
Tracing Struct Accesses with Struct Stalker
A Journey into the Darkness of LLDB Scripting

Jeff Dileo
RECON MTL 2018

LLDB Considered Harmful Painful
.

Jeff Dileo
RECON MTL 2018

About Me
call_usermodehelper("/bin/sh", (char *[]){"/bin/sh", "-c", "whoami", NULL}, NULL, 5);

• @chaosdatumz
• I am a:

• Unix aficionado
• Consultant at NCC Group

• I like to do terrible things to/with/in:
• programs
• languages
• runtimes
• memory
• kernels
• packets
• bytes
• ...

About This Talk

I have come here to chew bubblegum and criticize LLDB,
and I’m all out of bubblegum.

1. Background

2. Tool/demo
3. Introduction to LLDB and LLDB scripting

• aka ”grumbling about LLDB gotchas and how to script complicated things”
• Other lessons from the trenches

Background
It all starts with this, a fuzzer containing the ultimate problem.

• Was working on some libFuzzer stuff
• LibFuzzer (LLVM project) is an ”in-process, coverage-guided evolutionary fuzzing engine”

• Link libFuzzer to code
• LibFuzzer becomes the entry point
• LibFuzzer entry point calls your fuzz entry point
• You convert fuzz data input into arguments/structs/etc and pass to code to be tested
• Primarily used for fuzzing ”library” code
• But what if you want to fuzz arbitrary application code?

• Problem: Which fields are actually used? needed?

• Many complicated structs with a mix of internal and external structs/data

• Idea: Profile field accesses
• Problem: GDB/LLDB variable/memory watchpoints were useless for this

• Size and quantity limitations

Background
It all starts with this, a fuzzer containing the ultimate problem.

• Was working on some libFuzzer stuff
• LibFuzzer (LLVM project) is an ”in-process, coverage-guided evolutionary fuzzing engine”

• Link libFuzzer to code
• LibFuzzer becomes the entry point
• LibFuzzer entry point calls your fuzz entry point
• You convert fuzz data input into arguments/structs/etc and pass to code to be tested
• Primarily used for fuzzing ”library” code
• But what if you want to fuzz arbitrary application code?

• Problem: Which fields are actually used? needed?
• Many complicated structs with a mix of internal and external structs/data

• Idea: Profile field accesses
• Problem: GDB/LLDB variable/memory watchpoints were useless for this

• Size and quantity limitations

Background
It all starts with this, a fuzzer containing the ultimate problem.

• Was working on some libFuzzer stuff
• LibFuzzer (LLVM project) is an ”in-process, coverage-guided evolutionary fuzzing engine”

• Link libFuzzer to code
• LibFuzzer becomes the entry point
• LibFuzzer entry point calls your fuzz entry point
• You convert fuzz data input into arguments/structs/etc and pass to code to be tested
• Primarily used for fuzzing ”library” code
• But what if you want to fuzz arbitrary application code?

• Problem: Which fields are actually used? needed?
• Many complicated structs with a mix of internal and external structs/data

• Idea: Profile field accesses

• Problem: GDB/LLDB variable/memory watchpoints were useless for this

• Size and quantity limitations

Background
It all starts with this, a fuzzer containing the ultimate problem.

• Was working on some libFuzzer stuff
• LibFuzzer (LLVM project) is an ”in-process, coverage-guided evolutionary fuzzing engine”

• Link libFuzzer to code
• LibFuzzer becomes the entry point
• LibFuzzer entry point calls your fuzz entry point
• You convert fuzz data input into arguments/structs/etc and pass to code to be tested
• Primarily used for fuzzing ”library” code
• But what if you want to fuzz arbitrary application code?

