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Decompiler architecture
Overview of the microcode
Opcodes and operands
Stack and registers
Data flow analysis, aliasibility
Microcode availability
Your feedback

Online copy of this presentation is available at
  http://www.hex-rays.com/products/ida/support/ppt/recon2018.ppt
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Hex-Rays Decompiler

Interactive, fast, robust, and programmable decompiler
Can handle x86, x64, ARM, ARM64, PowerPC
Runs on top of IDA Pro
Has been evolving for more than 10 years
Internals were not really published
Namely, the intermediate language
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Decompiler architecture

It uses very straightforward sequence of steps:
Generate microcode

Transform microcode (optimize, resolve memrefs, analyze calls, etc)

Allocate local vars

Generate ctree

Beautify ctree

Print ctree
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Decompiler architecture

We will focus on the first two steps:
Generate microcode

Transform microcode (optimize, resolve memrefs, analyze calls, etc)

Allocate local vars

Generate ctree

Beautify ctree

Print ctree
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Why microcode?

It helps to get rid of the complexity of processor 
instructions
Also we get rid of processor idiosyncrasies. Examples:

– x86: segment registers, fpu stack
– ARM: thumb mode addresses
– PowerPC: multiple copies of CF register (and other 

condition registers)
– MIPS: delay slots
– Sparc: stack windows

It makes the decompiler portable. We “just” need to 
replace the microcode generator
Writing a decompiler without an intermediate language 
looks like waste of time
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Is implementing an IR difficult?

Your call :)
How many IR languages to you know?
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Why not use an existing IR?

There are tons of other intermediate languages: LLVM, 
REIL, Binary Ninja's ILs,  RetDec's IL, etc.
Yes, we could use something
But I started to work on the microcode when none of the 
above languages existed
This is the main reason why we use our own IR

mov.d   EAX,, T0
ldc.d   #5,, T1
mkcadd.d T0, T1, CF
mkoadd.d T0, T1, CF
add.d   T0, T1, TT
setz.d  TT,, ZF
sets.d  TT,, ZF
mov.d   TT,, EAX

(this is how it looked like in 1999)
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A long evolution

I started to work on the microcode in 1998 or earlier
The name is nothing fancy but reflects the nature of it
Some design decisions turned out to be bad (and some of 
them are already very difficult to fix)
For example, the notion of virtual stack registers
We will fix it, though. Just takes time
Even today we modify our microcode when necessary
For example, I reshuffled the instruction opcodes for this 
talk...
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Design highlights

Simplicity:
– No processor specific stuff
– One microinstruction does one thing
– Small number of instructions (only 45 in 1999, now 72)
– Simple instruction operands (register, number, memory)
– Consider only compiler generated code

Discard things we do not care about:
– Instruction timing (anyway it is a lost battle)
– Instruction order (exceptions are a problem!)
– Order of memory accesses (later we added logic to 

preserve indirect memory accesses)
– Handcrafted code
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Generated microcode

Initially the microcode looks like RISC code:
– Memory loads and stores are done using dedicated 

microinstructions
– The desired operation is performed on registers
– Microinstructions have no side effects
– Each output register is initialized by a separate 

microinstruction

It is very verbose. Example:

004014FB    mov     eax, [ebx+4]
004014FE    mov     dl, [eax+1]
00401501    sub     dl, 61h ; 'a'
00401504    jz      short loc_401517
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Initial microcode: very verbose

2. 0 mov    ebx.4, eoff.4           ; 4014FB u=ebx.4      d=eoff.4
2. 1 mov    ds.2, seg.2             ; 4014FB u=ds.2       d=seg.2
2. 2 add    eoff.4, #4.4, eoff.4    ; 4014FB u=eoff.4     d=eoff.4
2. 3 ldx    seg.2, eoff.4, et1.4    ; 4014FB u=eoff.4,seg.2,

    ; (STACK,GLBMEM) d=et1.4
2. 4 mov    et1.4, eax.4            ; 4014FB u=et1.4      d=eax.4
2. 5 mov    eax.4, eoff.4           ; 4014FE u=eax.4      d=eoff.4
2. 6 mov    ds.2, seg.2             ; 4014FE u=ds.2       d=seg.2
2. 7 add    eoff.4, #1.4, eoff.4    ; 4014FE u=eoff.4     d=eoff.4
2. 8 ldx    seg.2, eoff.4, t1.1     ; 4014FE u=eoff.4,seg.2,

