
Decompiler internals: microcode
Hex-Rays
Ilfak Guilfanov

2(c) 2018 Ilfak Guilfanov

Presentation OutlinePresentation Outline

Decompiler architecture
Overview of the microcode
Opcodes and operands
Stack and registers
Data flow analysis, aliasibility
Microcode availability
Your feedback

Online copy of this presentation is available at
 http://www.hex-rays.com/products/ida/support/ppt/recon2018.ppt

3(c) 2018 Ilfak Guilfanov

Hex-Rays Decompiler

Interactive, fast, robust, and programmable decompiler
Can handle x86, x64, ARM, ARM64, PowerPC
Runs on top of IDA Pro
Has been evolving for more than 10 years
Internals were not really published
Namely, the intermediate language

4(c) 2018 Ilfak Guilfanov

Decompiler architecture

It uses very straightforward sequence of steps:
Generate microcode

Transform microcode (optimize, resolve memrefs, analyze calls, etc)

Allocate local vars

Generate ctree

Beautify ctree

Print ctree

5(c) 2018 Ilfak Guilfanov

Decompiler architecture

We will focus on the first two steps:
Generate microcode

Transform microcode (optimize, resolve memrefs, analyze calls, etc)

Allocate local vars

Generate ctree

Beautify ctree

Print ctree

6(c) 2018 Ilfak Guilfanov

Why microcode?

It helps to get rid of the complexity of processor
instructions
Also we get rid of processor idiosyncrasies. Examples:

– x86: segment registers, fpu stack
– ARM: thumb mode addresses
– PowerPC: multiple copies of CF register (and other

condition registers)
– MIPS: delay slots
– Sparc: stack windows

It makes the decompiler portable. We “just” need to
replace the microcode generator
Writing a decompiler without an intermediate language
looks like waste of time

7(c) 2018 Ilfak Guilfanov

Is implementing an IR difficult?

Your call :)
How many IR languages to you know?

8(c) 2018 Ilfak Guilfanov

Why not use an existing IR?

There are tons of other intermediate languages: LLVM,
REIL, Binary Ninja's ILs, RetDec's IL, etc.
Yes, we could use something
But I started to work on the microcode when none of the
above languages existed
This is the main reason why we use our own IR

mov.d EAX,, T0
ldc.d #5,, T1
mkcadd.d T0, T1, CF
mkoadd.d T0, T1, CF
add.d T0, T1, TT
setz.d TT,, ZF
sets.d TT,, ZF
mov.d TT,, EAX

(this is how it looked like in 1999)

9(c) 2018 Ilfak Guilfanov

A long evolution

I started to work on the microcode in 1998 or earlier
The name is nothing fancy but reflects the nature of it
Some design decisions turned out to be bad (and some of
them are already very difficult to fix)
For example, the notion of virtual stack registers
We will fix it, though. Just takes time
Even today we modify our microcode when necessary
For example, I reshuffled the instruction opcodes for this
talk...

10(c) 2018 Ilfak Guilfanov

Design highlights

Simplicity:
– No processor specific stuff
– One microinstruction does one thing
– Small number of instructions (only 45 in 1999, now 72)
– Simple instruction operands (register, number, memory)
– Consider only compiler generated code

Discard things we do not care about:
– Instruction timing (anyway it is a lost battle)
– Instruction order (exceptions are a problem!)
– Order of memory accesses (later we added logic to

preserve indirect memory accesses)
– Handcrafted code

11(c) 2018 Ilfak Guilfanov

Generated microcode

Initially the microcode looks like RISC code:
– Memory loads and stores are done using dedicated

microinstructions
– The desired operation is performed on registers
– Microinstructions have no side effects
– Each output register is initialized by a separate

microinstruction

It is very verbose. Example:

004014FB mov eax, [ebx+4]
004014FE mov dl, [eax+1]
00401501 sub dl, 61h ; 'a'
00401504 jz short loc_401517