• Problem: Which fields are actually used? needed?
• Many complicated structs with a mix of internal and external structs/data

• Idea: Profile field accesses
• Problem: GDB/LLDB variable/memory watchpoints were useless for this

• Size and quantity limitations

Background
Related Work

• Pointer Sequence Reverser — https://github.com/nccgroup/psr
• Written by former co-worker (Nicholas Collisson)

• I helped a bit with the design/architecture though
• Traced all executed instructions
• Traced accesses of ”interesting” addresses by setting restrictive page permissions and

catching page faults
• Using win32 debugging/memory management APIs (e.g. OpenProcess/VirtualAllocEx)

• On trapped access, processes accessing instruction and backlog with Capstone
• Identified source objects (origin objects referencing to the ”interesting” memory)

• By reversing pointer sequences of offsets and dereferences

https://github.com/nccgroup/psr

Background
Pointer Sequence Reverser in Reverse

• The opposite analysis (source to value) is possible using the same page fault
technique

• e.g. start from root object, lock its pages, then iterate for each pointer in it
• Generally do the locking last as the debugger may fail to read the pointers if locked first

• Whipped up a poc that did it, and then later decided to try a proper rewrite
• Originally did this in LLDB, then used LLDB later for rewrite

• Both experiences were traumatic

And now for something
completely different...

Struct Stalker

• Struct Stalker is an LLDB Python script/command
• For macosx and Linux

• Configured with multiple calls
• Give it information on the function and variable to track
• Eventually have it ”start”

• It will either start the process or continue
• It will take control of the debugger until all tracked functions have returned

(or the processes has terminated)

• Uses mprotect(2) to make pages containing target variables inaccessible
• It can dereference pointers/references but also supports stack-based variables

• This is needed as it starts tracking local variables before they are initialized
• It iterates struct fields where possible to recursively lock pages

• Catches page faults to identify and track variable accesses

DEMO

Struct Stalker
Limitations

• Primarily requires source to be useful
• Was written to support libFuzzer-based flows

• Assumes:
• Stack variable field accesses touch memory
• Stack variables’ locations are not reused within the same stack frame

Where?

https://github.com/nccgroup/struct-stalker
(soon, needs some polish ;)

https://github.com/nccgroup/struct-stalker

Greetz / Special Thanks

• Brian McFadden
• Nicholas Collisson

...is that it?

no

...is that it?

no

In Memoriam
James ”shenanigans” Shanahan (1982-2018)

IT’S LLDB LESSON TIME!

LLDB
WHY????????????????

• Originally to learn it
• It’s sort of eating the world

• Core platform is macosx/iOS, which requires insane mach APIs to debug
• ptrace(2) implementation is a joke
• par for the course for a platform that stores process metadata in very tiny fixed-size structs

(kernel actually front truncates long paths [> 1023] by segment [max 255] to store them)
• Poor support from for other debuggers (getting gdb working is an effort now)

• Riding the LLVM wave, it’s being pulled into other platforms
• Ubuntu packages (which doesn’t even have proper packages for libc++)

• Supposedly very scriptable
• but is it scriptable enough?

LLDB 101

• LLDB is the LLVM debugger (major competitor to GDB)
• It appears designed more for machines (*cough* Xcode *cough*) than humans
• Built using LLVM components powering other tools like Clang (the C/C++ frontend)
• Directly supports source-based debugging of C, C++, Objective-C, and Swift

• And anything with DWARF debug symbols
• Also, of course, works for stripped binaries of unknown provenance

• Supported platforms (in order of support/feature status):
• macosx/iOS
• Linux
• FreeBSD
• Windows (WIP)

• Python API for scriptable debugging
• Accessible from LLDB CLI process
• Can also leverage LLDB components directly from python

LLDB CLI

• $ lldb ... (uses an .lldbinit file akin to .gdbinit)
• Lots of very verbose commands, with varying levels of GDB shorthand compatibility
• Free-form arguments are often placed after a -- separator
• Decent documentation (help command followed by command, subcommand names)

• Tab completion helps
• While many underlying things have IDs that print out with them, they are unused

• Generally interacted with based on ”#number” (index in a list)
• Most important command:

• settings set target.x86-disassembly-flavor intel
• Most important alias (on macosx, because homebrew):

• alias lldb='PATH="/usr/bin:/bin:/usr/sbin:/sbin" lldb'

LLDB CLI
Useful Commands

• process
• attach
• connect (to remote debugger server)
• launch (r <args...> works)

• -X <true/false> (whether to shell expand args, enabled when using r alias)
• -A <true/false> (whether to disable ASLR)
• -i <file> (source STDIN from file)
• -e <file> (redirect STDERR)
• -o <file> (redirect STDOUT)
• -s (stop at entry)

Needed for address breakpoints. Otherwise, they don’t work if set before process start/load.
Note: Breaks before dynamically linked funcs/libs are resolved for expression.

