1 ® i
@ eT Digital Security
Progress. Protected.

Under the hood of
Wslink’s multilayered
~virtual machine

Vladislav Hrcka | Malware Researcher

®
@e-r Digital Security
Progress. Protecte:

Vladislav Hrcka

Malware Researcher at ESET
YW @HrckaVladislav

Agenda

*|Intro to VMs in general and symbolic execution
*|nternals of the VM used in Wslink
*Our approach to dealing with the obfuscation

* Demonstration of the approach

Progress. Protected.

(RSl

(S T = S

Ba = O o oo

[) Y= W]

MR NNNMNNNE&

Process VMs basics

[Fldef handlerl(vm ctx, bytecode):

operandl = bytecode [vm_ctx.PC] 01 ng 09 01 o7 08 02 25 03 01 o
operand2 = bytecode[vm ctx.PC+1]
Vm _Ctx.PC += 2
- vm ctx.gp regs[operandl] = vm ctx.gp regs[operandZ]
[Fldef handlerZ(vm ctx, bytecode): ® Interpreter executes
operandl = bytecode[vm ctx.PC]
vm_ctx.EC 4= 1 the bytecode
= vm_ctx.gp_regs[vm_ctx.stack.pop()] = operandl
Hldef handler3 (vm_ctx, bytecode): .
operandl = bytecode[vm_ctx.PC]” ° Bytecode Conta|ns
operand? = bytecode[vm _ctx.PC+1]
Vm Ctx.PC += 2 1 1 1 .
[—E if_vm_ctx.g'p_reqs[operandl] == operand2: InStrUCtlonS Wlth'
exit ()
* Opcodes
handlers = [handlerl, handler?, handler3, ...] ° Opera nds
def vm interpreter(vm ctx, bytecode):
while True: .
* Handlers define

opcode = bytecode[vm ctx.PC]
vm CELx.PC += 1
handlers[opcode-1] (vm_ctx, bytecode)

Digital Security
Progress. Protected.

individual opcodes

L

s

Fx

push ebp
retn

Function1

®©
@ eT Digital Security
Progress. Protected.

VM based obfuscation A

generate_bytecode(Function 1)

=2

Function 1bytecode ptr
Function 2 bytecode ptr

bhake address saved in k2

Function 1 bytecode

Bytecode addresses

takes data from

= 5

Fx
Fx
m) choose_bytecode(caller_addr)
switch_context_virtual()
execute_interpreter()
switch_context_native()
return

call vm_entry
\x00\x00\x00...

Virtualized Function1
vm_entry

Symbolic execution in Miasm

* Expresses the code in mathematical formulas

* Registers and memory are treated as symbolic values

* Summarizes the code’s effects on the symbolic values

* We will frequently use it

* Original ASM: * Performed symbolic execution:

MOV EAX, EBX EAX = {@l6[ESI] O 16, EBX[1l6:32] 16 32}
MOV ECX, DWORD PTR [EDX] ECX = (@32[EDX] ~ 0x123

XOR ECX, 0x123 zf = @32[EDX] == 0x123

MOV AX, WORD PTR [EST] nf = (@32[EDX] © 0x123) [31:32]

JMP ECX

EIP = @32[EDX] ~ 0x123
ITRDst = @32[EDX] ~ 0x123

Symbolic execution in Miasm

* Allows us to simply apply known concrete values
* Concrete values can simplify the expressions

* Performed Symbolic execution: * Applied epx = 0x96 and
EAX = {@16[ESI] O 16, EBX[l6:3.. @32[0x96] = OXFEED.
ECX = @32[EDX] 7 Ox123 EAX = (@16[ESI] 0 16, EBX[16:3..
zf = @32[EDX] == 0x123 ECX = OxFFCE
nf = (@32[EDX] » 0x123) [31:32] 2 = 0x0
nf = 0x0

EIP = (@32[EDX] ~ 0x123

IRDst = @32[EDX] " 0x123 EIP = OxFFCE

IRDst = O0xFFCE
EDX = 0x96
@32[0x96] = OxFEED

End of introduction

Wslink: First contact

i e =

.text:00e87FEEBCF2ATE

ext 00000, 2EaCr 2870 * A virtualized function

Ltext:eeaaa’FEEBCF2ATE

Ltext:eeaaa’7FEEBCF2ATE 3 DWORD _ ftdcall StartAddress(LPVO

text:Beae07FEEBCF2ATE StartAddr proc near
Ltext:eaaaa’FEEBCF2ATE

L oo sor 20m spord i 10 * Virtualized functions contain:

.text:Be88a7FEEBCF2ATE

.text:000007FEEBCF2ATO 800 48 53 push rbx

.text:000007FEEBCF2AT2 @08 48 83 EC 69 sub rsp, 6G@éh ° I

.text:000007FEEBCF2ATE @68 48 BB @5 13 BD @D @@ mov rax, cs:qword_7FEEBDCE79@ Pro Ogue
LtLext:000007FEEBCF2ATD @68 48 33 (4 xor rax, rsp

.text:000007FEEBCF2AB0 0658 48 B9 44 24 58 mov [rsp+&8h+var_1@], rax o Ca” to VM entry
.text:@08007FEEBCF2ABS @68 48 8B D9 mov rbx, rcx

.text:PO0O07FEEBCF2ABE @68 EB E3 FD @E @8 call vm_entry . .
.text:000007FEEBCF2ABD @68 AE scash ® GIbberISh COde
.text:@00007FEEBCF2ABE 968 A3 CC 4F 24 Be 8C F7 CC 28 mov ds:2BCCF7BCBE244FCCh, eax

text:eeeaa7FEEBCF2A9T 868 77 51 g e
@ xrefs to wm_entry

Directi0n|T}fF|.-'1‘«ddress Text
@ Up p sub_TFEEBCF1CZ0+D call wrn_entry
xlat =
mov ds:71974a84c5630f (¥ Up p sub_TFEEBCF2TEO-+1E call wrn_entry
stosd @ Up wiT_entry
xchg eax, ecx [E= 2 \ :
out @a7h, al 1 g
jge short loc 7FEEBCH @ oo p sub_TFEEBCF2B20+22 call wrm_entry
\— @ Dow. p sub_TFEEBCF2E40+18 call wm_entry
S @ Do, p o ServiceMain+D call wrn_entry

®©
@ eT Digital Security
Progress. Protected.

Digital Security
Progress. Protected.

