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About
• Been doing RE for more than 15 years

• Privately wrote multiple tools for 
deobfuscation and binary analysis, PE 
unpackers, software VM 
disassemblers/decompilers, etc.

• Kernel and hypervisor based security 
exploitation

• First time public speaker

• Past 5 years been learning hardware
• Starting from basics Firmware, SPI, UART, 

etc.
• Silicon decapsulation, fault injection
• Past year+ been working on HW for side-

channel analysis.



Why doing this?

• Learning and a challange.

• Hardware and silicon isn’t your magic black box.

• Sony has no bug bounties.

• I’ve been sitting on this for 2 years.
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Why presenting here?
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FAKE NEWS!



Agenda

• WebKit exploitation

• FreeBSD x86_64 exploitation

• Hardware and firmware

• Dumping FreeBSD ARM kernel of southbridge

• Running user code on ARM

• FreeBSD ARM exploitation

• Hardware attacks and kernel bootloader extraction

• Future research
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Finding WebKit exploit
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Changelog open for all!
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The Hunt for Red 
October



Use existing exploit CVE-2012-3748
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https://www.exploit-db.com/exploits/28081/



ROP ONLY no RWX memory!



JIT how does it work? (magnets?)

IPC

WebProcess JSC-Compiler

RX JIT 

Code

RW JIT 

Code

child 
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• Create RWX JIT shared 
memory (SHM)

• Create alias of this 
SHM with RW access

• Map RX JIT SHM using 
original FD

• Map RW JIT SHM 
using alias.

• Map RX 0x30000000

• Map RW 0x30100000

• Pthead_create



RWX without JIT
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Start End prot maxprot Info
0x000007ff3e4000 - 0x000007ff3e8000 0 3stack guard
0x000007ff3e8000 - 0x000007ff5e8000 3 3Thread1
0x000007ff5e8000 - 0x000007ff5ec000 0 3stack guard
0x000007ff5ec000 - 0x000007ff7ec000 3 3Thread2
0x000007ff7ec000 - 0x000007ff7f0000 0 3stack guard
0x000007ff7f0000 - 0x000007ff9f0000 3 3Thread3
0x000007ff9f0000 - 0x000007ff9f4000 0 3stack guard
0x000007ff9f4000 - 0x000007ffbf4000 3 3Thread4
0x000007ffdf8000 - 0x000007ffdfc000 0 33
0x000007ffdfc000 - 0x000007ffffc000 3 3main stack
0x000007ffffc000 - 0x00000800000000 5 37



Privilege escalation

• Kernel
• Syscall exploitation is difficult black box isn’t fun 
• Maximum what we can get are info leaks in FreeBSD

• Kernel callstack using sysctl KERN_PROC_KSTACK ( requires two threads )
• Pointer leak ( CVE-2014-8476 )

• Services
• Still in their own jail but have more priviledges able to call more 

syscalls
• Bugs are present but unable to get code exec

• Multiple crashes via IPC

REcon Brussels 2018 14



Kernel code execution

• BadIRET (CVE-2014-9322, CVE-2015-5675)

• CVE-2015-5675 ( 2015-08-25 )

• https://www.freebsd.org/security/advisories/FreeBSD-SA-
15:21.amd64.asc

• CVE-2014-9322
• Rafal’s excellent guide on this bug

• https://blogs.bromium.com/exploiting-badiret-vulnerability-cve-2014-9322-
linux-kernel-privilege-escalation/
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https://www.freebsd.org/security/advisories/FreeBSD-SA-15:21.amd64.asc
https://blogs.bromium.com/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/


FreeBSD PoC
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• “This is a POC to 
reproduce vulnerability. 
No exploitation here, 
just simple kernel panic.”

• https://www.exploit-
db.com/exploits/36266/

https://www.exploit-db.com/exploits/36266/


Rafal’s IDT pointer redirection

• Rafal’s approach
action = &t->sighand->action[sig-1];

action->sa.sa_handler = SIG_DFL; // SIG_DFL = 0

• IDT overwrite
• Overwrite #PF handler address in IDT

• IDT[#PF] = 0xFFFFFFFF’XXXXXXXX

• IDT[#PF] = 0x00000000’XXXXXXXX

• FreeBSD increment primitive
• td->td_critnest++

• 0xFFFFFFFF + 1 = 0x0

REcon Brussels 2018 17



PoC implementation #SS -> #PF -> pcb_onfault

REcon Brussels 2018 18



BadIRET FreeBSD PoC implementation
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Hardware overview
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AMD APU
PCIe x4 SB

Marvell 

SoC

HDD

BD

ETH

WIFI/BT

USB

GDDR5
SPI 

FLASH

DDR3

UART/IO

https://wikidevi.com/wiki/Marvell https://media.ccc.de/v/33c3-7946-console_hacking_2016