12(c) 2018 Ilfak Guilfanov

Initial microcode: very verbose

2. 0 mov ebx.4, eoff.4 ; 4014FB u=ebx.4 d=eoff.4
2. 1 mov ds.2, seg.2 ; 4014FB u=ds.2 d=seg.2
2. 2 add eoff.4, #4.4, eoff.4 ; 4014FB u=eoff.4 d=eoff.4
2. 3 ldx seg.2, eoff.4, et1.4 ; 4014FB u=eoff.4,seg.2,

 ; (STACK,GLBMEM) d=et1.4
2. 4 mov et1.4, eax.4 ; 4014FB u=et1.4 d=eax.4
2. 5 mov eax.4, eoff.4 ; 4014FE u=eax.4 d=eoff.4
2. 6 mov ds.2, seg.2 ; 4014FE u=ds.2 d=seg.2
2. 7 add eoff.4, #1.4, eoff.4 ; 4014FE u=eoff.4 d=eoff.4
2. 8 ldx seg.2, eoff.4, t1.1 ; 4014FE u=eoff.4,seg.2,

 ; (STACK,GLBMEM) d=t1.1
2. 9 mov t1.1, dl.1 ; 4014FE u=t1.1 d=dl.1
2.10 mov #0x61.1, t1.1 ; 401501 u= d=t1.1
2.11 setb dl.1, t1.1, cf.1 ; 401501 u=dl.1,t1.1 d=cf.1
2.12 seto dl.1, t1.1, of.1 ; 401501 u=dl.1,t1.1 d=of.1
2.13 sub dl.1, t1.1, dl.1 ; 401501 u=dl.1,t1.1 d=dl.1
2.14 setz dl.1, #0.1, zf.1 ; 401501 u=dl.1 d=zf.1
2.15 setp dl.1, #0.1, pf.1 ; 401501 u=dl.1 d=pf.1
2.16 sets dl.1, sf.1 ; 401501 u=dl.1 d=sf.1
2.17 mov cs.2, seg.2 ; 401504 u=cs.2 d=seg.2
2.18 mov #0x401517.4, eoff.4 ; 401504 u= d=eoff.4
2.19 jcnd zf.1, $loc_401517 ; 401504 u=zf.1

13(c) 2018 Ilfak Guilfanov

The first optimization pass

2. 0 ldx ds.2, (ebx.4+#4.4), eax.4 ; 4014FB u=ebx.4,ds.2,
 ;(STACK,GLBMEM) d=eax.4
2. 1 ldx ds.2, (eax.4+#1.4), dl.1 ; 4014FE u=eax.4,ds.2,
 ;(STACK,GLBMEM) d=dl.1
2. 2 setb dl.1, #0x61.1, cf.1 ; 401501 u=dl.1 d=cf.1
2. 3 seto dl.1, #0x61.1, of.1 ; 401501 u=dl.1 d=of.1
2. 4 sub dl.1, #0x61.1, dl.1 ; 401501 u=dl.1 d=dl.1
2. 5 setz dl.1, #0.1, zf.1 ; 401501 u=dl.1 d=zf.1
2. 6 setp dl.1, #0.1, pf.1 ; 401501 u=dl.1 d=pf.1
2. 7 sets dl.1, sf.1 ; 401501 u=dl.1 d=sf.1
2. 8 jcnd zf.1, $loc_401517 ; 401504 u=zf.1

Only 8 microinstructions
Some intermediate registers disappeared
Sub-instructions appeared
Still too noisy and verbose

14(c) 2018 Ilfak Guilfanov

Further microcode transformations

And the final code is:

This code is ready to be translated to ctree.
(numbers in curly braces are value numbers)

The output will look like this:

2. 1 ldx ds.2{3}, ([ds.2{3}:(ebx.4+#4.4)].4+#1.4), dl.1{5} ; 4014FE
 ; u=ebx.4,ds.2,(GLBLOW,sp+20..,GLBHIGH) d=dl.1
2. 2 sub dl.1{5}, #0x61.1, dl.1{6} ; 401501 u=dl.1 d=dl.1
2. 3 jz dl.1{6}, #0.1, @7 ; 401504 u=dl.1

2. 0 jz [ds.2{4}:([ds.2{4}:(ebx.4{8}+#4.4){7}].4{6}+#1.4){5}].1{3},
 #0x61.1,

 @7
 ; 401504 u=ebx.4,ds.2,(GLBLOW,GLBHIGH)

 if (argv[1][1] == 'a')
 ...