Junk code

Symbalic Execution - Ox11dfds ta 0x11e842 [£) |

| Pseudocode-&

D& View-8)
RAX =
RBX = @x127
RCX = @x1

RSI_init == @x@

nf = (RSI_init)[63:64]

pf = parity(RSI_init & @xFF)
T = 8x8

cf = B8x8

IRDst = loc_key_3

W54 call_func_stack(@x11DFDD,
54 call_func_stack(@x11DFDD,
54 call_func_stack(@x11DFDD,
54 call_func_stack(@x11DFDD,
54 call_func_stack(@x11DFDD,
ie4[call_func_stack(@x11DFDD,

054 call_func_stack(@x11DFDD,
W54 call_func_stack(@x11DFDD,

RSP_init)]

RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)
RSP_init)

B i S S S S T T

call_func_stack{@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFFSG
@54[call_func_stack(@x11DFDD, RSP_init)] + @xFFFFFFFFFFFDE229

= call_func_ret(@x11DFDD, RSP_init, RCX_init, RDX_init, RB_init, R9_init)

((call_func_stack(@x11DFDD, RSP_init) + @xFFFFFFFFFFFFFF78) " (call_func_sta

call func_ret(@x11DFDD, RSP_init, RCX_

@xFFFFFFFFFFFFFFS8] =

@xFFFFFFFFFFFFFFE0]
@xFFFFFFFFFFFFFFES]
@xFFFFFFFFFFFFFF70]
@xFFFFFFFFFFFFFF78]
@xFFFFFFFFFFFFFFS8]
@xFFFFFFFFFFFFFFSS]
@xFFFFFFFFFFFFFFO8]
@xFFFFFFFFFFFFFFI8]
@xFFFFFFFFFFFFFFAG]
@xFFFFFFFFFFFFFFAS]
@xFFFFFFFFFFFFFFEG]
@xFFFFFFFFFFFFFFES]
@xFFFFFFFFFFFFFFCO]
@xFFFFFFFFFFFFFFCS]
@xFFFFFFFFFFFFFFD]
@xFFFFFFFFFFFFFFDS]
@xFFFFFFFFFFFFFFES]
@xFFFFFFFFFFFFFFES]
@xFFFFFFFFFFFFFFFB]
@xFFFFFFFFFFFFFFFS]

RDX_init
call_func_stack(e
call func_stack(e
call func_stack(e
R12_init
@e4[call_func_sta
RE_init
RO _init

= R16_init
= R11_init
= R12_init
= R13_init
= R14_init
= R15_init
= RDI_init
= RSI_init

REP_init
REX_init

= RBX_init
= RDX_init
= ROX_init

123
124

[- - -
[
oY, B I e

= =
W R

<

=

= =

= =
~) 0O O 0O Ch W Bh

WM R R

-
1 o~ =~
O = ka0 00N i)

= | =
00 W 0O 00 00 H 20 W 20w 0O

< < <
R E M3 &=

<

—

t

[N T T -~ I

e

(__ints4 *)(vB6[@] ~ v31);

I
= wid;

Bx4BEFIIF2i64;

-

(char *)}v23;

Ax2AFBR0B01i64;
@x58D361D31i64;
ax78D1ABCA164;

w253

= wad;

InterlockedExchange64(&v75, (inte4)&w73);
w19y
(__inte4)
(char *)v
al;

a2 * (unsigned _ inte64)&vB1;
v36;

vBl * v3ib;

w33;

L
vaady
P .
223

rlockedExchange64 (&vEa, (_ inte4)&vea);

(char *)v2a;
@x74E27FBEiG4;

InterlockedExchange64(&vee, (intes)&vEa);
(char *)v34;

w3 =
= v32;

(__int64)v32;
(__inte4)v32;
Bx276C41B1164;
(__int64)}va4d;
InterlockedExchange64(&v79, (inted4)&w79);

= ad

InterlockedExchange64(&v79, (inted4)&w79);

w263

Overview of the VM'’s structure

Leave VM

Save context on stack;
optionally wait for another running

o |
Set vm_init() parameters: : : :
: : virtualized block to end; :
(I |
o |

(I
o
Unpack the VM once; | 1
Execute vm_pre_init() based on the : :
[

o

bytecode address,
. offset of the first virtual instruction, . .
caller's address CPU flags relocate internal constructs;]

execute a virtual instruction

55,000~ native instructions

vm_entry() vm_init() vm_virtual_instruction()

1 107

®©
@ eT Digital Security
Progress. Protected.

VM2: The first executed virtual instruction

* Prepares the next virtual instruction ° RBP 1init iscontext pointer
* Increases VPC (virtual program counter) ¢ Instruction table at offset 0xA4

e Zeroes out a register * VPC at offset 0x28
Symbolic Execution - Oxeda?a to Oxeadd
RAX = RBP_init + @xEBS
RCX = [@64[[@64[REP_init + @xA4] + {ex@, @, 3, @16[@s4[RBP_init + ex28]], 3, 19, ex@, 19, 64}]
RIP = [@64[[@64[REP_init + @xA4] + {@x@, @, 3, @16[@64[RBP_init + @x28]], 3, 19, @x@, 19, 64}]
RSI = {ex@, @, 3, @L6[@64[RBP_init + @x28]], 3, 19, @x@, 19, 64}
R16 = @64[RBP init + exaA4] + {exe, @, 3, @16[@64[RBP init + @x28]], 3, 19, @@, 19, 64}
R13 = RBP_init + @x28
zf = [@54[RBP_init + @%x28] == @xFFFFFFFFFFFFFFFC
nf = (@64[RBP_init + @x28] + @wd)[63:64]
pf = parity({(@64[RBP_init + 8x28] + @x4) & @xFF)
of = (([@64[RBP_init + @x28] ~ (@64[RBP_init + @x28] + @x4)) & (@64[RBP_init + @x28] * @xFFFFEF
cf = (@54[RBP_init + @x28] ~ ((@64[RBP_init + @x28] ~ (@64[RBP_init + #x28] + @x4)) & (@64[REP.
af = ([@64[RBP init + @x28] * ([@G4[RBP init + ©x28] + @x4) * @x4)[4:5]
TRDst = (54| @64 RBP_init + @xAd] + {@x@, @, 3, [ML6|@62[RBP_init + @x28]], 5, 10, @x@, 10, G4F]
iG4[RBP_init + @x28] = [@64[RBP_init + @x28] + x4

|932[RBP_init + @xB5] = @x@
I =

VM2: Virtual instructions 2 and 3

* Instruction 2
e Zeroes out several virtual registers

IRDst = [@64[@64[RBP_init + @xA4] + {@x@, @, 3, @16[@64[RBP_init + @x28]], 3, 19, @x@, 19, 64}]
i16[RBP_init + @xB] = @x@

