
Mess with the best, die
like the rest (mode)

Volodymyr Pikhur

@vpikhur

REcon Brussels 2018 1

About
• Been doing RE for more than 15 years

• Privately wrote multiple tools for
deobfuscation and binary analysis, PE
unpackers, software VM
disassemblers/decompilers, etc.

• Kernel and hypervisor based security
exploitation

• First time public speaker

• Past 5 years been learning hardware
• Starting from basics Firmware, SPI, UART,

etc.
• Silicon decapsulation, fault injection
• Past year+ been working on HW for side-

channel analysis.

Why doing this?

• Learning and a challange.

• Hardware and silicon isn’t your magic black box.

• Sony has no bug bounties.

• I’ve been sitting on this for 2 years.

REcon Brussels 2018 3

Why presenting here?

REcon Brussels 2018 4

FAKE NEWS!

Agenda

• WebKit exploitation

• FreeBSD x86_64 exploitation

• Hardware and firmware

• Dumping FreeBSD ARM kernel of southbridge

• Running user code on ARM

• FreeBSD ARM exploitation

• Hardware attacks and kernel bootloader extraction

• Future research

REcon Brussels 2018 5

Finding WebKit exploit

REcon Brussels 2018 6

Changelog open for all!

REcon Brussels 2018 7

The Hunt for Red
October

Use existing exploit CVE-2012-3748

REcon Brussels 2018 9

https://www.exploit-db.com/exploits/28081/

ROP ONLY no RWX memory!

JIT how does it work? (magnets?)

IPC

WebProcess JSC-Compiler

RX JIT

Code

RW JIT

Code

child

REcon Brussels 2018 11

REcon Brussels 2018 12

• Create RWX JIT shared
memory (SHM)

• Create alias of this
SHM with RW access

• Map RX JIT SHM using
original FD

• Map RW JIT SHM
using alias.

• Map RX 0x30000000

• Map RW 0x30100000

• Pthead_create

RWX without JIT

REcon Brussels 2018 13

Start End prot maxprot Info
0x000007ff3e4000 - 0x000007ff3e8000 0 3stack guard
0x000007ff3e8000 - 0x000007ff5e8000 3 3Thread1
0x000007ff5e8000 - 0x000007ff5ec000 0 3stack guard
0x000007ff5ec000 - 0x000007ff7ec000 3 3Thread2
0x000007ff7ec000 - 0x000007ff7f0000 0 3stack guard
0x000007ff7f0000 - 0x000007ff9f0000 3 3Thread3
0x000007ff9f0000 - 0x000007ff9f4000 0 3stack guard
0x000007ff9f4000 - 0x000007ffbf4000 3 3Thread4
0x000007ffdf8000 - 0x000007ffdfc000 0 33
0x000007ffdfc000 - 0x000007ffffc000 3 3main stack
0x000007ffffc000 - 0x00000800000000 5 37

Privilege escalation

• Kernel
• Syscall exploitation is difficult black box isn’t fun
• Maximum what we can get are info leaks in FreeBSD

• Kernel callstack using sysctl KERN_PROC_KSTACK (requires two threads)
• Pointer leak (CVE-2014-8476)

• Services
• Still in their own jail but have more priviledges able to call more

syscalls
• Bugs are present but unable to get code exec

• Multiple crashes via IPC

REcon Brussels 2018 14

Kernel code execution

• BadIRET (CVE-2014-9322, CVE-2015-5675)

• CVE-2015-5675 (2015-08-25)

• https://www.freebsd.org/security/advisories/FreeBSD-SA-
15:21.amd64.asc

• CVE-2014-9322
• Rafal’s excellent guide on this bug

• https://blogs.bromium.com/exploiting-badiret-vulnerability-cve-2014-9322-
linux-kernel-privilege-escalation/

REcon Brussels 2018 15

https://www.freebsd.org/security/advisories/FreeBSD-SA-15:21.amd64.asc
https://blogs.bromium.com/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/

FreeBSD PoC

REcon Brussels 2018 16

• “This is a POC to
reproduce vulnerability.
No exploitation here,
just simple kernel panic.”