15(c) 2018 Ilfak Guilfanov

Minor details

Reading microcode is not easy (but hey, it was not
designed for that! :)
All operand sizes are spelled out explicitly
The initial microcode is very simple (RISC like)
As we transform microcode, nested subinstructions may
appear
We implemented the translation from processor
instructions to microinstructions in plain C++
We do not use automatic code generators or machine
descriptions to generate them. Anyway there are too
many processor specific details to make them feasible

16(c) 2018 Ilfak Guilfanov

Opcodes: constants and move

Copy from (l) to (d)estination
Operand sizes must match

 ldc l, d // load constant
 mov l, d // move

17(c) 2018 Ilfak Guilfanov

Opcodes: changing operand size

Copy from (l) to (d)estination
Operand sizes must differ
Since real world programs work with partial registers (like
al, ah), we absolutely need low/high

 xds l, d // extend (signed)
 xdu l, d // extend (unsigned)
 low l, d // take low part
 high l, d // take high part

18(c) 2018 Ilfak Guilfanov

Opcodes: load and store

{sel, off} is a segment:offset pair
Usually seg is ds or cs; for processors with flat memory it
is ignored
'off' is the most interesting part, it is a memory address

 stx l, sel, off // store value to memory
 ldx sel, off, d // load value from memory

Example:

ldx ds.2, (ebx.4+#4.4), eax.4
stx #0x2E.1, ds.2, eax.4

19(c) 2018 Ilfak Guilfanov

Opcodes: comparisons

Compare (l)left against (r)right
The result is stored into (d)estination, a bit register like
CF,ZF,SF,...

 sets l, d // sign
 setp l, r, d // unordered/parity
 setnz l, r, d // not equal
 setz l, r, d // equal
 setae l, r, d // above or equal
 setb l, r, d // below
 seta l, r, d // above
 setbe l, r, d // below or equal
 setg l, r, d // greater
 setge l, r, d // greater or equal
 setl l, r, d // less
 setle l, r, d // less or equal
 seto l, r, d // overflow of (l-r)

20(c) 2018 Ilfak Guilfanov

Opcodes: arithmetic and bitwise operations

Operand sizes must be the same
The result is stored into (d)estination

 neg l, d // -l -> d
 lnot l, d // !l -> d
 bnot l, d // ~l -> d
 add l, r, d // l + r -> d
 sub l, r, d // l - r -> d
 mul l, r, d // l * r -> d
 udiv l, r, d // l / r -> d
 sdiv l, r, d // l / r -> d
 umod l, r, d // l % r -> d
 smod l, r, d // l % r -> d
 or l, r, d // bitwise or
 and l, r, d // bitwise and
 xor l, r, d // bitwise xor

21(c) 2018 Ilfak Guilfanov

Opcodes: shifts (and rotations?)

Shift (l)eft by the amount specified in (r)ight
The result is stored into (d)estination
Initially our microcode had rotation operations but they
turned out to be useless because they can not be nicely
represented in C

 shl l, r, d // shift logical left
 shr l, r, d // shift logical right
 sar l, r, d // shift arithmetic right

22(c) 2018 Ilfak Guilfanov

Opcodes: condition codes

Perform the operation on (l)left and (r)ight
Generate carry or overflow bits
Store CF or OF into (d)estination
We need these instructions to precisely track carry and
overflow bits
Normally these instructions get eliminated during
microcode transformations

 cfadd l, r, d // carry of (l+r)
 ofadd l, r, d // overflow of (l+r)
 cfshl l, r, d // carry of (l<<r)
 cfshr l, r, d // carry of (l>>r)

23(c) 2018 Ilfak Guilfanov

Opcodes: unconditional flow control

Initially calls have only the callee address
The decompiler retrieves the callee prototype from the
database or tries to guess it
After that the 'd' operand contains all information about the
call, including the function prototype and actual arguments

ijmp {sel, off} // indirect jmp
goto l // unconditional jmp
call l d // direct call
icall {sel, off} d // indirect call
ret // return

call $___org_fprintf <...:
 “FILE *” &($stdout).4,
 "const char *" &($aArIllegalSwitc).4,
 _DWORD xds.4([ds.2:([ds.2:(ebx.4+#4.4)].4+#1.4)].1)>.0