654[RBP_init + @x28] = @64[RBP_init + @x28] + 8x2
32[RBP_init + @x48] = 8x@

i32[RBP_init + @x70] = 8x@

i32[RBP_init + @xd4] = Bx@

i32[RBP_init + @xa@] = @xa

i32[RBP_init + @xEE] = @x@

932[RBP_init + @xFA] = 8x@

16[RBP_init + @x183] = 8x8

G32[RBP_init + @x133] = 8x@

@16[RBP_init + @x149] = Bx@

* |nstruction 3
* Stores RSP in a virtual register

TRDst = [@64[[@64[RBP_init + @xA4] + {@x@, @, 3, @16[@64[REBP_init + @x28] + @x2], 3, 19, @x@, 19, 64}]
i64[RBP_init + {@16[@c4[RBP_init + @x28]], @, 16, @x@, 16, 654}] = RSP_init
64[RBP_init + @x28] = @64[RBP_init + @x28] + @x4

®©
@ eT Digital Security
Progress. Protected.

VM2: Virtual instruction 4

-88 cmp rax, rll
-88 jz loc_7FEEVFBBEDLC

* Multiple basic blocks:

rld, rlé

rl2, 98h

rsi, 88h ; '€’
rle, 9éh

ri2, 4

gword ptr [rll], 8

loc_7FEE7FGBDIC:

-88 add rbx, 7FFFFFFFh
-@8 add rls, 26h ; ' °
-88 mov rldé, rbp

100.00% |¢-E5,1363) (295, Z3¢) |00114zA% O0O00O7FEETF

,VrﬁGraph OVErviEm O & x

VM2: Virtual instruction 4

-8 cp rax, ril
-08 3z loc_7FEE7F6BDIC

-68 xor ri4, rle
-68 and r12, 9h

-68 sub rsi, 88h ; '€’

-68 add ri16, 98h

r12, 4

quord ptr [r11], 8

* Multiple basic blocks:

i i =
loc_7FEE7FEBDIC:

08 add rbx, JFFFFFFFh

08 add ris, 2h 5 '

-8 mov_ rle, rbp

10000% (-5, 1363) (895, 236 [00114225 [oo0007FEE"S

* Summary of the first block — memory assignments and IRDst:

IRDst = ({(@16[RBP_init + @xB] + -(@32[RBP_init + @x78] ~ {@16[@64[RBP_init + @x28] + e@x4], @, 16, @x8, 16, 32})[@:16]) ~ @x3638, @, 16, @%@, 16, 64} == {@1I6[@64[RBP_init + @x28] + @x6], @,
[16[RBP_init + @xB] = @16[RBP_ 1r11t + @xB] + —(.:u:.;[RBP 1n1t + @x7e] ~ {@l6[@c4[RBP_init + @x28] + @x4], @, 16, @x8, 16, 32}}[@:16]

[32[RBP_init + @ 70] ~ {@16[@64[RBP_init + @x28] + ex4]J @, 16, @x@, 16, 32})

A64[RBP_init + J(@16[RBP_init + @xB] + —(@SE[RBP_lnlt + ox70] ~[@16[@64[RBP_init + @x28] + @x4], @, 16, @x8, 16, 32})[@:16]) ~ ex3e38, @, 16, Ox8, 16, 64}] = @64[RSP_init]

oy

VM2: Virtual instruction 4

* Multiple basic blocks:

i i =

-e8 mov ri1e, rb

* Summary of the first block — memory assignments and IRDst:

IRDst = ({(@16[RBP_init + @xB] + -(@32[RBP_init + @x7@] ~ {@16[@64[RBP i
W16[RBP init + @xB] = @16[RBP_ 1r111: + @xB] + -{@32[RBP_init + &x78] ™~ {il
i32[RBP_init + @x7@ @32[RBP init + @x78] ~ {i
i54[RBP_init + {(@16[RBP init + @xB] + -(@32[RBP_init + ex78] ~ |{@16[@c4

VM2: V|rtuaI mstructlon 4

* Multiple basic blocks:

* Summary of the first block — memory assignments and IRDst:

IRDst = ({(@16[RBP_init + @xB] + -(@32[RBP_init + @x7@] ~ {nlc[ac4[RBPLinit'+ @x28] + ex4], @, 16, Ox@, 16, 32})[@:16]) ~ @x3838, @, 16, @x8, 16, 64} -= {@16[@6A[RBP_init + @x28] + @x6], @,

@16[REP_init + @xB] = 116[RBP init + @xB] + -(@32[RBP_init + x70] ~ {@16[@64[RBP_init + Bx28] + 0x4], @, 16, Bx8, 16, 32})[0:16]
132 [RBP_init + g e 70] ~ {@16[@64[RBP_init + @x28] + @x4], @, 16, @x8, 16, 32})
64[RBP_init + @16[@64[RBP_init + @x28] + @x4], @, 16, @x@, 16, 32})[@:16]) ~ ©x3038, 8, 16, Ox@, 16, 64}] = @64[RSP_init]

(-_11C[RBP init + @xB] + -(@32[REBP_init + ex7e] =~

* Rolling decryption — encryption of operands
* Values of virtual registers at offsets 0x0B and 0x70 were
set earlier

/y l”l‘ \
(9]
l". ‘\\\\\," ‘
lp!"“\\‘\' "
e\ S\ 0"
/‘,l.l\“\\\\\\'
/ \ \\\
L EERLE B RS N
e v A \l

“You're not allowed to use

the sprinkler system to keep
your audience awake.”