• handle (configure signal handling)
• status (dumps process state, thread info (different format), disassemble -p)
• continue (same as thread continue, but can specify number of breakpoints to skip)

LLDB CLI
Useful Commands

• disassemble (x/<n>i <expr> still works)
• -n <func_name>
• -f (current stack frame)
• -p (from current instruction)
• -c <num ins>
• -b (show bytes)
• -s <expr> (from address)
• -a <expr> (whole function containing address)

LLDB CLI
Useful Commands

• breakpoint (b <expr> mostly works, but d <expr> is short for disassemble)
• set
• list
• command

• -o <one-liner>
• -s <lang> (command, python)
• -F <python_module.function>
• -o <true/false> (one-shot)

• delete

LLDB CLI
Useful Commands

• thread
• backtrace (prints thread call stack)
• continue

• [num...] (optionally supports a list of threads to continue)
• list
• info (dumps various pieces of information based on debug availability)

• including the thread stop reason (e.g. step, breakpoint, page access error)
• select (select ”current” thread used for frame commands)
• jump (change program counter)
• return (force return with value)
• step-scripted (configure python to handle stepping)

LLDB CLI
Useful Commands

• frame
• info (print info about ”current” stack frame)

• This is a subset of the thread info output (which only covers the bottom most frame)
• Output as part of thread backtrace

• select (set the ”current” stack frame)
• -r <offset> (relative offset from ”current” selected frame)
• <num> (0 is the lowest frame)

• variable (dump info about variables from ”current” selected frame from debug info)
• options enable filtering argument, local, global, static variables from each other

LLDB CLI
Useful Commands

• memory
• find (scan memory for byte sequence)
• read (read data from process memory, lots of specific and useful options)

• The GDB compatible x/... is still more useful for most cases
• -o <file> (output to file, hexdump format by default)

Note: This does not clear the original file, be careful if rerunning the same command.
• -b (raw output)

• write (write data to process memory)
• -i <file> (source data from file)
• -o <N> (offset N bytes into source file)

LLDB CLI
Useful Commands

• target (manages selected debugging target, enables creating a new one)
• modules list (dump memory mappings)
• modules dump (dump various information from files, e.g. sections and symbols)
• modules lookup (search for symbols, addresses, etc in loaded binary files)

LLDB CLI
Useful Commands

• expression (evaluates a source expression in the process)
• Generates code on the fly with a JIT and runs it
• -- (void)puts("hello world")
• -l <language> -- <code> (doesn’t really work for C++ STL stuff)
• -Z <N> (treat pointer as array of N elements)
• -i <true/false> (ignore breakpoints hit while evaluating the expression)
• <no expression> (drops to multi-line editor)
• Some potential issues:

• When using process launch -s, dynamically linked libraries haven’t loaded.
(On macosx, step until dyldbootstrap::start completes)

• If stopped at the main breakpoint on a non-debug binary, expression fails.
(Disable the breakpoint before using expression)
Note: While the error mentions a breakpoint was hit, -i true does not fix this.