24(c) 2018 Ilfak Guilfanov

Opcodes: conditional jumps

Compare (l)eft against (r)right and jump to (d)estination if
the condition holds
Jtbl is used to represent 'switch' idioms

 jcnd l, d //
 jnz l, r, d // ZF=0 Not Equal
 jz l, r, d // ZF=1 Equal
 jae l, r, d // CF=0 Above or Equal
 jb l, r, d // CF=1 Below
 ja l, r, d // CF=0 & ZF=0 Above
 jbe l, r, d // CF=1 | ZF=1 Below or Equal
 jg l, r, d // SF=OF & ZF=0 Greater
 jge l, r, d // SF=OF Greater or Equal
 jl l, r, d // SF!=OF Less
 jle l, r, d // SF!=OF | ZF=1 Less or Equal
 jtbl l, cases // Table jump

25(c) 2018 Ilfak Guilfanov

Opcodes: floating point operations

Basically we have conversions and a few arithmetic
operations
There is little we can do with these operations, they are
not really optimizable
Other fp operations use helper functions (e.g. sqrt)

 f2i l, d // int(l) => d; convert fp -> int, any size
 f2u l, d // uint(l)=> d; convert fp -> uint,any size
 i2f l, d // fp(l) => d; convert int -> fp, any size
 i2f l, d // fp(l) => d; convert uint-> fp, any size
 f2f l, d // l => d; change fp precision
 fneg l, d // -l => d; change sign
 fadd l, r, d // l + r => d; add
 fsub l, r, d // l - r => d; subtract
 fmul l, r, d // l * r => d; multiply
 fdiv l, r, d // l / r => d; divide

26(c) 2018 Ilfak Guilfanov

Opcodes: miscellaneous

Some operations can not be expressed in microcode
If possible, we use intrinsic calls for them (e.g. sqrtpd)
If no intrinsic call exists, we use “ext” for them and only try
to keep track of data dependencies (e.g. “aam”)
“und” is used when a register is spoiled in a way that we
can not predict or describe (e.g. ZF after mul)

 nop // no operation
 und d // undefine
 ext l, r, d // external insn
 push l
 pop d

27(c) 2018 Ilfak Guilfanov

More opcodes?

We quickly reviewed all 72 instructions
Probably we should extend microcode
Ternary operator?
Post-increment and post-decrement?
All this requires more research

28(c) 2018 Ilfak Guilfanov

Operands!

As everyone else, initially we had only:
– constant integer numbers
– registers

Life was simple and easy in the good old days!
Alas, the reality is more diverse. We quickly added:

– stack variables
– global variables
– address of an operand
– list of cases (for switches)
– result of another instruction
– helper functions
– call arguments
– string and floating point constants

29(c) 2018 Ilfak Guilfanov

Register operands

The microcode engine provides unlimited (in theory)
number of microregisters
Process registers are mapped to microregisters:

– eax => microregisters (mreg) 8, 9, 10, 11
– al => mreg 8
– ah => mreg 9

Usually there are more microregisters than the processor
registers. We allocate them as needed when generating
microcode
Examples:

eax.4
rsi.8
ST00_04.4

30(c) 2018 Ilfak Guilfanov

Stack as microregisters

I was reluctant to introduce a new operand type for stack
variables and decided to map the stack frame to
microregisters
Like, the stack frame is mapped to the microregister #100
and higher
A bright idea? Nope!
Very soon I realized that we have to handle indirect
references to the stack frame
Not really possible with microregisters
But there was so much code relying on this concept that
we still have it
Laziness pays off now and in the future (negatively)

31(c) 2018 Ilfak Guilfanov

Stack as viewed by the decompiler

Shadow stkargs

Input stkargs

Return address

Saved registers

Local variables

Output stkargs
(not visible in IDA)

inargtop

inargoff

minimal esp

typical ebp

minstkref

typical ebp

minargref

Local variables

stkvar base 0

Input stkargs

Yellow part is mapped to microregisters
Red is aliasable

32(c) 2018 Ilfak Guilfanov

More operand types!