VMZ2: Virtual instruction 4 - deobfuscation
* The first original block

IRDst = ({(@16[RBP_init + @xB] + -(@32[RBP_init + @x78] ~ {@16[@64[RBP_init + @x28] + @x4], @, 16, @x8, 16, 32})[@:16]) ~ @x3@38, @, 16, @x@, 16, 64} == {@16[@64[RBP_init + @x28] + @x6], @,
@16[RBP_init + @xB] - @1G[RBP_init + @xB] + -(@32[RBP_init + @x78] ~ {@16[@64[RBP_init + @x28] + @x4], @, 16, @x@, 16, 32})[@:16]

32 [RBP_init + @ = 9] ~ {@16[@64[RBP_init + @x28] + @x4], @, 16, @x8, 16, 32})
4[REP_init + {J@16[RBP_init + @xB] + -(@32[RBP_init + @x78] ~ J@16[@64[RBP_init + @x28] + ex4], @, 16, @x@, 16, 32})[@:16]) ~ ©x3038, @, 16, Ox@, 16, 64}] = @64[RSP_init]
-

VM2: Virtual instruction 4 - deobfuscation

* The first original block
= ({(@16[RBP_init + @xB] + -(@32[RBP_init + @x78] ~ {@16[@64[RBP init
BP_init + @xB] = @16[RBP_init + @xB] + -(@32[RBP_init + @x70] ~ {@16[(
BP init + @ g32 g32 @] ~ {{@16[0
BP init + { mlC[REP init + 8xB] + -(@32[RBP_init + x78] ~ Fole[@ed[RBP

VMZ2: Virtual instruction 4 - deobfuscation
* The first original block

IRDst = ({(@16[RBP_init + @xB] + -(@32[RBP_init + @x7@] * {@16[@64[RBP init + @x28] + ex4], @, 16, @xe, 16, 32})[8:16]) ~ @x3@38, @, 16, @x@, 16, 64} -— {@16[@6Z[RBP_init + @x28] + @xe], @,
016[RBP_init + @xB] = @16[RBP_init + @xB] + -(@32[RBP_init + @x70] ~ {@16[@E4[RBP_init + @x28] + @xa], @, 16, @xd, 16, 32})[0:16]

32 [RBP_init + @ = 9] ~ {@16[@64[RBP_init + @x28] + @x4], @, 16, @x8, 16, 32})

G64[REP_init + {J@16[RBP_init + @xB] + (@32[RBP init + ex7e] ~ f@16[@c4[RBP_init + @x28] + ©x4], @, 16, @xd, 16, 32})[e:16]) ~ @x3038, @, 16, @x8, 16, 64}] = @64[RSP_init]

* Application of known values of the rolling decryption registers

@64 [RBP_init + {4@16[@64[RBP init + 0x28] + Ox4] ~ 0x3038, O,
16, 64}] = @64[RSP init] =

lo, 0x0,

* Application of known bytecode values reveals POP
IRDst = @64[@64[RBP_init + 0xA4] + 0x5A8]

@64 [RBP init + 0x28] = @64 [RBP init + 0x28] + 0x8
@64 [RBP init + 0x141] = @64[RBP init + 0x141] + 0x8
@64 [RBP init + Ox12A] = @64[RSP_init]

VM?2: Deobfuscating bytecode chunks

* Virtual instruction 4 summary:

IRDst = @64[@64[RBP init + OxA4] + Ox5A8]

@64 [RBP_init + 0x28] = @64[RBP_init + 0x28] + 0x8
@64 [RBP_init + 0x141] = @64[RBP_init + 0x141] + 0x8
@64 [RBP_init + 0x12A] = @64[RSP_init]

®©
@ eT Digital Securit y
Progress. Protected.

VM?2: Deobfuscating bytecode chunks

* Virtual instruction 4 summary: 4.| il ntcton?) |

IRDst = @64[@64[RBP init + OxA4] + Ox5A8] ‘]
@64[RBP init + 0x28] = @64[RBP init + 0x28] + 0x8 | il o 20 |
@64[RBP init + 0x141] = @64[RBP init + Ox141] + 0x8
@64 [RBP init + 0x12A] = @64[RSP init] ‘J

\ 4 A 4

* Build a graph from summaries | | | T |
* Treat some values as concrete: ' . l
* Rolling decryption registers | AP —— |

* Memory accesses relative to the bytecode pointer
* Preserve only decryption registers’ values between blocks

®©
@ eT Digital Securit y
Progress. Protected.

\\\\\\\\\\\\\\\

VM1: Deobfuscated virtual instruction structure

CFG

®©
@ eT Digital Security
Progress. Protected.

CFG

7

"\
INTRO

OUTRO

VM1: Deobfuscated virtual instruction structure

CFG

™\
INTRO

OUTRO

@32 [RBF_init + 0x47] = 0x0
IRDst = loc key 47

.

IRDst = loc_key 57

‘

@64[RBP_init + 0x1E] = RSP init
IRDst = loc key 6%

@64[RBP_init + 0x1E] = @64[RBE_init + Ox1E] + 0x3
@64 [RBP_init + 0x53] = @64[RSE_init]

IRDst = loc key 180

.

i _\
@64[RBP_init + 0x1E] = @64[RBF _init + Ox1E] + Ox3
@64 [RBF_init + 0x12ZB] = @&4[RSP_init]

IRDst = loc_key 181
. y

4 _‘\
@84 [RBF_init + 0x1E] = @64[REF_init + O0x1E] + 0x3
@64 [RBP_init + 0x10F] = @&4[RSP_init]

IRDst = loc key 182
A y

@64 [REBP_init + 0x1E] = @64[RBE init + Ox1E] + Ox3
@64 [RBP_init + OxFA] = @64[RSE_init]
IRDst = loc key 183

\ - J

CFG

@64 [RSP_init + 0xFFFFFFFFFFFFFFF8] = @64 [RBP init + 0x98]
@64 [RBP_init + 0x141] = @64[RBP init + 0x141] + OxFFFFFFFFFFFFFFFA

@64 [RSP_init + 0xFFFFFFFFFFFFFFF8] = @64 [RBP init + 0x10D]

4 R
INTRO
\\ J
r~
OUTRO
\. S

@ed [RBEP init + 0xl141] = @E4[BEP init + 0xl1l41] + OxXFFFFFFFFFFFFFFFE

R10 = @64 [RSP_init + 0x10] o

R11 = @64[RSP_init + 0x18]

R12 = @64[RSP init + 0x20] Legend:

213 = @64[RSP_init 4 0x28] Yellow — Push virtual registers

B14 = @64[RSP_init + 0x30] — Pop virtual registers; switch context
R15 = @64[RSP init + 0x38] —Jump to register

zf = @32[RSP_init + 0x78][6:7]

exception flags = @3Z2[RSP_init + Ox78][8:9]72(0x2,exception flags init)

IRDst = @64 [REPF init + 0x74]

@32 [RBP init + OxFF] = 0x0

VM1: Initially executed virtual instructions

e Virtual instructions 1, 2, 3
* The same behavior as in VM2

\\\\\\\\\\\\\\\

. ; ==
=

i

VM1: Virtual instruction 4

* Instruction merging — contains, e.g., POP and PUSH
operations

* Operands decide which instruction is executed
e PUSH:

h

o teexeyass | deeweyss
BB [BEP imit] = Oxl B3 [REP_imit] = 0Ox0D

BE4[RIF_init + OxFFEFCFEEEFECEFFECE] = RE4[REP_init + 0x30] BlE[R3IF_dimit + OxFEFFECFFECFEEFFE] = BlE[REF_imit + 0x20]