SPI Flash Firmware

• Marvell SoC “Aeolia/Belize/Baikal”
• C0000001 (IPL – SRAM) aka EMC

• C0010001 (KBL – DDR3) aka EAP

• Torus WIFI/BT

• NVS ( config etc. )

• AMD APU
• AES XTS encrypted with per console key

• Secure Loader/Kernel/Modules

• X86 BIOS/Kernel

2MB

Southbridge FW

30MB

AMD x86 FW

AMD SP SAMU



HDD structure overview

• 15 GPT partitions
• Encrypted with two sets of keys

• AMD SP
• X86 Services/Modules/GUI C# Mono

• Updates

• Southbridge
• User files - 400GB+ UFS2

• User files, Games, Settings, Browser history ;)

• EAP ARM User - 128MB FAT

• EAP ARM Kernel - not a FS ( encrypted/signed blob )
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Boot/Power sequence
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C0000001

EMC

SRAM

AMD 

BootROM
PCIe Endpoint

C0010001 

EAP KBL 

DDR3

RestMode

PCIe Root Complex

BootROM

EAP 

KERNEL

HDD DDR3

EAP USER

DDR3

Marvell SoC



Cold Boot without cooling

• DDR3 memory is directly mapped at 0xfffffe0080000000 
• sbram0: <Aeolia DDR3 memory> mem 0x80000000-0xbfffffff at device 20.6 

on pci0

• DRAM stays without power for very small period of time during 
power cycle which is enough that contents of DRAM persist hence an 
attacker is able to dump it!
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DDR3 Dump Analysis
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Exception vectors

L1/L2 Page Tables

Free

0x00000000

0x0FFFFFFF 

(256MB)

Kernel

Kernel unpacker

Free

Free

User

• Kernel
• Contiguous
• 1:1 mapping
• Raw binary no ELF header
• No ASLR

• Kernel unpacker
• Minimal ELF binary
• Custom compression

• User
• ASLR on newer FW
• HMAC-SHA256 signing >2.xx 

FW



DDR3 Dump Analysis
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Exception vectors

L1/L2 Page Tables

KBL

0x00000000

0x0FFFFFFF 

(256MB)

Kernel

Kernel unpacker

Free

KBL Stack

User

• KBL
• memset( bootp.kbl, 0, bootp.kbl_size );

• KBL Stack
• Stack cookies
• Return address to Kernel unpacker
• Garbage
• No keys! 



Running code on ARM

• No signing required on 1.xx ( HMAC-SHA256 on 2.xx+ )
• Signing key still can be dumped from DRAM using cold boot on newer FW

• Crossbuild FreeBSD to support ARM
• Override some structures and types to match correct size Sony decided 

default one aren’t good enough.

• Mount /eap_vsh and replace binary SceEapCore.elf
• No network and other things 
• No RWX
• LDSCRIPT

• Inject your payload inside the binary and place hook to spawn new thread!

• We are Root!
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Kernel code exec

• Limited number of syscalls even less than on x86 kernel

• NOT an x86 can’t use BadIRET exploit

• No Sony’s syscalls like sys_dlclose, sys_namedobj, etc.
• http://cturt.github.io/dlclose-overflow.html

• https://fail0verflow.com/blog/2017/ps4-namedobj-exploit/

• Old exploits? I didn't find anything useful. 

• sys_kldload JACKPOT!
• Basic FreeBSD functionality to load kernel modules was left behind!

• Load helloworld.ko module -> CRASH! 
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sys_kldload crash root cause analysis

• Bad ELF format?

• Correct kernel version?

• Did Sony change something?

• Trying different binaries gives inconsistent behavior
• Sometimes crashes sometimes not
• Load success but no execution!?

• Malloc! – kernel uses malloc to allocate memory for kernel modules 
• pmap_enter strips X bit and returns RW memory
if ( prot & VM_PROT_WRITE )

prot = prot & ~VM_PROT_EXECUTE;
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ROP validation

• To validate that I have working kernel module I had to redirect entry 
point to executable code inside kernel itself
• BX    LR - just return should not crash

• Invalid pointer – should crash

• DECLARE_MODULE macro
• FreeBSD already points inside of kernel!

• MODULE_METADATA(_md_##name, MDT_MODULE, &data, #name);

• SYSINIT(name##module, sub, order, module_register_init, &data);

• PC and R0 control
• void module_register_init(const void *arg)
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Arbitrary kernel code execution

1) Load 1st module
• Patch L1 table to make kernel pages RWX instead RX only

2) Load 2nd module
• patch pmap_enter and allow RWX memory

• Conveniently when kernel loads new module it does TLB and cache invalidate

• Otherwise if we would try to do write to kernel right after we patch L1 it 
would crash so don’t do ROP-chain.