64-bit values are represented as pairs of registers
Usually it is a standard pair like edx:eax
Compilers get better and nowadays use any registers as a
pair; or even pair a stack location with a register: sp+4:esi
We ended up with a new operand type:

– operand pair

It consists of low and high halves
They can be located anywhere (stack, registers, glbmem)

33(c) 2018 Ilfak Guilfanov

Scattered operands

The nightmare has just begun, in fact
Modern compilers use very intricate rules to pass structs
and unions by value to and from the called functions
A register like RDI may contain multiple structure fields
Some structure fields may be passed on the stack
Some in the floating registers
Some in general registers (unaligned wrt register start)
We had no other choice but to add

– scattered operands

that can represent all the above

34(c) 2018 Ilfak Guilfanov

A simple scattered return value

A function that returns a struct in rax:

Assembler code:

struct div_t { int quot; int rem; };
div_t div(int numer, int denom);

mov edi, esi
mov esi, 1000
call _div
movsxd rdx, eax
sar rax, 20h
add [rbx], rdx
imul eax, 1000
cdqe
add rax, [rbx+8]

35(c) 2018 Ilfak Guilfanov

A simple scattered return value

…and the output is:

Our decompiler managed to represent things nicely!

Similar or more complex situations exist for all 64-bit
processors
Support for scattered operands is not complete yet but we
constantly improve it

 v2 = div(a2, 1000);
 *a1 += v2.quot;
 result = a1[1] + 1000 * v2.rem;

36(c) 2018 Ilfak Guilfanov

More detailed look at microcode transformations

The initial “preoptimization” step uses very simple
constant and register propagation algorithm
It is very fast
It gets rid of most temporary registers and reduces the
microcode size by two
Normally we use a more sophisticated propagation
algorithm
It also works on the basic block level
It is much slower but can:

– handle partial registers (propagate eax into an
expression that uses ah)

– move entire instruction inside another
– work with operands other that registers (stack and

global memory, pair and scattered operands)

37(c) 2018 Ilfak Guilfanov

Global optimization

We build the control flow graph
Perform data flow analysis to find where each operand is
used or defined
The use/def information is used to:

– delete dead code (if the instruction result is not used,
then we delete the instruction)

– propagate operands and instructions across block
boundaries

– generate assertions for future optimizations (we know
that eax is zero at the target of “jz eax” if there are no
other predecessors; so we generate “mov 0, eax”)

38(c) 2018 Ilfak Guilfanov

Synthetic assertion instructions

If jump is not taken, then we know that eax is zero

Assertions can be propagated and lead to more
simplifications

jnz eax.4, #0, @5

blk5:
 ...

mov #0.4, eax.4 ; assert
...

falsetru
e

39(c) 2018 Ilfak Guilfanov

Simple algebraic transformations

We have implemented (in plain C++) hundreds of very
small optimization rules. For example:

They are simple and sound
They apply to all cases without exceptions
Overall the decompiler uses sound rules
They do not depend on the compiler

(x-y)+y => x
x- ~y => x+y+1
x*m-x*n => x*(m-n)
(x<<n)-x => (2**n-1)*x
-(x-y) => y-x
(~x) < 0 => x >= 0
(-x)*n => x*-n

40(c) 2018 Ilfak Guilfanov

More complex rules

For example, this rule recognizes 64-bit subtractions:

We have a swarm of rules like this. They work like little
ants :)