• https://www.exploit-
db.com/exploits/36266/

https://www.exploit-db.com/exploits/36266/

Rafal’s IDT pointer redirection

• Rafal’s approach
action = &t->sighand->action[sig-1];

action->sa.sa_handler = SIG_DFL; // SIG_DFL = 0

• IDT overwrite
• Overwrite #PF handler address in IDT

• IDT[#PF] = 0xFFFFFFFF’XXXXXXXX

• IDT[#PF] = 0x00000000’XXXXXXXX

• FreeBSD increment primitive
• td->td_critnest++

• 0xFFFFFFFF + 1 = 0x0

REcon Brussels 2018 17

PoC implementation #SS -> #PF -> pcb_onfault

REcon Brussels 2018 18

BadIRET FreeBSD PoC implementation

REcon Brussels 2018 19

Hardware overview

REcon Brussels 2018 20

AMD APU
PCIe x4 SB

Marvell

SoC

HDD

BD

ETH

WIFI/BT

USB

GDDR5
SPI

FLASH

DDR3

UART/IO

https://wikidevi.com/wiki/Marvell https://media.ccc.de/v/33c3-7946-console_hacking_2016

SPI Flash Firmware

• Marvell SoC “Aeolia/Belize/Baikal”
• C0000001 (IPL – SRAM) aka EMC

• C0010001 (KBL – DDR3) aka EAP

• Torus WIFI/BT

• NVS (config etc.)

• AMD APU
• AES XTS encrypted with per console key

• Secure Loader/Kernel/Modules

• X86 BIOS/Kernel

2MB

Southbridge FW

30MB

AMD x86 FW

AMD SP SAMU

HDD structure overview

• 15 GPT partitions
• Encrypted with two sets of keys

• AMD SP
• X86 Services/Modules/GUI C# Mono

• Updates

• Southbridge
• User files - 400GB+ UFS2

• User files, Games, Settings, Browser history ;)

• EAP ARM User - 128MB FAT

• EAP ARM Kernel - not a FS (encrypted/signed blob)

REcon Brussels 2018 22

Boot/Power sequence

REcon Brussels 2018 23

C0000001

EMC

SRAM

AMD

BootROM
PCIe Endpoint

C0010001

EAP KBL

DDR3

RestMode

PCIe Root Complex

BootROM

EAP

KERNEL

HDD DDR3

EAP USER

DDR3

Marvell SoC

Cold Boot without cooling

• DDR3 memory is directly mapped at 0xfffffe0080000000
• sbram0: <Aeolia DDR3 memory> mem 0x80000000-0xbfffffff at device 20.6

on pci0

• DRAM stays without power for very small period of time during
power cycle which is enough that contents of DRAM persist hence an
attacker is able to dump it!

REcon Brussels 2018 24

DDR3 Dump Analysis

REcon Brussels 2018 25

Exception vectors

L1/L2 Page Tables

Free

0x00000000

0x0FFFFFFF

(256MB)

Kernel

Kernel unpacker

Free

Free

User

• Kernel
• Contiguous
• 1:1 mapping
• Raw binary no ELF header
• No ASLR

• Kernel unpacker
• Minimal ELF binary
• Custom compression

• User
• ASLR on newer FW
• HMAC-SHA256 signing >2.xx

FW

DDR3 Dump Analysis

REcon Brussels 2018 26

Exception vectors

L1/L2 Page Tables

KBL

0x00000000

0x0FFFFFFF

(256MB)

Kernel

Kernel unpacker

Free

KBL Stack

User

• KBL
• memset(bootp.kbl, 0, bootp.kbl_size);

• KBL Stack
• Stack cookies
• Return address to Kernel unpacker
• Garbage
• No keys!

