Instructors: Richard Johnson
Dates: June 23 to 26 2025
Capacity: 25 Seats
This class is designed to introduce students to the most effective tools and techniques for applying
cutting-edge deep learning-based artificial intelligence to cybersecurity tasks. By leveraging AI-driven
automation, students will explore new ways to enhance security workflows, improve threat detection, and
optimize vulnerability research.
We will take a deep dive into modern AI architectures, focusing on how deep learning models can assist
in areas such as malware analysis, reverse engineering, vulnerability research, and penetration testing.
Students will learn to train, fine-tune, and apply large language models (LLMs) to solve real-world
cybersecurity challenges, integrating AI-driven solutions into their daily operations. The course will
provide hands-on experience with model training, embeddings, vector search, and advanced security
automation techniques.
Through practical exercises, students will gain proficiency in using AI to automate security tasks. By
the end of the course, attendees will have the skills and knowledge to incorporate deep learning-based
AI solutions into their cybersecurity workflows, enhancing both efficiency and effectiveness.
Students should be prepared to tackle challenging and diverse subject matter and be comfortable writing functions in python and C to complete exercises involving using python libraries or frameworks to write LLM enhanced tools and simple harnesses for C libraries. Attendees should also have basic experience with the high level applied topics such as reverse engineering, code auditing, fuzzing, and web penetration testing.
This class will be using Python 3.10+ and LLVM/Clang on amd64 Linux. A preconfigured VMware Workstation VM will be provided as well as an amd64 Linux docker image. We will also use Google Collab notebooks for free online GPU resources. Students should have a working Google account with Google Collab access. Further instructions will be communicated prior to class.
This class is meant for professional developers or security researchers looking to add deep learning artificial intelligence based automation to cybersecurity domains. Students wanting to learn a programmatic and tool driven approach to incorporating the latest artificial intelligence capabilities to their daily work will benefit from this course.
Richard Johnson is a computer security specialist with a focus on fuzzing and software vulnerability analysis. Richard has been a training instructor since 2017 and is the founder of FUZZING IO, a research and development company offering professional training and consulting services. Richard offers over 20 years of professional expertise and leadership in the information security industry, previously Director of Security Research at Oracle Cloud leading software and hardware vulnerability research teams and at Cisco Talos as the founder of the VulnDev team that finds hundreds of zeroday vulnerabilities each year. Richard has delivered training and presented annually at premier industry conferences for over two decades including Black Hat, Defcon, OffensiveCon, RECON, CanSecWest, and many more.
Click here to register.