CMB18 (combination rule #18):
 sub xlow.4, ylow.4, rlow.4
 sub xhigh.4, (xdu.4((xlow.4 <u ylow.4))+yhigh.4), rhigh.4
=>
 sub x.8, y.8, r.8

if yhigh is zero, then it can be optimized away

a special case when xh is zero:

 sub xl, yl, rl
 neg (xdu(lnot(xl >=u yl))+yh), rh

41(c) 2018 Ilfak Guilfanov

Data dependency dependent rules

Naturally, all these rules are compiler-independent, they
use common algebraic number properties
Unfortunately we do not have a language to describe
these rules, so we manually added these rules in C++
However, the pattern recognition does not naively check if
the previous or next instruction is the expected one. We
use data dependencies to find the instructions that form
the pattern
For example, the rule CMB43 looks for the 'low' instruction
by searching forward for an instruction that accesses the
'x' operand: CMB43:

mul #(1<<N).4, xl.4, yl.4
low (x.8 >>a #M.1), yh.4, M == 32-N

=>

mul x.8, #(1<<N).8, y.8

42(c) 2018 Ilfak Guilfanov

Interblock rules

Some rules work across multiple blocks:

jl xh, yh, SUCCESS

jg xh, yh, @4

jb xl, yl, SUCCESS

FAILED: ...

SUCCESS: ...

jl x, y, SUCCESS

FAILED: ...

SUCCESS: ...

The “64bit 3-way check” rule transforms
this structure into simple:

(xh means high half of x
xl means low half of x
yh means high half of y
yl means low half of y)

43(c) 2018 Ilfak Guilfanov

Interblock rules: signed division by power2

Signed division is sometimes replaced by a shift:

A simple rule transforms it back:

jcnd !SF(x), b3

add x, (1<<N)-1, x

sar x, N, r

sdiv x, (1<<N), r

44(c) 2018 Ilfak Guilfanov

Hooks

It is possible to hook to the optimization engine and add
your own transformation rules
The Decompiler SDK has some examples how to do it
Currently it is not possible to disable an existing rule
However, since (almost?) all of them are sound and do
not use heuristics, it is not a problem
In fact the processor specific parts of the decompiler
internally use these hooks as well

45(c) 2018 Ilfak Guilfanov

ARM hooks

For example, the ARM decompiler has the following rule:

so that a construct like this: BX LR
will be converted into: RET

only if we can prove that the value of LR at the "BX LR"
instruction is equal to the initial value of LR at the entry
point.

However, how do we find if we jump to the initial_lr? Data
analysis is to help us

ijmp cs, initial_lr => ret

46(c) 2018 Ilfak Guilfanov

Data flow analysis

In fact virtually all transformation rules are based on data
flow analysis. Very rarely we check the previous or the
next instruction for pattern matching
Instead, we calculate the use/def lists for the instruction
and search for the instructions that access them
We keep track of what is used and what is defined by
every microinstruction (in red). These lists are calculated
when necessary:

 mov %argv.4, ebx.4 ; 4014E9 u=arg+4.4 d=ebx.4
 mov %argc.4, edi.4 ; 4014EC u=arg+0.4 d=edi.4
 mov &($dword_41D128).4, ST18_4.4 ; 4014EF u= d=ST18_4.4
 goto @12 ; 4014F6 u= d=

47(c) 2018 Ilfak Guilfanov

Use-def lists

Similar blocks are maintained for each block. Instead of
calculating them on request we keep them precalculated:

We keep both “must” and “may” access lists
The values in parenthesis are part of the “may” list
For example, an indirect memory access may read any
memory:

; 1WAY-BLOCK 6 INBOUNDS: 5 OUTBOUNDS: 58 [START=401515 END=401517]
; USE: ebx.4,ds.2,(GLBLOW,GLBHIGH)
; DEF: eax.4,(cf.1,zf.1,sf.1,of.1,pf.1,edx.4,ecx.4,fps.2,fl.1,
; c0.1,c2.1,c3.1,df.1,if.1,ST00_12.12,GLBLOW,GLBHIGH)
; DNU: eax.4

add [ds.2:(ebx.4+#4.4)].4, #2.4, ST18_4.4
; u=ebx.4,ds.2,(GLBLOW,GLBHIGH)
; d=ST18_4.4

48(c) 2018 Ilfak Guilfanov

Usefulness of use-def lists

Based on use-def lists of each block the decompiler can
build global use-def chains and answer questions like:

– Is a defined value used anywhere? If yes, where
exactly? Just one location? If yes, what about moving
the definition there? If the value is used nowhere,
what about deleting it?

– Where does a value come from? If only from one
location, can we propagate (or even move) it?