LLDB CLI
Get Swifty

• Normally, expressions are limited by what exists in the binary itself
• Can’t call C library functions if they aren’t loaded
• Can’t evaluate Swift expressions for non-Swift binaries (the Swift runtime is missing)

• But you can load the needed code into the binary to allow such expressions

$ lldb -x test
(lldb) target create "test"
Current executable set to 'test' (x86_64).
(lldb) env DYLD_INSERT_LIBRARIES=/Applications/Xcode.app/Contents/Frameworks/libswiftCore.dylib
(lldb) b main
Breakpoint 1: where = test`main + 22 at test.cc:58, address = 0x0000000100000df6
(lldb) r
...
(lldb) expression -l swift -- print("aaaa" + "bbbb")
aaaabbbb

LLDB API

• Python 2.x on all platforms but Windows
• Very thin shim on top of C++

• Many APIs take an output object as a parameter
• Some objects have lifetimes, continuing to use them in python is UAF
• Complicated threading model (more on this later)
• Buggy as hell (can very easily segfault LLDB itself)

• Maybe someone should try fuzzing debuggers from the attached process or remote side
• Lots of magic numbers that are un-namespaced in Python and barely namespaced in C++

• The CLI commands are implemented using this and the C++ API
• Many APIs are redundant and invoke applicable calls on ”linked” objects

• Contain/provide references to objects that are not their direct parent/child

• Also, many classes are named very similarly

LLDB API
QUALITY Documentation

• Very poorly documented in general (LLDB is NOTORIOUS for this)
• Sparse and, when available, often restates what the very long class/function name says
• Often misleading or doesn’t tell you how you are actually supposed to get them
• Functions/fields may yield strings of numbers in base 10 or hex (never documented)

• ...or numerics (rarely documented)

LLDB API Overview
Visibility

• ”Public” classes in the lldb C++ namespace are generally prefixed with ”SB”
• Often avoid exposing otherwise useful APIs consumed internally by LLDB components

• Generally through tons of friend class statements
• It is unclear why these APIs are hidden from external code in the first place

• The ”private” implementations are generally in the lldb_private C++ namespace
• Often have a ton of convenience alias functions (for lazy devs) that take ”SB” objects

LLDB API Overview
Important Classes — Core APIs

• SBBreakpoint (breakpoint creation/configuration)
• SBDebugger (main interface for code)

• Scripts always have access to one through args or module lldb.debugger variable
• Generally used to access everything else (debugger->target->process->thread->frame)

• SBTarget (target-related functionality)
• Provides many useful APIs for building one’s own debugger out of the LLDB API
• Provides a handle on:

• Process
• Platform (API for manipulating the host of the process; launch/attach/file IO/shell cmds/etc)

• Many of its APIs are implemented by these underlying objects

• SBProcess (process-related functionality, also an iterable list of threads)
• SBThread (thread-related functionality, also an iterable list of frames)
• SBFrame (frame-related functionality, used to access variables and registers)
• SBValue (value of a variable, register, or expression; can be used to update them)

LLDB API Overview
Important Classes — Necessary Utilities

• SBStream (object used for collecting string output from function calls/objects)
• SBError (object used for collecting errors from function calls)
• SBBroadcaster (source of events)

• Creating one is useless
• Generally need to get a handle on an existing one from somewhere else

• Many other objects emit events through their broadcaster

• SBListener (event listener you create and register to a broadcaster)
• SBEvent (event ”data,” a thin wrapper around a number without any real context)
• SBCommandInterpreter (for when you give up on the API and just run CLI commands)
• SBCommandReturnObject (get/set return value of CLI command)

LLDB API
Basic Scripting — Loading a Script and Registering Commands

• command script import path/to/script.py

import lldb

def __lldb_init_module(debugger, internal_dict):
lldb.command("my-cmd")(my_cmd_command_handler)

def my_cmd_command_handler(dbg, cmdline, res, idict):
dbg: lldb.SBDebugger
cmdline: single string of the command
res: lldb.SBCommandReturnObject
idict: dict of completely useless stuff otherwise obtainable from the lldb module
pass

• Protip: Parse the command string (above, cmdline) using an argument parser
• e.g. argparse

LLDB API
Basic Scripting — Breakpoints

• Breakpoints are created through the target object

def my_cmd_command_handler(dbg, cmdline, res, idict):
target = dbg.GetSelectedTarget()
bp = target.BreakpointCreateByName("main")
bp = target.BreakpointCreateByAddress(...) # int
bp.SetOneShot(True)
bp.SetScriptCallbackFunction('<filename>.bp_callback')

def main_bp_callback(frame, bp_loc, idict):
frame: lldb.SBFrame
bp_loc: lldb.SBBreakpointLocation
idict: same useless shared dict
pass

