
Hacking Toshiba Laptops
Or how to mess up your firmware security

REcon Brussels 2018

whois
Serge Bazanski

Freelancer in devops & (hardware) security.

Twitter: @q3k

IRC: q3k @ freenode.net

Michał Kowalczyk

Vice-captain @ Dragon Sector

Researcher @ Invisible Things Lab

Reverse engineer, amateur cryptanalyst

Twitter: @dsredford

IRC: Redford @ freenode.net

Toshiba Portégé
R100

Intel Pentium M 1 GHz
256MB RAM

But there’s a catch...

Quite the catch, actually.
CMOS clear jumper? None to be found.

Yank out the battery? Password still there.

Take a door key and pass it over the pins of things

that look like flash chips hopefully causing a

checksum failure and resetting the password?

Nice try. No luck, though.

A-ha!

BIOS analysis

How to get the BIOS code?

Physical memory? Not with a locked-down laptop.

Dump of the flash chip? Ugh.

Unpack some updates? Let’s see.

Unpacking the updates

https://support.toshiba.com/

7-Zip

+
254 KB of compressed data

Decompression
Unknown format

Default unpacker is a 16-bit EXE

There’s an alternative one, 32-bit!

Decompression

BuIsFileCompressed

BuGetFileSize

BuDecodeFile

Decompression
Just ~50 lines of C!

...

BuIsFileCompressed(compressed, &is_compressed);

if (is_compressed) {

BuDecodeFile(compressed, fsize, decompressed);

}

...

The result

Dumping the BIOS flash

Where to start looking

Chip Safari

RAM Flash Google it

Interfacing to flash chips

In-circuit: test pads or protocol that permits

multi-master access

Out-of-circuit (?): desolder, attach to breakout/clip,

use main communication interface

Custom breakout board

KiCAD (or $whatever, really) PCB design.

Thermal transfer for DIY PCB manufacturing.

Hot air gun to desolder, soldering station to

re-solder.

Tools you’ll need

150eur 50eur

3eur

Hackerspace
25eur p/m + BYOB

FPGA board
(Spartan 3E)

Flash

Kabelsalat

Breakout Board

Setup

FlashFPGA
Devboard

A/A Mux
(~30 wires)PC UART

(2 wires)

Gimme block X

Data word

X * 1024 + 4

Data word

1kB of data

X * 1024

X * 1024 + …

Data word

Breakout Board

Setup issues

FlashFPGA
Devboard

A/A Mux
(~30 wires)PC UART

(2 wires)

Gimme block X

Data word

X * 1024 + 4

Data word

1kB of data

X * 1024

X * 1024 + …

Data word
Forgot
checksums

Mixed them up.

But why the FPGA?

Using an FPGA was unnecessary - just needed a bunch of I/O.

Comparatively difficult to develop for. And to debug.

Should’ve gone for a uC with a bunch of I/O or with a multiplexer.

But at least now we know ¯_(ツ)_/¯ .

BIOS code analysis

How to start?
CPU mode?

Entry point?

Memory map?

CPU start
“A hardware reset sets each processor’s registers to

a known state and places the processor in

real-address mode.”

Intel® 64 and IA-32 Architectures

Software Developer’s Manual Volume 3

CPU start
We start at the address:

CS:EIP = CS.Base + EIP = 0xFFFFFFF0

Real Mode ⇒ physical address. A20 enabled.

So, what’s there?

Memory mapping
Northbridge: Intel Odem MCH-M

No info about that region ⇒ let’s check the

southbridge

Memory mapping
Southbridge: Intel ICH4-M

FWH = Firmware Hub = BIOS flash

Out dump has exactly 0x80000 bytes!

Even more mappings...

...

Entry point
FFFFFFF0: jmp far FC00:3FA0

000FFFA0: jmp far FC00:00A2

000FC0A2: cli

000FC0A3: cld

000FC0A4: mov al, 2

000FC0A6: out 92h, al ; Enable A20

 ...

BIOS RE: Initialization
No stack! (and also no RAM)

16-bit Protected Mode + Unreal Mode

Checksums

RAM initialization

Self-copying into RAM

BIOS RE: Initialization

16-bit Protected Mode → segments!

We have to find and parse GDT

Only then we can analyze the code

BIOS RE: The password check

BIOS RE: The password check
Everything eventually lands up in one function

f(in_buf) → out_buf

After long analysis: all bytes are sent to I/O ports

62h and 66h

BIOS RE: The password check
From the southbridge manual:

Table 6-2. Fixed I/O Ranges Decoded by Intel ICH4

“Microcontroller”???

EC/KBC

CPU

Intel Pentium M

Northbridge

Intel Odem

MCH-M

RAM

GPU

Trident XP4

Southbridge

Intel ICH4-M

HDD Audio

Ethernet

LPC

EC/KBC

Renesas

M306K9FC

LRP

Battery

Keyboard

PSC

Touchpad

BIOS

EC: Dump
How to obtain the code?

Updates!

EC: Dump
No updates available

BIOS changelog: nothing about the EC

Maybe a similar laptop model?

Portégé S100!

EC: Updates

Inside: 3 update

blobs

(different versions)

Uses ports 62h & 66h

Sends the 1st part (~2,5KB)

Sends the 2nd part (~100KB)

EC: Update installer

EC: Update blob
It’s decoded inside EC - no code available :(

Let’s try some analysis!