BE4[RBF _init + 0Ox141] = @64[BEF_init + 0xl4l] + O0xFFFFFFEFFEETEELE BE4[REP_imis + Oxl4l] = @E4[REP _iniv + Ox14l] + OxFEFFEEFFEEFEEFFE
IRD=t = loc_key 306 IRDiat = loc_key 30E

A

VM1: Virtual instruction 4

* Instruction merging — contains, e.g., POP and PUSH
operations

* Operands decide which instruction is executed
« POP - - leckeya4o

@8 [REP init] = 0xl

IRDst = (B64[RBF init + 0x30] == (RBF _init + 0Ox141})7?(loc_key 5t

— |

264164 [REP init + 0x30]] = @64[RSP snit] e e

Be4[Be4 [REF init + 0x30]] = @64[RSP _init]
IRDst = loc key 434

@64 [RBP init + 0x141] = @e4[RBP init + 0x141] + Ox8
IRD=t = loc key 434

VM1: Virtual instruction 4

* Instruction merging — contains, e.g., POP and PUSH
operations

* Operands decide which instruction is executed
* PUSH/POP
* Can be simplified by making the operands concrete

VM1: Deobfuscating bytecode chunks

* Use the same approach as in VM2: ‘ el nstruetion2_ e ‘
* Build a graph from summaries 3
* Treat certain values as concrete ‘ irtval nsiruction?_ 20 ‘
* Preserve certain values between blocks
* Process both VMs at once: Y y
* Additionally make the entire VM2 ‘ virtual nstruction? 1(vee) ‘ ‘ virtualinstruction?.3(vpc) ‘
concrete | . |

* Ignore assignments to the VM2 context

‘ virtual_instruction2_4(vpc) ‘

VM1: Issue with opaque predicates during deobfuscation

© mm_tnin a1, i 18, b ok 2k et b 3w b 15 G0, &_n bmin $u B 35 3 8, Sy rvan mmy B amt b - 1111 mae ek Sty © reme . = Snml & ¢ mae_bmia = Smal © Sela 1 * amtmi S crne_bmbn = Zemdy

Resulting graph contained unexpected
branches instead of a series of POPs

®©
e-r Digital Security
Progress. Protected.

VM1: Issue with opaque predicates during deobfuscation

Digital Security

-~

"n.,_"

ps

@3Z[RBFP init + 0x47] = 0x0

@64 [RBF init + 0x1E] = RSP init

IED=t =I (REF _init == 0xE%)?(lcc key l&4, lr::--::_key_lEEIII
iy

* The branches check a known value
* We can apply the value and simplify it
* This is a sort of opaque predicates

Does the approach work?

Analyzing results

D 7 S

Total number of resulting IR instructions (including IRDsts) 307

Execution time in seconds 10

Processed ServiceMain bytecode

ServiceMain ﬁroc near ; DATA XREF: .rd:
; .rdata:000800a]

arg 8 = qword ptr 18h
mov [rsp+arg 8], rbx
push rdi
sub rsp, 206h
mov rbx, rdx

call sub_1888F2870
fdivr st, st(6)

public ServiceMain
ServiceMaln proc near

arg_ 8= gword ptr B
arg_8= gword ptr 18h

mow [rsp+leh |, rbx
push rdi
sub rsp, 26h

mov rbx, [rdx]

mow eax, 28

lea rdi, ServiceStatus

nop dword ptr [rax+2eeese88h]

dd 628D92C7h ¥ L*

OBFUSCATED

loc lEReB38E8:
dec rax
mov byte ptr [raxt+rdi], @

L ——x T - - AaoAamAATEE

NON-OBFUSCATED SAMPLE*

@& [REF_init+

@64 [RBP_init+ O

DEOBFUSCATED

@64 [REP_
@4 [REP inits DOxlE] =

initd Oxd

@84[REP_inité 0xCC) = 064 [RSP_init)
@84[REP_inité Ox1E)] = RSP

initd O

@4 [REP_inits D = RSP_init+ 0x98

@64 [REP_init+ O

@I2[REP_init+ 0x63] = 0x0
@32[RBF_init+ DxdF] = Oxl

@64 [RE

it+é 0x133] = 0x309

@E4[REP_init+ O

= @64 [REF_init+

@EA[REP initd O

= @64 [REF_init+

@Ed [k
IR

_inité 0x74) = @64 [REP_init+ ¢

]

= loc_key_291

wl, 6, 7, (B6A[RBP_init+ OxdF] + FFFFFFE FF) [63:64], 7, 8, (@32[REF_init+ O 1)[8:11], 8, 11, (@E4[REF_init+ Oxd¥F] ~ (@64 [REP_inits

FFFFFFF)) & (@64[RBP_inits+ OxdF] ~ Oxl))[63:64], 11, 12, (@32[RBP_inits+ O 1) (12:18], 12, 15, O0x0, 15, 16,

. 3,8, tf init, 8, 9, i £ init, 9, 10, df_init, 10, 11, 0x0, 11, 12, iepl_f_init, 12, 14, nt_init, 14, 15, 0x0, 15, 16, rf_init, 16, 17, vm_ir

9, vif_init, 19, 20, vip_init, 20, 21, i d init, 21, 22, OxD, 22, 32} & 0x40,{0x2, 0, 2, parity(@32[REP_inité O0xcC] & 0xd0),

B84 [RBP_init+ 0x133] = BE4[RBP_init+ 0x80] + 0x30A

B64 (RBP_inits 0x133] = @64 [REP_inité 0x80] 4 Ox2FE

BE4[RBP_init+ 0x15) = @E4[RBE_init+ 0x80) + Ox2FB

064 [RBP_init+ Ox11F] = B64(RBP_init+ 0x13F]

064 [REP_ind t4] = 0x30AF

@64 [REP_init+ 0Ox133] = @64[RBP_ini 80] +

@64 [RBP_init+ 0x133) = @64(REP_init+ 0x80] +

@64 [REP_init+ OxnFFFE i) = @64[RBP_init+ OxdF)

B64[RBP_init+ O0x1E) = @64[REP_init+ OxlE) + OxFFF FF8

064 [RSP_init+ OxFFFFFFEFFFFEFFFY) = @64(RBP_init+ OxdF)