• The function must be specified by <filename>.<function_name> as a string
• The SBFrame has a lifetime and should not be used after the function has returned

LLDB API
Basic Scripting — Breakpoint Problems

• The callback implementation is magic
• The frame argument only lives until it returns

• Stashing it and using it later can crash LLDB (use-after-free, double free, ...)
• It runs concurrently with other Python code in the same interpreter

• Magic is not good for scriptable debugging
• Especially significant non-determinism
• LLDB releases/obtains the Python GIL on entering/leaving lldb FFI code
• Means that callback code and background code essentially run concurrently

• more on ”background” code later
• CPython itself is barely avoiding memory corruption...

• ...but the lldb module and breakpoint callbacks are not threadsafe

• Very easy to crash LLDB (memory corruption, ...)

LLDB API
Basic Scripting — Running Back to CLI Like a Coward Boss

• Often, it is simpler/easier to run CLI commands than write baroque and esoteric code
• Protip: Where possible, prototype with CLI commands, then replace with API calls

def main_bp_callback(frame, bp_loc, idict):
lldbrepl = lldb.debugger.GetCommandInterpreter()
pszres = lldb.SBCommandReturnObject()

lldbrepl.HandleCommand('expression --flat -- (size_t)sizeof(void*)', pszres)

POINTER_SIZE = int(pszres.GetOutput().split('=')[1].strip(), 10)

LLDB API
Basic Scripting — Expressions

• expression is simple enough to API-ify
• SBTarget.EvaluateExpression(...) takes a SBExpressionOptions

• Just configures the code settings, not output options like --flat
• Output options use a (C++) DumpValueObjectOptions data formatter internally
• EvaluateExpression returns an SBValue

• Often better than string parsing

def main_bp_callback(frame, bp_loc, idict):
target = lldb.debugger.GetSelectedTarget()

val = target.EvaluateExpression('(size_t)sizeof(void*)')

POINTER_SIZE = val.GetValue()

LLDB API
Intermediate Scripting — Guard Pages

• On macosx/Linux, mprotect(2)
• However, LLDB does not gracefully handle when the stack becomes inaccessible

• Gets stuck in mprotect(2) right after the syscall if stack frame permissions are modified
• Existing frame objects become permanently invalidated in this situation

• Including the lldb.frame module global and callback frame parameter

def mprotect(addr, len, flags, res, consts): # shift sp down a page before mprotect(2)
target = lldb.debugger.GetSelectedTarget()
thread = target.GetProcess().GetSelectedThread()
frame = thread.GetSelectedFrame()

orig_stack_str = frame.FindRegister("rsp").GetValue()
new_stack_str = hex(int(orig_stack_str, 16) - consts['PAGE_SIZE'])
frame.FindRegister("rsp").SetValueFromCString(new_stack_str)
target.EvaluateExpression('(int)mprotect(0x{:x}, {}, {})'.format(addr, len, flags))

thread = target.GetProcess().GetSelectedThread()
frame = thread.GetSelectedFrame() # critically important to have this line
frame.FindRegister("rsp").SetValueFromCString(orig_stack_str)

LLDB API
Advanced Scripting

• LLDB only supports callbacks for breakpoints
• Page fault-based process stops are not breakpoints

• We need to directly control all execution to handle when the debugger stops
• There aren’t many examples of such code in the wild

• Pretty much just LLDB uses its own libraries
• Also, the unit test code is misleading since they exist to test behaviors, not work

LLDB API
Advanced Scripting — Broadcasters

• Broadcasters emit events to registered listeners
• Typically, ”broadcasters” (or things that ”have” them) are complex components that

maintain/move between states
• When their state changes, they emit an event to listeners registered to them
• There isn’t much point in scripts creating broadcasters, but libraries may benefit to do so

