
Under the hood of
Wslink’s multilayered
virtual machine

Vladislav Hrčka | Malware Researcher

Vladislav Hrčka
Malware Researcher at ESET

@HrckaVladislav

Agenda

• Intro to VMs in general and symbolic execution

• Internals of the VM used in Wslink

•Our approach to dealing with the obfuscation

•Demonstration of the approach

Process VMs basics

• Interpreter executes
the bytecode

• Bytecode contains
instructions with:

• Opcodes

• Operands

• Handlers define
individual opcodes

VM based obfuscation

Symbolic execution in Miasm

• Expresses the code in mathematical formulas

• Registers and memory are treated as symbolic values

• Summarizes the code’s effects on the symbolic values

• We will frequently use it

• Original ASM:
MOV EAX, EBX

MOV ECX, DWORD PTR [EDX]

XOR ECX, 0x123

MOV AX, WORD PTR [ESI]

JMP ECX

• Performed symbolic execution:
EAX = {@16[ESI] 0 16, EBX[16:32] 16 32}

ECX = @32[EDX] ^ 0x123

zf = @32[EDX] == 0x123

nf = (@32[EDX] ^ 0x123)[31:32]

...

EIP = @32[EDX] ^ 0x123

IRDst = @32[EDX] ^ 0x123

Symbolic execution in Miasm

• Allows us to simply apply known concrete values

• Concrete values can simplify the expressions

• Performed Symbolic execution:
EAX = {@16[ESI] 0 16, EBX[16:3…

ECX = @32[EDX] ^ 0x123

zf = @32[EDX] == 0x123

nf = (@32[EDX] ^ 0x123)[31:32]

...

EIP = @32[EDX] ^ 0x123

IRDst = @32[EDX] ^ 0x123

• Applied EDX = 0x96 and
@32[0x96] = 0xFEED:

EAX = {@16[ESI] 0 16, EBX[16:3…

ECX = 0xFFCE

zf = 0x0

nf = 0x0

...

EIP = 0xFFCE

IRDst = 0xFFCE

EDX = 0x96

@32[0x96] = 0xFEED

End of introduction

• A virtualized function

• Virtualized functions contain:

• Prologue
• Call to VM entry
• Gibberish code

Wslink: First contact

Junk code

Overview of the VM’s structure

• Prepares the next virtual instruction
• Increases VPC (virtual program counter)
• Zeroes out a register

• RBP_init is context pointer
• Instruction table at offset 0xA4
• VPC at offset 0x28

VM2: The first executed virtual instruction

• Instruction 2
• Zeroes out several virtual registers

• Instruction 3
• Stores RSP in a virtual register

VM2: Virtual instructions 2 and 3

VM2: Virtual instruction 4

• Multiple basic blocks:

• Multiple basic blocks:

VM2: Virtual instruction 4

• Summary of the first block – memory assignments and IRDst:

• Multiple basic blocks:

VM2: Virtual instruction 4

• Summary of the first block – memory assignments and IRDst:

• Multiple basic blocks:

VM2: Virtual instruction 4

• Summary of the first block – memory assignments and IRDst:

• Rolling decryption – encryption of operands
• Values of virtual registers at offsets 0x0B and 0x70 were

set earlier

VM2: Virtual instruction 4 - deobfuscation

• The first original block

VM2: Virtual instruction 4 - deobfuscation

• The first original block

VM2: Virtual instruction 4 - deobfuscation

• The first original block

• Application of known values of the rolling decryption registers

• Application of known bytecode values reveals POP

IRDst = (-@16[@64[RBP_init + 0x28] + 0x4] ^ 0x3038 == @16[@64[RBP_init +

0x28] + 0x6])?(0x7FEC91ABD1C,0x7FEC91ABCF6)

@64[RBP_init + {-@16[@64[RBP_init + 0x28] + 0x4] ^ 0x3038, 0, 16, 0x0,

16, 64}] = @64[RSP_init]

IRDst = @64[@64[RBP_init + 0xA4] + 0x5A8]

@64[RBP_init + 0x28] = @64[RBP_init + 0x28] + 0x8

@64[RBP_init + 0x141] = @64[RBP_init + 0x141] + 0x8

@64[RBP_init + 0x12A] = @64[RSP_init]

• Virtual instruction 4 summary:

VM2: Deobfuscating bytecode chunks

IRDst = @64[@64[RBP_init + 0xA4] + 0x5A8]

@64[RBP_init + 0x28] = @64[RBP_init + 0x28] + 0x8

@64[RBP_init + 0x141] = @64[RBP_init + 0x141] + 0x8

@64[RBP_init + 0x12A] = @64[RSP_init]