P64 [RBP_init+ Ox1E] = @64[RBP_init+ Ox1E] + OuFFFFFFFFFFFFFFFS
init+ OxFFFE "FE) = @64[RBP_init+ 0uCC)

init+ O0x1E] = @E4[RBP_init+ Ox1E] + 0

JRFFFFEFEFFEFEFFFS) = @64 [RBE_init+ OxdF)
1E] = @64[REP_init+ Ox1E] + Oxi

@64 [RSP_.)iFFFE FEFFFFFS) = @64[RBP_init+ 0x11F]
@64 [REF_init+ 0x1E) = @E4[RBP_init+ OxlE] + OxFFF
B64 [R init+ OxFFFFFFEFE F5) = @64[RBP_init+ 0xl5)

BE4[RBP init+ 0=15] =

BE4 [RBP init+ 0xllF]
BE4 [REP_init+ OxlE] =

BE4 [RBP init+ OxdF] =
BE4 [REP_init+ OxlE] =

BE4[RBP init+ 0=CC] =
@64[REP init+ O0xzlE] =

BE4 [REP_init+ OxlE] =

@64 [RST_init)

@64 RSP _init]
REP_init+ 0x78

@64 [RSP_init]
REP_init+ 0Ox80

@64 [REP_init]
REP_init+ 0Ox88

REP_init+ 0x=58

I BE4 [RBP init+ 0xl3F]

@64 [EE4[REP dinit+ Ox13F]] F
-

32[RBEBP ipits (O=-3] = (=0
@32[RBF _init+ OUxdF] = OzlC §

BE4 [RBP _init+ 0x133]
B&4 [REP_init+ 0Oxl33]
BE4 [RBP _init+ 0x133]

BE4[REP_init+ O0x74] =
IRDst= loc key 291
AN

0x3092
@64 [REP_init+ 0x=80] + 0=3097
@64 [REF_init+ 0x=80] + O=E BT

B64 [REP_init+ 0=80] + O=zEZ§09

DEOBFUSCATED

- mov RO, [RO]
—> mov R1, 28

SIMPLIFIED

public ServiceMain
serviceMain proc near

arg_@= gword ptr B8
arg_8= qword ptr 18h

5C 24 18 mav [rsp+12h], rbx
push rdi
EC 28
1A
@a ee o
3D AF @7 BE a8 d Uly Serw
86 06 @0 @0 00 nop dword ptr [rax+8eea2886h]
vy
loc_1B88883068:
FF €8 dec rax
B4 38 20 mov byte ptr [rax+rdi], @
F7 jnz short loc_lBeeazecd
f
18 FF FF FF lea rdx, HandlerProc ; lpHandlerPr
mov rox, rbx 5 lpserviceNam
8F 238 ee call cs:RegisterServiceCtrlHandlery
B8 87 8E o8 mov cs:hServiceStatus, rax
test rax, rax
jz short loc_13@@83@FD
1 |
v

ORIGINAL SAMPLE

) - A - o public ServiceMain
@64 [RBP init+ 0OxlE] = @E&4[RSP_init] ServiceMain proc near
@64 [RBP init+ 0OxllF] = @E64[RSP init] arg_@= gqword ptr B8
o - arg_B8= gqword ptr 1@h
@64 [REP_init+ OxlE] = RSP_init+ 0Ox73
5C 24 18 mav [rsp+12h], rbx
@64 [RBP init+ OxiF] = @E&64[RSP init] push rdi
- _ . EC 2@ sub rsp, 28h
@64 [RBP_init+ OxlE] = RSP_init+ 0=30 18 mov rbx, [rds]
@a ee o " £= =
@64 [RBP init+ 0O=CC] = @E64[RSP_init] 3D AF @7 BE @8 di
@64[RBP_init+ O0xlE] = RSP init+ 0x83 50 00 00 90 @0 nep oaeh]
@64 [RBP_init+ 0OxlE] = RSP_init+ 0x93 'L*
@64 [RBP dinit+ Oxl3F] = @E64[@E64[REBF init+ Oxl13F]]
- B loc_1B88883068:
@32 [REP init+ O0=53] = 0u0 FF C8 dec rax ,
- B4 38 20 mov byte ptr [rax+rdi], @
@32[RBP init+ OxudF] = 0xlC F7 jnz short loc_lB8@063060
T
@64 [RBP _init+ 0x133] = 0x3052 *J
@64 [RBP_init+ 0Oxl132] = @E64[REP_init+ 0Ox80] + 023092 18 FE FF EF lea rdx, HandlerProc ; lpHandlerPr
mov rox, rbx 5 lpserviceNam
@a4 [RBP _init+ 0Ox133] = @E64[RBP_init+ 0x30] + O0xE3IZ08 8F @3 e call cs:RegisterserviceCtrlHandlery
B8 87 8E o8 mov cs:hServiceStatus, rax
@64 [RBP init+ Ox74] = E64[RBP_init+ 0=30] + 0=zE3808 I test rax, rax
- — jz short loc_18@8838FD
ITRDzt=loc key 291 I ™1
S v
lea R2, BASE+0xE3808
.data:@EREA7FEBSFF3808 ; struct SERVICE _STATUS ServiceStatus
.data:eeeBE7FEBSFF ServiceStatus _SERVICE STATUS <@

.data:0EREA7FEBSFF3808

DEOBFUSCATED SIMPLIFIED ORIGINAL SAMPLE

48 89 3C 24

i 48 B3 EC 2@
48 BB 1A

3 80 3D AF

@F 1F 5@ o8 aa e ae

public SerwviceMaln
ServiceMain proc near

arg_= qword ptr 8
arg_8= qword ptr 18h

mow

push

sub
mov
mov
lea
nop

[rsp+1@h], rbx

rdi

rsp, 28h

rbx, [rdx]

eax, 28

rdi, ServiceStatus
dword ptr [rax+2eee:

F] + OxFFFFFFFFFEFFFFFFE))

(B64[REP_inig+ Oxzl))[63:64],

9, i f init, 10, df init, 12, iopl f init, 12,

128 48 FF (8

128 C6 @4 38 @8

128 75 F7

loc_1B8@083060:

dec rax
mov byte ptr [rax+rdi]
jnz short loc_1B588838€

1@ FF FF FF
8B C

15 BF BF &8 ee
89 @5 B8 87 BE ea

83 (@
78

call

test

rdx, HandlerProc ; lpHal
rox, rbx 3 lpSer
cs:RegisterserviceCtrlH
cs:hServiceStatus, rax
rax, rax

short loc_l8@a83@FD

DEOBFUSCATED

ORIGINAL SAMPLE

@6d|REBP init+ Ux13F] = @ed| RSP init]