• The LLDB C++ codebase defines the following kinds of event broadcasters:
• "lldb.target"
• "lldb.targetList"
• "lldb.process"

• "lldb.thread"

• "lldb.commandInterpreter"
• "lldb.communication" (used with remote debug servers)
• "lldb.anonymous" (default broadcaster name)

• None of these resemble the word ”debugger”

• tools/driver/Driver.* (the lldb binary’s main loop) actually subclasses
SBBroadcaster

• It is just a thin shim that creates and starts an SBDebugger
• Each SBDebugger object has its own SBCommandInterpreter

• This SBCommandInterpreter object runs the entire CLI UI

LLDB API
Advanced Scripting — Broadcasters

• Broadcasters emit events to registered listeners
• Typically, ”broadcasters” (or things that ”have” them) are complex components that

maintain/move between states
• When their state changes, they emit an event to listeners registered to them
• There isn’t much point in scripts creating broadcasters, but libraries may benefit to do so

• The LLDB C++ codebase defines the following kinds of event broadcasters:
• "lldb.target"
• "lldb.targetList"
• "lldb.process"

• "lldb.thread"

• "lldb.commandInterpreter"
• "lldb.communication" (used with remote debug servers)
• "lldb.anonymous" (default broadcaster name)

• None of these resemble the word ”debugger”
• tools/driver/Driver.* (the lldb binary’s main loop) actually subclasses

SBBroadcaster
• It is just a thin shim that creates and starts an SBDebugger
• Each SBDebugger object has its own SBCommandInterpreter

• This SBCommandInterpreter object runs the entire CLI UI

LLDB API
Advanced Scripting — Listeners

• SBListeners are ”wait-able” filter objects that can be registered to broadcasters
• Event type bitmasks checks are actually implemented in the broadcaster

• An associated broadcasters ”peek” events into the listener
(the terminology in the LLDB codebase is just as bad as its documentation)

• If waiting, the listener’s Get(Next)Event*()/WaitForEvent() will return with the event
• WaitForEvent() takes a timeout value

• source/Core/Debugger.cpp (private SBDebugger implementation) has an event loop
1. Registers its listener to process, thread, command interpreter
2. Loops on listener’s GetEvent()
3. Compares event’s broadcaster by class or directly against its command interpreter
4. Handles the event type value accordingly for each

[G]ood artists copy, great artists steal.
And we have, you know, always been shameless

about stealing great ideas.
-Steve Jobs

LLDB API
Advanced Scripting — Listeners

• SBListeners are ”wait-able” filter objects that can be registered to broadcasters
• Event type bitmasks checks are actually implemented in the broadcaster

• An associated broadcasters ”peek” events into the listener
(the terminology in the LLDB codebase is just as bad as its documentation)

• If waiting, the listener’s Get(Next)Event*()/WaitForEvent() will return with the event
• WaitForEvent() takes a timeout value

• source/Core/Debugger.cpp (private SBDebugger implementation) has an event loop
1. Registers its listener to process, thread, command interpreter
2. Loops on listener’s GetEvent()
3. Compares event’s broadcaster by class or directly against its command interpreter
4. Handles the event type value accordingly for each

[G]ood artists copy, great artists steal.

And we have, you know, always been shameless
about stealing great ideas.

-Steve Jobs

LLDB API
Advanced Scripting — Listeners

• SBListeners are ”wait-able” filter objects that can be registered to broadcasters
• Event type bitmasks checks are actually implemented in the broadcaster

• An associated broadcasters ”peek” events into the listener
(the terminology in the LLDB codebase is just as bad as its documentation)

• If waiting, the listener’s Get(Next)Event*()/WaitForEvent() will return with the event
• WaitForEvent() takes a timeout value

• source/Core/Debugger.cpp (private SBDebugger implementation) has an event loop
1. Registers its listener to process, thread, command interpreter
2. Loops on listener’s GetEvent()
3. Compares event’s broadcaster by class or directly against its command interpreter
4. Handles the event type value accordingly for each

[G]ood artists copy, great artists steal.
And we have, you know, always been shameless

about stealing great ideas.
-Steve Jobs

LLDB API
Advanced Scripting — Event Loop

• Simple enough to implement, just need to know all event values for each broadcaster
• Undocumented, but I’ve included the entire list for each at the end of the slides

def debugger_loop(dbg):
dbg.SetAsync(True)
listener = lldb.SBListener('my_debugger_loop')
process = dbg.GetSelectedTarget().GetProcess()
process.GetBroadcaster().AddListener(listener, 0xffffffff)

...