    ; (STACK,GLBMEM) d=t1.1
2. 9 mov    t1.1, dl.1              ; 4014FE u=t1.1       d=dl.1
2.10 mov    #0x61.1, t1.1           ; 401501 u=           d=t1.1
2.11 setb   dl.1, t1.1, cf.1        ; 401501 u=dl.1,t1.1  d=cf.1
2.12 seto   dl.1, t1.1, of.1        ; 401501 u=dl.1,t1.1  d=of.1
2.13 sub    dl.1, t1.1, dl.1        ; 401501 u=dl.1,t1.1  d=dl.1
2.14 setz   dl.1, #0.1, zf.1        ; 401501 u=dl.1       d=zf.1
2.15 setp   dl.1, #0.1, pf.1        ; 401501 u=dl.1       d=pf.1
2.16 sets   dl.1, sf.1              ; 401501 u=dl.1       d=sf.1
2.17 mov    cs.2, seg.2             ; 401504 u=cs.2       d=seg.2
2.18 mov    #0x401517.4, eoff.4     ; 401504 u=           d=eoff.4
2.19 jcnd   zf.1, $loc_401517       ; 401504 u=zf.1
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The first optimization pass

2. 0 ldx    ds.2, (ebx.4+#4.4), eax.4 ; 4014FB u=ebx.4,ds.2,
                                      ;(STACK,GLBMEM) d=eax.4
2. 1 ldx    ds.2, (eax.4+#1.4), dl.1 ; 4014FE u=eax.4,ds.2,
                                      ;(STACK,GLBMEM) d=dl.1
2. 2 setb   dl.1, #0x61.1, cf.1     ; 401501 u=dl.1       d=cf.1
2. 3 seto   dl.1, #0x61.1, of.1     ; 401501 u=dl.1       d=of.1
2. 4 sub    dl.1, #0x61.1, dl.1     ; 401501 u=dl.1       d=dl.1
2. 5 setz   dl.1, #0.1, zf.1        ; 401501 u=dl.1       d=zf.1
2. 6 setp   dl.1, #0.1, pf.1        ; 401501 u=dl.1       d=pf.1
2. 7 sets   dl.1, sf.1              ; 401501 u=dl.1       d=sf.1
2. 8 jcnd   zf.1, $loc_401517       ; 401504 u=zf.1

Only 8 microinstructions
Some intermediate registers disappeared
Sub-instructions appeared
Still too noisy and verbose
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Further microcode transformations 

And the final code is:

This code is ready to be translated to ctree.
(numbers in curly braces are value numbers)

The output will look like this:

2. 1 ldx    ds.2{3}, ([ds.2{3}:(ebx.4+#4.4)].4+#1.4), dl.1{5} ; 4014FE 
                        ; u=ebx.4,ds.2,(GLBLOW,sp+20..,GLBHIGH) d=dl.1
2. 2 sub    dl.1{5}, #0x61.1, dl.1{6} ; 401501 u=dl.1       d=dl.1
2. 3 jz     dl.1{6}, #0.1, @7       ; 401504 u=dl.1

2. 0 jz     [ds.2{4}:([ds.2{4}:(ebx.4{8}+#4.4){7}].4{6}+#1.4){5}].1{3},
            #0x61.1, 

     @7 
                             ; 401504 u=ebx.4,ds.2,(GLBLOW,GLBHIGH)

    if ( argv[1][1] == 'a' )
      ...
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Minor details

Reading microcode is not easy (but hey, it was not 
designed for that! :)
All operand sizes are spelled out explicitly
The initial microcode is very simple (RISC like)
As we transform microcode, nested subinstructions may 
appear
We implemented the translation from processor 
instructions to microinstructions in plain C++
We do not use automatic code generators or machine 
descriptions to generate them. Anyway there are too 
many processor specific details to make them feasible
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Opcodes: constants and move

Copy from (l) to (d)estination
Operand sizes must match

 ldc  l,    d   // load constant
 mov  l,    d   // move
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Opcodes: changing operand size