Running code on ARM

• No signing required on 1.xx (HMAC-SHA256 on 2.xx+)
• Signing key still can be dumped from DRAM using cold boot on newer FW

• Crossbuild FreeBSD to support ARM
• Override some structures and types to match correct size Sony decided

default one aren’t good enough.

• Mount /eap_vsh and replace binary SceEapCore.elf
• No network and other things
• No RWX
• LDSCRIPT

• Inject your payload inside the binary and place hook to spawn new thread!

• We are Root!

REcon Brussels 2018 27

Kernel code exec

• Limited number of syscalls even less than on x86 kernel

• NOT an x86 can’t use BadIRET exploit

• No Sony’s syscalls like sys_dlclose, sys_namedobj, etc.
• http://cturt.github.io/dlclose-overflow.html

• https://fail0verflow.com/blog/2017/ps4-namedobj-exploit/

• Old exploits? I didn't find anything useful.

• sys_kldload JACKPOT!
• Basic FreeBSD functionality to load kernel modules was left behind!

• Load helloworld.ko module -> CRASH!

REcon Brussels 2018 28

sys_kldload crash root cause analysis

• Bad ELF format?

• Correct kernel version?

• Did Sony change something?

• Trying different binaries gives inconsistent behavior
• Sometimes crashes sometimes not
• Load success but no execution!?

• Malloc! – kernel uses malloc to allocate memory for kernel modules
• pmap_enter strips X bit and returns RW memory
if (prot & VM_PROT_WRITE)

prot = prot & ~VM_PROT_EXECUTE;

REcon Brussels 2018 29

ROP validation

• To validate that I have working kernel module I had to redirect entry
point to executable code inside kernel itself
• BX LR - just return should not crash

• Invalid pointer – should crash

• DECLARE_MODULE macro
• FreeBSD already points inside of kernel!

• MODULE_METADATA(_md_##name, MDT_MODULE, &data, #name);

• SYSINIT(name##module, sub, order, module_register_init, &data);

• PC and R0 control
• void module_register_init(const void *arg)

REcon Brussels 2018 30

Arbitrary kernel code execution

1) Load 1st module
• Patch L1 table to make kernel pages RWX instead RX only

2) Load 2nd module
• patch pmap_enter and allow RWX memory

• Conveniently when kernel loads new module it does TLB and cache invalidate

• Otherwise if we would try to do write to kernel right after we patch L1 it
would crash so don’t do ROP-chain.

3) Load 3rd module
• We able to load kernel module and run own kernel code

• PROFIT! (SHOTS!)

REcon Brussels 2018 31

Now what!?

• Co-processor registers
• CP0, CP14, CP15

• CP14 - ARM debug registers available to software

• Data abort handler
• Allows to scan memory and resume if that memory is unavailable

• No other MMIO than what is already referenced in kernel

• No 1MB register configuration space https://patchwork.kernel.org/patch/6169481/

• When no paging enabled ARM says it is undefined behavior
• I found hard limit of 256 failed aborts until unrecoverable crash

• Hangs on certain MMIO which requires power cycle manually

REcon Brussels 2018 32

https://patchwork.kernel.org/patch/6169481/

Nothing except ability to run code in kernel

REcon Brussels 2018 33

Hardware specs

• What kernel tells us
• CPU: PJ4C B0 rev 1 (Marvell core)

• CPU clock : 500MHz, DDR clock : 800MHz

• http://www.samsung.com/global/business/semiconductor/file/product/D
S_K4B2G1646Q-BC_Rev103.pdf

• At least 400MHz

REcon Brussels 2018 34

Hardware attack vectors

• SoC glitch
• Try to glitch when memset is executed to prevent KBL clear

• Requires desoldering A LOT of decoupling capacitors

• Unable to make it skip instructions

• DRAM glitch
• Address/Data corruption?

• Address aliasing?

• Bank Aliasing?

• Prevent memory writes?