• Create a listener object and register it to the process broadcaster

LLDB API
Advanced Scripting — Event Loop

...
while True:
if dbg.GetSelectedTarget().GetProcess().GetState() == lldb.eStateExited:
shortcut to prevent waiting for an event that won't arrive
break

try:
event = lldb.SBEvent()
#res = listener.WaitForEvent(4294967295, event) # UINT32_MAX # misses exit
res = listener.WaitForEvent(1, event)
if not res:
continue

if not lldb.SBProcess.EventIsProcessEvent(event):
continue

...

• Loop forever, waiting for an event
• Make sure the event is from a broadcaster you expect

LLDB API
Advanced Scripting — Event Loop

...
if event.GetType() != lldb.SBProcess.eBroadcastBitStateChanged:
continue

state = lldb.SBProcess.GetStateFromEvent(event)
if state == lldb.eStateInvalid || state == lldb.eStateRunning:
continue

elif state == lldb.eStateStopped:
DO STUFF HERE
process.Continue()

else:
process.Continue()

except Exception:
traceback.print_exc()
break

• Manually filter and handle the events accordingly
• Could have used a more fine-grained event mask

LLDB API
Advanced Scripting — Event Loop Problems

• Run into issues if breakpoint callbacks are used
• Fix: Implement our own breakpoint callbacks

• Can check if the process stop reason is ”breakpoint” or ”one-shot breakpoint”

• Different platforms have different process state description string formats
• ...and different reasons for the same occurrences (e.g. page faults)

• EXC_BAD_ACCESS for macosx
• SIGSEGV for Linux

• Fix: Parse description string based on platform
• Need to have LLDB catch page fault signals (different on each platform)

• Fix: The process handle command:
• process handle SIGBUS --notify true --pass false --stop true (macosx)
• process handle SIGSEGV --notify true --pass false --stop true (Linux)

fin

• The lesson is over.
• You are now LLDB scripting wizards. *poof*

Questions?
jeff.dileo@nccgroup.trust

@chaosdatumz

Locations
North America
Atlanta
Austin
Chicago
New York
San Francisco
Seattle
Sunnyvale
Waterloo, Ontario

Europe
Manchester - Head Office
Amsterdam
Basingstoke
Cambridge
Copenhagen
Cheltenham
Edinburgh
Glasgow
Leatherhead
Leeds
London
Luxembourg
Malmö
Milton Keynes
Munich
Vilnius
Wetherby
Zurich

Australia
Sydney

Tracing Struct Accesses with Struct Stalker
A Journey into the Darkness of LLDB Scripting

Jeff Dileo
RECON MTL 2018

References

• The next several slides provide some useful references
• Primarily the undocumented magic enums needed to do anything useful with LLDB

LLDB Magic Numbers
Events

• Target (include/lldb/Target/Target.h)
• lldb.SBTarget.eBroadcastBitBreakpointChanged
• lldb.SBTarget.eBroadcastBitModulesLoaded
• lldb.SBTarget.eBroadcastBitModulesUnloaded
• lldb.SBTarget.eBroadcastBitWatchpointChanged
• lldb.SBTarget.eBroadcastBitSymbolsLoaded

• TargetList (include/lldb/Target/TargetList.h)
• eBroadcastBitInterrupt = (1 << 0) (not accessible from Python)

