53

#Strings Heap Offset
TypeRef

Enter

Class: 0x44
Name: 0x325

Class: 0x299
Name: 0x5979

Table ID = 0x44 & (0b111) = 4 - TypeSpec
Row Index = 0x44 >> 3 = 8

#Strings Heap Offset
TypeSpec

get_Count
Class: 0x44
Name: 0x597f “TypeSpec-get_Count”

“TypeRef-Enter”

“TypeSpec-.ctor”

+

+

MemberRefHash
8dd194d530279bee74d4ec981098398a06f404deb8a82bb1d4e5a4f45137fc6f

Table ID Enum
0 TypeDef
1 TypeRef
2 ModuleRef
3 MethodDef
4 TypeSpec

MemberRef Hash - Example

MemberRef Hash - Example

MemberRef Hash - Example

TypeRef Hash

● Full credit to GDATA for the original idea

● The main idea is to calculate sha256 over all the referenced .NET types

● Re-implementation of typeref hash with small improvements

○ Our version uses the resolution scope names instead of the namespace names as they're
always present

○ Optional flag to skip types that reference each other as added by some .NET protectors

TypeRef Hash - Example

TypeRef entries that reference each other - likely garbage
No ”Namespace”

Out of bound “Resolution Scope”, No “Name” and “Namespace”

TypeRef Hash - Example

TypeRef entries that reference each other - likely garbage
No ”Namespace”

Out of bound “Resolution Scope”, No “Name” and “Namespace”

TypeRef Hash - Example

TypeRef entries that reference each other - likely garbage
No ”Namespace”

Out of bound “Resolution Scope”, No “Name” and “Namespace”

Entry Points Discovery

● .NET Assemblies usually have no defined entry-point
● Dotnetfile provides means to easily locate the possible entry-point

○ Searches for public classes or nested public classes
○ Filters out methods with non-EP characteristics
○ Parses out the method signature for a small but prevalent subset of signatures
○ It is not bulletproof but works pretty well

Real EP

Anti-Metadata

● Packers and malware often try to break parsing
● We devised some logic to identify abnormal .NET metadata structure
● The feature was named Anti-Metadata
● The logic includes

○ Checks if there are fake .NET streams

○ Validates whether the Module and Assembly table has more than 1 entry

○ Detects invalid string entries - added by ConfuserEx

○ Checks if there are extra bytes in the .NET metadata header

○ Looks for invalid TypeRef entries

○ Checks if the data directories number (OPTIONAL_HEADER.NumberOfRvaAndSizes) was

tampered, so it effectively hides the .NET data directory

○ Detects self referencing TypeRef entries - by examining the corresponding resolution scope

Documentation

references

Source code: https://github.com/pan-unit42/dotnetfile/

Documentation: https://pan-unit42.github.io/dotnetfile/

Common Language Infrastructure Spec:
https://www.ecma-international.org/wp-content/uploads/ECMA-335_6th_edition_june_2012.pdf

GDATA - Introducing the typeref hash:
https://www.gdatasoftware.com/blog/2020/06/36164-introducing-the-typerefhash-trh

https://github.com/pan-unit42/dotnetfile/
https://pan-unit42.github.io/dotnetfile/
https://www.ecma-international.org/wp-content/uploads/ECMA-335_6th_edition_june_2012.pdf
https://www.gdatasoftware.com/blog/2020/06/36164-introducing-the-typerefhash-trh

Dotnetfile
Parsing .NET PE Files Has Never Been Easier

Yaron Samuel

RECON Montreal June 2022