• Build a graph from summaries

• Treat some values as concrete:

• Rolling decryption registers

• Memory accesses relative to the bytecode pointer

• Preserve only decryption registers’ values between blocks

VM2: Deobfuscating bytecode chunks

• Virtual instruction 4 summary:

IRDst = @64[@64[RBP_init + 0xA4] + 0x5A8]

@64[RBP_init + 0x28] = @64[RBP_init + 0x28] + 0x8

@64[RBP_init + 0x141] = @64[RBP_init + 0x141] + 0x8

@64[RBP_init + 0x12A] = @64[RSP_init]

virtual_instruction2_1(vpc)

virtual_instruction2_2(vpc)

virtual_instruction2_1(vpc) virtual_instruction2_3(vpc)

virtual_instruction2_4(vpc)

VM1: Deobfuscated virtual instruction structure

CFG

VM1: Deobfuscated virtual instruction structure

OUTRO

C
FG INTRO

OUTRO

C
FG INTRO

C
FG INTRO

Legend:
Yellow – Push virtual registers
Red – Pop virtual registers; switch context
Green – Jump to registerOUTRO

• Virtual instructions 1, 2, 3

• The same behavior as in VM2

VM1: Initially executed virtual instructions

VM1: Virtual instruction 4

VM1: Virtual instruction 4

• Instruction merging – contains, e.g., POP and PUSH
operations

• Operands decide which instruction is executed

• PUSH:

VM1: Virtual instruction 4

• Instruction merging – contains, e.g., POP and PUSH
operations

• Operands decide which instruction is executed

• POP:

• Instruction merging – contains, e.g., POP and PUSH
operations

• Operands decide which instruction is executed

• PUSH/POP

• Can be simplified by making the operands concrete

VM1: Virtual instruction 4

VM1: Deobfuscating bytecode chunks

• Use the same approach as in VM2:

• Build a graph from summaries

• Treat certain values as concrete

• Preserve certain values between blocks

• Process both VMs at once:

• Additionally make the entire VM2
concrete

• Ignore assignments to the VM2 context

virtual_instruction2_1(vpc)

virtual_instruction2_2(vpc)

virtual_instruction2_1(vpc) virtual_instruction2_3(vpc)

virtual_instruction2_4(vpc)

Resulting graph contained unexpected
branches instead of a series of POPs

VM1: Issue with opaque predicates during deobfuscation

VM1: Issue with opaque predicates during deobfuscation

•The branches check a known value
• We can apply the value and simplify it

• This is a sort of opaque predicates

Does the approach work?

Analyzing results

Bytecode block VM1 VM2

Size in bytes 695 1,145

Total number of processed virtual instructions 62 109

Total number of underlying native instructions 3,536,427 17,406

Total number of resulting IR instructions (including IRDsts) 192 307

Execution time in seconds 382 10

NON-OBFUSCATED SAMPLE*

Processed ServiceMain bytecode

OBFUSCATED

DEOBFUSCATED

ORIGINAL SAMPLEDEOBFUSCATED SIMPLIFIED

mov R0, [R0]
mov R1, 28

lea R2, BASE+0xE3808

ORIGINAL SAMPLEDEOBFUSCATED SIMPLIFIED

ORIGINAL SAMPLEDEOBFUSCATED

ORIGINAL SAMPLEDEOBFUSCATED

ORIGINAL SAMPLEDEOBFUSCATED

lea R2, BASE+0x2FB0
mov R3, R0

SIMPLIFIED

ORIGINAL SAMPLEDEOBFUSCATED SIMPLIFIED

lea Rdest, BASE+0x8C038

ORIGINAL SAMPLEDEOBFUSCATED

lea Rdest, BASE+0x8C038

...

jmp Rdest

RETaddr = &vm_pre_initX()

•Symbolic execution cannot process

unbounded loops

Limitations

• Instructions using such loops need to be addressed

by other means

Symbolic execution can help devirtualize
advanced unknown VMs in a reasonable time if

we treat the right values as concrete

Takeaway

Links

You can read the whitepaper at

WeLiveSecurity.com
Full source code is available in

ESET git repository

https://www.welivesecurity.com/wp-content/uploads/2022/03/eset_wsliknkvm.pdf
https://github.com/eset/wslink-vm-analyzer

www.eset.com | www.welivesecurity.com | @ESETresearch

Vladislav Hrčka
Malware Researcher

vladislav.hrcka@eset.com | @HrckaVladislav

Questions?

mailto:vladislav.hrcka@eset.com