– What are the values are the used but never defined?
These are the candidates for input arguments

– What are the values that are defined but never used but
reach the last block? These are the candidates for the
return values

49(c) 2018 Ilfak Guilfanov

Global propagation in action

Image we have code like this:

mov #5.4, esi.4

Do some stuff
that does not modify esi.4

call func(esi.4)

blk1

blk3

blk1blk1

blk2

50(c) 2018 Ilfak Guilfanov

Global propagation in action

The use-def chains clearly show that esi is defined only in
block #1:

Therefore it can be propagated:

mov #5.4, esi.4

Do some stuff
that does not modify esi.4

call func(esi.4)

blk1

blk3

blk1blk1

blk2

use:
def: esi.4{3}

use: ...
def: ...

use: esi.4{1}
def: ...

call func(#5.4)

51(c) 2018 Ilfak Guilfanov

Data flow analysis

The devil is in details
Our analysis engine can handle partial registers (they are
a pain)
Big endian and little endian can be handled as well
(however, we sometimes end up with the situations when
a part of the operand is little endian and another part – big
endian)
The stack frame and registers are handled
Registers can be addressed only directly
Stack location can be addressed indirectly and our
analysis takes this into account
Well, we have to make some assumptions...

52(c) 2018 Ilfak Guilfanov

Aliasability

Take this example:

can we claim that %stkvar == 1 after stx?
Naturally, in general case we can not
But it turns out that in some case we can claim it
Namely:

– If we haven't taken the address of any stack variable
– Or, if we did, the address we took is higher (*)
– Or, if the address is lower, it was not moved into eax

Overall it is a tough question

mov #1.4, %stkvar ; store 1 into stkvar
stx #0.4, ds.2, eax.4 ; store 0 into [eax]
call func(%stkvar)

(*)note: yes, this is one of the assumptions our decompiler makes

53(c) 2018 Ilfak Guilfanov

Stack as viewed by the decompiler

Shadow stkargs

Input stkargs

Return address

Saved registers

Local variables

Output stkargs
(not visible in IDA)

inargtop

inargoff

minimal esp

typical ebp

minstkref

typical ebp

minargref

Local variables

stkvar base 0

Input stkargs

Yellow part is mapped to microregisters
Red is aliasable

54(c) 2018 Ilfak Guilfanov

Minimal stack reference

Aliasability is unsolvable problem in general
We should optimize things only if we can prove the
correctness of the transformation
We keep track of expressions like &stkvar and calculate
the minimal reference (minstkref)
We assume that everything below minstkref can be
accessed only directly, i.e. is not aliasable
We propagate this information over the control graph
One value is maintained per block (we could probably
improve things by calculating minstkref for each
instruction)
A similar value is maintained for the incoming stack
arguments (minargref)

55(c) 2018 Ilfak Guilfanov

Minstkref propagation

We use the control flow graph:

lea ecx, [esp+10] ; take offset 10
call func ; probably uses ecx
mov rax, [esp+14] ; stkvar sp+14
...

lea ecx, [esp+20] ; take offset 20
call func ; probably uses ecx
mov rax, [esp+14] ; microregister ST14
...

mov rax, [esp+14] ; stkvar sp+14
...

minstkref=10

minstkref=10

minstkref=20

56(c) 2018 Ilfak Guilfanov

Testing the microcode

Microcode if verified for consistency after every
transformation
BTW, third party plugins should do the same
Very few microcode related bug reports
We have quite extensive test suites that constantly grow
A hundred or so of processors cores running tests
However, after publishing microcode there will be a new
wave of bug reports
Found a bug? Send us the database with the description
how to reproduce it
Most problems are solved within one day or faster

57(c) 2018 Ilfak Guilfanov

Publishing microcode

The microcode API for C++ will be available in the next
version of IDA
Python API won't be available yet
We will start beta testing the next week
Decompiler users with active support: feel free to send an
email to support@hex-rays.com if you want to participate
Check out the sample plugins that show how to use the
new API

mailto:support@hex-rays.com

58(c) 2018 Ilfak Guilfanov

Was it interesting?

Thank you for your attention!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