REcon Brussels 2018 35

DRAM attack vectors

• Address/Data corruption
• Need access to actual physical traces because it is BGA and data is deffirential

they are located in inner layers

• No all address pins are exposed due to BGA package

• Trying to glitch address pins resulted in ‘byteswap’ instead of address change

• Address aliasing
• Short some pins to make them HIGH e.g A0 and A8

• Same problem pins not exposed

• Probably should work on PC when attacking DIMMs

REcon Brussels 2018 36

DRAM attack vectors

• DRAM bank aliasing
• Similar to address aliasing except this time pins are exposed!

• Connect e.g. B0 and B3 to make write happen to both

• Disconnect when not needed (when KBL finished decrypting)

• Read out secrets because they were written to both banks

• It should work in theory but I couldn’t make it working or maybe I didn’t try
hard enough

REcon Brussels 2018 37

DRAM data write prevention

• CKE Must be maintained HIGH throughout read and write accesses.

• CKE pin is exposed because requires pull-up resistor
• Not just READ/WRITE also refresh and other commands

• https://twitter.com/vpikhur/status/680899967414763520 (Dec 2015)
• Easy to identify the pin on target board with oscilloscope

REcon Brussels 2018 38

Recon mission

REcon Brussels 2018 39

• Banana Pi
• ARM
• DDR3 1GB
• Uboot

https://en.wikipedia.org
/wiki/Banana_Pi

https://en.wikipedia.org/wiki/Banana_Pi

Hardware tools

• Oscilloscope
• http://www.dreamsourcelab.com/order.html ($199)

• Initially had pretty bad software now it’s OKish

• Drivers have no digital signature

• Arduino Uno ($10)
• Signal sensing

• Timing delays

• Trigger

• MOSFET ($0)
• Connects CKE to GND on trigger to generate glitch

REcon Brussels 2018 40

http://www.dreamsourcelab.com/order.html

Glitch setup

REcon Brussels 2018 41

DDR3
@800MHz

Memset glitch vs KBL glitch

• Impossible to guess when exactly it is happening
• HDD creates inconsistent delays

• Even SSD doesn’t work well enough

• KBL glitch (code injection)
• From main OS x86 using kexploit spray DDR3 memory with MOV PC, 0x3C and

at 0x3C offset we place our payload

• Enter rest mode spray will remain in memory

• Glitch when KBL gets loaded to gain code execution then dump KBL via UART
our payload

REcon Brussels 2018 42

UART log <= v1.05 FW

REcon Brussels 2018 43

UART pinout on motherboard http://jaicrab.org/?&a=Ps4/Tools/UART

SPI.CS and CKE analysis

REcon Brussels 2018 44

SPI.CS analysis

REcon Brussels 2018 45

Glitch after KBL decryption

REcon Brussels 2018 46

KBL decryption
end

KBL execution begin

KBL message glitch debug

REcon Brussels 2018 47

Single instruction injection

REcon Brussels 2018 48

REcon Brussels 2018 49

DEMO!

https://youtu.be/sMroXa-zYxk

https://youtu.be/sMroXa-zYxk

Conclusions

• Why it worked?
• I don’t now ¯_(ツ)_/¯

• KBL decryption is not in place
• KBL decryption doesn’t overwrite itself could be related to KBL image parsing etc.

• CPU cache
• No all transactions were committed

• Probably should use uncached memory accesses

• Don’t hardcode HMAC and use same HMAC on every platform

• Don’t trust external memory

REcon Brussels 2018 50

Marvell SoC

REcon Brussels 2018 51

• eBay and Ali is your
friend.

• Much larger feature size
180nm?

• Would take a lot of time
and ROI is unknown.

AMD APU decapsulation

REcon Brussels 2018 52

• We need SEM
things are really
small 28nm!

IR maybe?

REcon Brussels 2018 53

• AMD(TSMC) silicon
lacks doping it is
susceptible to backside
analysis using IR light.

• Laser fault injection is
possible!

• Requires sophisticated
optical stage.

REcon Brussels 2018 54