EC: Update blob - analysis
High entropy ⇒ encryption or compression

No regularities in trigrams ⇒ encryption

Size always divisible by 8 ⇒ encryption

Longest repeated substring is short ⇒ if encryption,

then not ECB

EC: Update blob - analysis

Looks like a dead-end...

Serge, could you please desolder something
again…?

EC..?

One last breakout later...

Let’s dump this thing.

EC: Programming Protocol

M16CProgrammer

SCLK

RXD

TXD

Busy

EC: Programming Protocol

EC: Programming Protocol
M16CProgrammer

Flash Page X?

Flash Page X

Not so fast

EC: Programming Protocol
M16CProgrammer

ID Check (K0...K6)

Status?

Status (Unlocked/locked)

Flash Page X?

Flash Page X

Side channel
attacks?

Fault injection?

Not so fast.

Software level ‘side’ channels

Hmm.An PIN unlock request does not result in any
immediate success/failure transmission, but...

EC: M16C bootloader bug

Let’s run some quick tests.

EC: M16C bootloader bug

EC: M16C bootloader bug

Byte

R
es

po
ns

e
tim

e
(μ

s)

Well that’s not good.

EC: M16C Bootloader bug
M16CProgrammer

ID Check - 00 FF FF FF FF FF FF

ID Check - 01 FF FF FF FF FF FF

ID Check - 02 FF FF FF FF FF FF

ID Check - .. FF FF FF FF FF FF

ID Check - FE FF FF FF FF FF FF

ID Check - FF FF FF FF FF FF FF

Response time measurement

Average time
+ 3μs

EC: M16C Bootloader bug
M16CProgrammer

ID Check - 00 FF FF FF FF FF FF

ID Check - 01 FF FF FF FF FF FF

ID Check - 02 FF FF FF FF FF FF

ID Check - .. FF FF FF FF FF FF

ID Check - FE FF FF FF FF FF FF

ID Check - FF FF FF FF FF FF FF

Response time measurement

Average time
+ 3μs

Ergo, the first
byte of the
key is 02.

EC: M16C Bootloader bug

Thus, we can enumerate all bytes of the key one by one,

using the timing difference for each correct byte to

reduce our search to just 0x100*7 checks.

And we get the key.

EC: M16C Bootloader bug

EC: M16C Bootloader bug

FPGA
(iCE40)

(EC)
M16C

EC: M16C Bootloader bug

PoC || GTFO

https://github.com/q3k/m16c-interface/

(note: doesn’t work for all M16Cs… yet)

https://github.com/q3k/m16c-interface/

EC: RE

Code

(~700 functions)

R/O data

Crypto

Bootloader

EC: RE
Much simpler code than in the BIOS

No strings

We’re looking for LPC communication and

BIOS-call table

EC: RE
Finding the table is easy

~100 different BIOS<->EC calls

We know the numbers of the interesting calls ⇒

let’s analyze the handlers!

Sounds easy…?

EC: RE of the handlers
Manual context-switching

No common call convention

Handlers aren’t split into functions

Jumps to the middle of other functions

Password check: BIOS
out_buf = call_EC(

 func=0x24,

 in_buf=MD5(input)[:8] + pwd_type

)

out_buf[0] == 0 ⇒ success

Password check: EC
Let’s look at the handler on the EC side...

…6 levels down the call hierarchy:

BMGEU/C p6_4, p6

BSET pd6_4, pd6

JSR.W set_p6_5

JSR.W clear_p6_5

I/O on pins 40 & 41

Password check: EC
Oh, come on... :(

Password check: EC
This time it’s only an EEPROM :)

EC reads one block, decrypts it and compares with

the received MD5

Challenge/Response
Screw it, we’re looking for a universal attack

Let’s look at the challenge/response!

Challenge: BIOS
out_buf = call_EC(

 func=0x1A,

 in_buf=rdtsc() + MD5(pc_serial)[:8]

)

challenge = bytes_to_string(out_buf)

Challenge: EC

7 random bytes

RDTSC

Checksum

PC_SERIAL_MD5

ENC

Entropy pool

DEC

CHALL 1 CHALL 2

Response: BIOS
out_buf = call_EC(

 func=0x1B,

 in_buf=string_to_bytes(user_input)

)

out_buf[0] ⇒ success/fail

7 bytes CHK

DEC

DEC

RESP 1 RESP 2 PC_SERIAL_MD5

Verify

checksum

CHALL 2

ENC

== 0?

EC: Encryption
ENC? DEC?

EC: Encryption
A custom 64-bit block cipher

ENCKEY A (256B) KEY B (128B)

INPUT (8B)

OUTPUT (8B)

Challenge/Response
We just need to rewrite it in Python and ...

DEMO!

EC: Update system
Let’s decrypt the updates!

EC: Update system
Uh, symmetric signatures?

We can generate our own!

So, how's it like on their newer laptops?

If it ain’t broke, don’t fix it!

(that applies to keys, too)

Impact

Unlocking any (business) laptop.

Permanent rootkit in the EC.

We can attack the host from the EC.

Rootkit in EC?

DMA to the host via LPC (not supported by this particular EC) .

Keylogging & storage.

USB-Rubber-Ducky-like (key/mouse injection).

BIOS exploitation via the internal API.

Official Toshiba statement (from 2017-11-02)
Toshiba is working on a temporary BIOS update that can be used to

prevent the security issue that has been raised and expects to release

this update on its website within the next 2 weeks.

Toshiba plans to start the release of a permanent fix for some models

from January, 2018 and will complete the releases of permanent fix for

all applicable models by the end of March 2018.

Questions?

https://q3k.org/slides-recon-2018.pdf