LLDB Magic Numbers
Events

• Process (include/lldb/Target/Process.h)
• lldb.SBProcess.eBroadcastBitStateChanged
• lldb.SBProcess.eBroadcastBitInterrupt
• lldb.SBProcess.eBroadcastBitSTDOUT
• lldb.SBProcess.eBroadcastBitSTDERR
• lldb.SBProcess.eBroadcastBitProfileData
• lldb.SBProcess.eBroadcastBitStructuredData

LLDB Magic Numbers
Events

• Thread (include/lldb/Target/Thread.h)
• lldb.SBThread.eBroadcastBitStackChanged
• lldb.SBThread.eBroadcastBitThreadSuspended
• lldb.SBThread.eBroadcastBitThreadResumed
• lldb.SBThread.eBroadcastBitSelectedFrameChanged
• lldb.SBThread.eBroadcastBitThreadSelected

LLDB Magic Numbers
Events

• Command Interpreter (include/lldb/Interpreter/CommandInterpreter.h)
• lldb.SBCommandInterpreter.eBroadcastBitThreadShouldExit
• lldb.SBCommandInterpreter.eBroadcastBitResetPrompt
• lldb.SBCommandInterpreter.eBroadcastBitQuitCommandReceived
• lldb.SBCommandInterpreter.eBroadcastBitAsynchronousOutputData
• lldb.SBCommandInterpreter.eBroadcastBitAsynchronousErrorData

LLDB Magic Numbers
Events

• Communication(include/lldb/Core/Communication.h)
• lldb.SBCommunication.eBroadcastBitDisconnected
• lldb.SBCommunication.eBroadcastBitReadThreadGotBytes
• lldb.SBCommunication.eBroadcastBitReadThreadDidExit
• lldb.SBCommunication.eBroadcastBitReadThreadShouldExit
• lldb.SBCommunication.eBroadcastBitPacketAvailable
• lldb.SBCommunication.eBroadcastBitNoMorePendingInput

LLDB Magic Numbers
States

• include/lldb/lldb-enumerations.h
• lldb.eStateInvalid
• lldb.eStateUnloaded (Process valid, but not loaded)
• lldb.eStateConnected (Process connected to debug server, but not launched/attached)
• lldb.eStateAttaching (Process it trying to attach)
• lldb.eStateLaunching (Process is currently launching)
• lldb.eStateStopped (Process/Thread is stopped/paused)
• lldb.eStateStepping (Process/Thread is running)
• lldb.eStateStepping (Process/Thread is currently stepping)
• lldb.eStateCrashed (Process/Thread has crashed)
• lldb.eStateDetached (Process has detached)
• lldb.eStateExited (Process has exited)
• lldb.eStateSuspended (Process/Thread is suspended so other procs/threads can run)

LLDB Magic Numbers
Thread Stop Reasons

• include/lldb/lldb-enumerations.h
• lldb.eStopReasonInvalid
• lldb.eStopReasonNone
• lldb.eStopReasonTrace
• lldb.eStopReasonBreakpoint
• lldb.eStopReasonWatchpoint
• lldb.eStopReasonSignal
• lldb.eStopReasonException
• lldb.eStopReasonExec (re-exec’d)
• lldb.eStopReasonPlanComplete
• lldb.eStopReasonThreadExiting
• lldb.eStopReasonInstrumentation

LLDB Magic Numbers
Most other stuff directly within the lldb module (i.e. lacking namespacing)

• See include/lldb/lldb-enumerations.h
• Launch flags
• Thread run modes
• Byte orderings
• Encodings
• Display format definitions
• Description levels for GetDescription/str()
• Script interpreter types
• Command return statuses
• Expression results
• Connections status types
• Error types
• Value types
• ... (So many things!)

One More Thing...

• LLDB doesn’t support following the child process after fork(2)
• (gdb) set follow-fork-mode child

• So I hacked up one on request
• (lldb) follow-child

https://github.com/chaosdata/lldb-misc/tree/master/follow-child

(slide added post-talk)

https://github.com/chaosdata/lldb-misc/tree/master/follow-child

Tracing Struct Accesses with Struct Stalker
A Journey into the Darkness of LLDB Scripting

Jeff Dileo
RECON MTL 2018