} 48 B9 5C 24 1@ mov [rsp+l@h], rbx
B64[RBFP_init+ OxlE] = RSP_init+ 0x60 3 57 pL.ISh rdi
@E4[RBP init+ O0x13F] = @64[RSP_init] 3 48 83 EC 28 sub rsp, 28h
@E4[REP init+ OxlE] = RSP init+ Omes 3 48 8B 1A mav rbx, [rdx]
- - i B8 1C o0 o0 B8 mov eax, 28
@64[RBP_init+ 0x1E] = RSP_init+ O0x70 i 48 8D 3D AF @7 BE @8 lea rdi, ServiceStatus
GGLAIDED PR P Bk B V-Vl =2 5l i @F 1F 3@ o0 &8 00 00 nop dword ptr [rax+28608606h]
(|)
-] vy
B€4[REP_init + 0xCC] = {@32[RBP_init + 0OxCC][0:1] O 1, Oxl 1 2, parit
F64 [RBE_1nit + Ox4F] = @64 [RBP_1init + Ox4F] + OXFFFFFFFFFFFFFFE‘El
o T 128 48 FF (8
Be4[RBP_init + 0x133] = @64 [RBP_init + 0x4F] 128 C6 @4 38 08
328 75 F7
B4 [RBP_init + 0x133] = @c4 [RBP_init + 0x4F] + @64 [RBP_init + 0x74] '*J
@3 [E64 [RBE_1nit + 0x4F] + @e4[BBP_init + 0Ox74]] = 0x0
8D 15 18 FF FF FF lea rdx, HandlerProc ; lpHandlerPr
— T ” . P 8B CB mov rox, rbx 3 lpServiceNan
IRDst ((@32 [RBP—lnlt + 0xCC] & 0x40)2({0x2 0 2, parity(@32 [RBP—lnlt 15 BF BF 238 @8 call cs:RegisterServiceCtrlHandlerd
_ J 89 @5 B8 @7 @E 98 mov cs:hserviceStatus, rax
85 Ca test rax, rax
@64 [REP_init+ 0xl33] = B64[R nit+ 0z80] + OxEZ808 78 jZ short loc 18@8838FD
B64[RBP_init+ 0x74] = @64[REP Mnit+ 0x80] + 0zE3808 | 1 '
IRDst= loc_key 291 ‘ *

:[REP_init+ Ox4F] + OxFFFFFFFFEFFFFIEF) [63:64], 7, 8, (@32[RBP_init+ OxCC])([8:11], 8, 11, ((@64[RBP_init+ Ox4F] ~ (@64 [REP_init+ Ox4F] + OxFFFFFFFFFFFFFFFE)) & (@64[RBP_init+ Ox4F] ~ O0xl))[63:64], 11, 12, (B32[REP_

20, vip_init, 20, 21, i_d_init, 21, 22, 0x0, 22, 32} & O0x40,{0x2, 0, 2, parity(@32[RBP_init+ OxCC] & 0x40), 2, 3, 08, 3, 8, tf init, 8, 9, i f init, 9, 10, df _init, 10, 11, 0x0, 11, 12, iopl f init, 12, 14, nt_init, 1.

] -
.

DEOBFUSCATED ORIGINAL SAMPLE

Y

ek

@64 [RBP_init+
@64 [RBP_ init+

@64 [RBP_init+

0x133] = 0x30A2
0x133] = @64[REP init+

0x133] = @64 [RBP_init+

Ox80] + 0Ox30AZ

0=80] + O=xZFBO

lecarer inicr

0x15] = BE4[RBD init+

0%80] + 0x2FE(j—

I@64[RBP7init+

0x11F] = BG4[RBP init+

0313F] |[—

@64 [REP_init+
@64 [REP init+
@64 [REP_init+
@64 [RSP init+
@64 [REP_init+
@64 [RSP_init+
@64 [REP_init+
@64 [RSP init+
@64 [REP init+
@64 [RSP_init+
@64 [REP_init+
@64 [RSP init+
@64 [RBP init+

=
0x133] = 0x30AE

0x133] = @64[REP init+

0:2133] = @E4[REP_init+

0xFFFFFFFFFEFFFFTE] =
0x1E] = BE4[REP_init+
OxFFFFFFFFFFFEFRFS] =
0x1E] = BE4[RBP_init+
O=FFFFFFFFFEFFFFTE] =
0x1E] = B64[REP init+
OxFFFFFFFFFEFEFRES] =

0x1E] = BE4[RBE_init+

U=FFFFFFFFFFFFFFF3] =
UxlEl = E64[REP init+

0x80] + 0Ox30AB

0801 + 0=8CO3

@64 [RBP_init+

0z1E] + OxFFFFFf

@&4[REP init+

0z1E] + OxFFFFEf

@64 [RBP_ init+

0z1E] + OxFFFFFf

BG4 [RBE_init+

@64 [RBP_ init+

0z1E1 + OxzFFFFFf

DEOBFUSCATED

[05:

0

[85:

[8): !
0x1E] + OxFFFFER

[85:

text:ee8e87FEBSF12FER
Jtext:8Bee87FEBSF12FES
text:ee8887FEESF E@
text:ee8e87FEBSF12FER
Jtext:8BeeB7FEBSF12FES
text: 000887 FEBSF12FEA

.text:900087FEBSF12FBE 288 sub
text:eepe@7FEESF12FE4 @28 cmp
.text:9@0087FEBSF12FB7 828 jnz

48 89 5C 24 1@

48 83 EC 2@

88 1A

BB 1C &8 a8 o

48 8D 3D AF @7 BE ve
@F 1F 8@ a8 o8 ae e

wwwwwww
™
o

mov [rsp+lah], rbx

push rdi

sub rsp, 2@h

mov rbx, [rdx]

mov eax, 28

lea rdi, ServiceStatus

nop dword ptr [rax+@ee08eoah]

vy

128 48 FF (B
128 C6 84 38 @8
128 75 F7

loc_1860983060:

dec rax
mov byte ptr [rax+rdi], @
jnz short loc_1808003068

80 15 1@ FF FF FF
86 CB

15 BF 8F &8 ea
89 @5 B@ 87 8t ee
85 Ca

78

sub_7FEB5F12FB@ proc near
var_8= gword ptr -8
rsp, 28h

ecx, 1
loc_7FEBS5F13865

lea 1pHandlerPr
mov 1pServiceNan
call cs:ReglsterserviceCtrlHandlerd
mav cs:hServiceStatus, rax

test rax, rax

jz short loc_18@8@83@FD

lea

R2, BASE+0x2FBO
—> mov R3, RO

SIMPLIFIED

ORIGINAL SAMPLE

Y

ek

@64 [RBP_init+
@64 [RBP_ init+
@64 [RBP_indit+
@64 [RBP_init+
@64 [RBP init+
@64 [RBP_init+