3) Load 3rd module
• We able to load kernel module and run own kernel code

• PROFIT! (SHOTS!)
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Now what!?

• Co-processor registers
• CP0, CP14, CP15

• CP14 - ARM debug registers available to software

• Data abort handler
• Allows to scan memory and resume if that memory is unavailable

• No other MMIO than what is already referenced in kernel

• No 1MB register configuration space https://patchwork.kernel.org/patch/6169481/

• When no paging enabled ARM says it is undefined behavior
• I found hard limit of 256 failed aborts until unrecoverable crash

• Hangs on certain MMIO which requires power cycle manually
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https://patchwork.kernel.org/patch/6169481/


Nothing except ability to run code in kernel
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Hardware specs

• What kernel tells us
• CPU: PJ4C B0 rev 1 (Marvell core)

• CPU clock : 500MHz, DDR clock : 800MHz

• http://www.samsung.com/global/business/semiconductor/file/product/D
S_K4B2G1646Q-BC_Rev103.pdf

• At least 400MHz
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Hardware attack vectors

• SoC glitch
• Try to glitch when memset is executed to prevent KBL clear

• Requires desoldering A LOT of decoupling capacitors

• Unable to make it skip instructions

• DRAM glitch
• Address/Data corruption?

• Address aliasing?

• Bank Aliasing?

• Prevent memory writes?
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DRAM attack vectors

• Address/Data corruption
• Need access to actual physical traces because it is BGA and data is deffirential

they are located in inner layers

• No all address pins are exposed due to BGA package

• Trying to glitch address pins resulted in ‘byteswap’ instead of address change

• Address aliasing 
• Short some pins to make them HIGH e.g A0 and A8

• Same problem pins not exposed

• Probably should work on PC when attacking DIMMs
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DRAM attack vectors

• DRAM bank aliasing
• Similar to address aliasing except this time pins are exposed!

• Connect e.g. B0 and B3 to make write happen to both

• Disconnect when not needed ( when KBL finished decrypting )

• Read out secrets because they were written to both banks

• It should work in theory but I couldn’t make it working or maybe I didn’t try 
hard enough 
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DRAM data write prevention

• CKE Must be maintained HIGH throughout read and write accesses.

• CKE pin is exposed because requires pull-up resistor
• Not just READ/WRITE also refresh and other commands

• https://twitter.com/vpikhur/status/680899967414763520 (Dec 2015)
• Easy to identify the pin on target board with oscilloscope
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Recon mission
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• Banana Pi
• ARM
• DDR3 1GB
• Uboot

https://en.wikipedia.org
/wiki/Banana_Pi

https://en.wikipedia.org/wiki/Banana_Pi


Hardware tools

• Oscilloscope
• http://www.dreamsourcelab.com/order.html ($199)

• Initially had pretty bad software now it’s OKish

• Drivers have no digital signature 

• Arduino Uno ($10)
• Signal sensing

• Timing delays

• Trigger

• MOSFET ($0)
• Connects CKE to GND on trigger to generate glitch
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http://www.dreamsourcelab.com/order.html


Glitch setup
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DDR3 
@800MHz



Memset glitch vs KBL glitch 

• Impossible to guess when exactly it is happening
• HDD creates inconsistent delays

• Even SSD doesn’t work well enough

• KBL glitch (code injection)
• From main OS x86 using kexploit spray DDR3 memory with MOV PC, 0x3C and 

at 0x3C offset we place our payload

• Enter rest mode  spray will remain in memory

• Glitch when KBL gets loaded to gain code execution then dump KBL via UART 
our payload
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UART log <= v1.05 FW
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UART pinout on motherboard http://jaicrab.org/?&a=Ps4/Tools/UART



SPI.CS and CKE analysis
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SPI.CS analysis
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Glitch after KBL decryption
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KBL decryption 
end

KBL execution begin



KBL message glitch debug
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Single instruction injection
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DEMO!

https://youtu.be/sMroXa-zYxk

https://youtu.be/sMroXa-zYxk


Conclusions

• Why it worked?
• I don’t now ¯\_(ツ)_/¯

• KBL decryption is not in place
• KBL decryption doesn’t overwrite itself could be related to KBL image parsing etc.

• CPU cache
• No all transactions were committed 

• Probably should use uncached memory accesses

• Don’t hardcode HMAC and use same HMAC on every platform

• Don’t trust external memory
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Marvell SoC
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• eBay and Ali is your 
friend.

• Much larger feature size 
180nm?

• Would take a lot of time 
and ROI is unknown.



AMD APU decapsulation
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• We need SEM 
things are really 
small 28nm!



IR maybe?
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• AMD(TSMC) silicon 
lacks doping it is 
susceptible to backside 
analysis using IR light.

• Laser fault injection is 
possible!

• Requires sophisticated 
optical stage.
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