@64 [RBP init+

0x133] = Ox30A2
0x133] = @64[REP init+
0x133] = @E4[REP init+
0x15] = BEA[REP init+
0x11F] = @G4[RBP init+
0x133] = Ox30AB

0x133] = @G4[REP init+
__

Ox80] + O0x30AZ
0z30] + 0xZFBO
0x80] + OxZFBO

0x13F]

0x80] + 0Ox30AB

@54 [REP_initt

0:x132] = @E4[REP_init+
-

0x80] + 0=8C038 I

@64 [RSP init+
@64 [REP_init+
@64 [RSP_init+
@64 [REP_init+
@64 [RSP init+
@64 [REP init+
@64 [RSP_init+
@64 [REP_init+
@64 [RSP init+
@64 [RBP init+

0xFFFFFFFFFERFFFES] =
0x1E] = BEA[JRBP_init+

OxFFFFFFFFFFFEFFES] =
0x1E] = @B&4[REP init+

@64 [REP_init+
0z1E] + OxFFFFFFFFFFFFFFF3
@64 [REP_init+
0z1E] + OxzFFFFFFFFFFFFFFF3

0x4F]

0x4F]

T

89 5C 24 1@

83 EC 2@

88 1A

1C ea aa e

80 3D AF @7 BE @@
1F 8@ e o8 8@ @@

mov
push
sub

mov
lea
nop

[rsp+lah], rbx

rdi

rsp, 2@h

rbx, [rdx]

eax, 28

rdi, ServiceStatus

dword ptr [rax+@ee08eoah]

vy

loc_1860983060:

86 CB

15 BF 8F &8 ea

89 @5 B@ 87 8t ee
85 Ca

78

128 48 FF (8 dec rax

128 C6 @4 38 080 mov byte ptr [rax+rdi], @

128 75 F7 jnz short loc_1808003068
f

8D 15 18 FF FF FF

lea rdx, HandlerProc ; lpHandlerPr

call cs

RegisterServiceCtrlHandler

ey atus, o

test rax, rax
jz short loc_18@8@83@FD

0=FFFFFFFFFFFFFFES] =
0x1E] = B64[REP init+

O0xZFFFFFFFFFFFFFFFE] =
0x1E] = BE4[RBE_init+

U=FFFFFFFFFFFFFFF3] =
UxlEl = E64[REP init+

@64 [RBP_ init+
021E] + OxFFFFFFEFFFFFFFFS

BG4 [RBE_init+
0zlE] + OxFFFFFEFEFEFEFFFS

264

0xCC]

0x4F]

. lea

.idata:@@e@B7FEESFICA3E
.idata:eeeee7FEBSFYTEL
.idata:@8eeE7FEESFICRLA

DEOBFUSCATED

v

3 SERVICE_STATUS_HANDLE _ stdcall RegisterServiceCtrlH
RegisterServiceCtrlHandlerW dq offset advapi32 Registe

db @, @, @, 8,8, 8,8, 8

SIMPLIFIED

Rdest, BASE+0x8C038

ORIGINAL SAMPLE

Wod | RbF Init+ Uxls3)

goa | RbF 1nit+ Uxdl] + UxJIUAD

B64 [RBP init+ 0x133] =

BE4 [RBP init+ 0O=x30] + 0=8C038

@64 [REP_init+ OxzFFFFIE
Bed [REP init+ 0OxzlE] =

FFFTRFITrS] = @64 [RBP_init+ 0xdF]

@64[%BPiinil+ 0x21E] + OxFFFFFFFFFFFFFFFE

lea Rdest, BASE+0x8C038

.idata: @@eBa7FEBSFICA38
.idata:@eese7FEBSFY
.idata: @8eBA7FEBSFICA48

3 SERVICE_STATUS _HANDLE _ stdcall RegisterSerwviceCtrlH
RegisterserviceCtrlHandlerW dq offset advapi32_Registe
db @, @, 8, 8, @, @, @, @

@64 [RSP_init+ OxFFFFFFFFFFFEEFFS] = @64 [RBP_init+ 0x58]

@64 [RBP_init+ O0x1E] =

B54[REP_init+ 0OxlE] + O=FFFFFFFFFFFEFFFS

@54 [REP_init+ 0x83] =

BE4[REP init+ O0x30] + O0xZ1EALC I
—

@3Z[REP init+ Oxlz
RAX.0= BE4[RSP_ini F{
R5P.0= RSF init+ vcave

ETaddr = &vm_pre_initX()

exception flags= (@32[RSP initd+ 0Ox73

IRDst= G@64[BE4[RBE_ini
__

= jmp Rdest

DEOBFUSCATED

48 89 5C 24 1@

48 83 EC 2@

88 1A

BB 1C &8 a8 o

48 8D 3D AF @7 BE ve
@F 1F 8@ a8 o8 ae e

™
o

mov
push
sub

mov
lea
nop

[rsp+lah], rbx

rdi

rsp, 2@h

rbx, [rdx]

eax, 28

rdi, ServiceStatus

dword ptr [rax+@ee08eoah]

vy

loc_1860983060:

128 48 FF (B dec rax
128 C6 @4 38 080 mov byte ptr [rax+rdi], @
128 75 F7 jnz short loc_1808003068
7
8D 15 18 FF FF FF lea rdx, HandlerProc ; lpHandlerPr

86 CB

15 BF 8F &8 ea

89 @5 B@ 87 8t ee
85 Ca

78

call cs

:RegisterserviceCtrlHandlerd

ey atus, o

test rax, rax
jz short loc_18@8@83@FD

ORIGINAL SAMPLE

Limitations

*Symbolic execution cannot process
unbounded loops
Instructions using such loops need to be addressed

by other means

Takeaway

Symbolic execution can help devirtualize
advanced unknown VMs in a reasonable time if
we treat the right values as concrete

-

Links

You can read the whitepaper at

Full source code is available in

Progress. Protected.

https://www.welivesecurity.com/wp-content/uploads/2022/03/eset_wsliknkvm.pdf
https://github.com/eset/wslink-vm-analyzer

)
@ eT Digital Security
Progress. Protected.

Questions?

Vladislav Hrcka

Malware Researcher
| @HrckaVladislav

www.eset.com | www.welivesecurity.com | 3 @ESETresearch

mailto:vladislav.hrcka@eset.com