Copy from (l) to (d)estination
Operand sizes must differ
Since real world programs work with partial registers (like 
al, ah), we absolutely need low/high

 xds  l,    d   // extend (signed)
 xdu  l,    d   // extend (unsigned)
 low  l,    d   // take low part
 high l,    d   // take high part
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Opcodes: load and store

{sel, off} is a segment:offset pair
Usually seg is ds or cs; for processors with flat memory it 
is ignored
'off' is the most interesting part, it is a memory address

 stx  l, sel, off // store value to memory
 ldx  sel, off, d // load value from memory

Example:

ldx    ds.2, (ebx.4+#4.4), eax.4
stx    #0x2E.1, ds.2, eax.4
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Opcodes: comparisons

Compare (l)left against (r)right
The result is stored into (d)estination, a bit register like 
CF,ZF,SF,...

 sets  l,    d  // sign
 setp  l, r, d  // unordered/parity
 setnz l, r, d  // not equal
 setz  l, r, d  // equal
 setae l, r, d  // above or equal
 setb  l, r, d  // below
 seta  l, r, d  // above
 setbe l, r, d  // below or equal
 setg  l, r, d  // greater
 setge l, r, d  // greater or equal
 setl  l, r, d  // less
 setle l, r, d  // less or equal
 seto  l, r, d  // overflow of (l-r)
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Opcodes: arithmetic and bitwise operations

Operand sizes must be the same
The result is stored into (d)estination

 neg  l,    d   // -l    -> d
 lnot l,    d   // !l    -> d
 bnot l,    d   // ~l    -> d
 add  l, r, d   // l + r -> d
 sub  l, r, d   // l - r -> d
 mul  l, r, d   // l * r -> d
 udiv l, r, d   // l / r -> d
 sdiv l, r, d   // l / r -> d
 umod l, r, d   // l % r -> d
 smod l, r, d   // l % r -> d
 or   l, r, d   // bitwise or
 and  l, r, d   // bitwise and
 xor  l, r, d   // bitwise xor
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Opcodes: shifts (and rotations?)

Shift (l)eft by the amount specified in (r)ight
The result is stored into (d)estination
Initially our microcode had rotation operations but they 
turned out to be useless because they can not be nicely 
represented in C

 shl  l, r, d   // shift logical left
 shr  l, r, d   // shift logical right
 sar  l, r, d   // shift arithmetic right
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Opcodes: condition codes

Perform the operation on (l)left and (r)ight
Generate carry or overflow bits
Store CF or OF into (d)estination
We need these instructions to precisely track carry and 
overflow bits
Normally these instructions get eliminated during 
microcode transformations 

 cfadd l, r, d   // carry    of (l+r)
 ofadd l, r, d   // overflow of (l+r)
 cfshl l, r, d   // carry    of (l<<r)
 cfshr l, r, d   // carry    of (l>>r)
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Opcodes: unconditional flow control

Initially calls have only the callee address
The decompiler retrieves the callee prototype from the 
database or tries to guess it
After that the 'd' operand contains all information about the 
call, including the function prototype and actual arguments

ijmp {sel, off}    // indirect jmp
goto  l            // unconditional jmp
call  l      d     // direct call
icall {sel, off} d // indirect call
ret                // return

call   $___org_fprintf <...:
  “FILE *” &($stdout).4,
  "const char *" &($aArIllegalSwitc).4,
  _DWORD xds.4([ds.2:([ds.2:(ebx.4+#4.4)].4+#1.4)].1)>.0
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Opcodes: conditional jumps

Compare (l)eft against (r)right and jump to (d)estination if 
the condition holds
Jtbl is used to represent 'switch' idioms

 jcnd  l,    d   // 
 jnz   l, r, d   // ZF=0          Not Equal
 jz    l, r, d   // ZF=1          Equal
 jae   l, r, d   // CF=0          Above or Equal
 jb    l, r, d   // CF=1          Below
 ja    l, r, d   // CF=0 & ZF=0   Above
 jbe   l, r, d   // CF=1 | ZF=1   Below or Equal
 jg    l, r, d   // SF=OF & ZF=0  Greater
 jge   l, r, d   // SF=OF         Greater or Equal
 jl    l, r, d   // SF!=OF        Less
 jle   l, r, d   // SF!=OF | ZF=1 Less or Equal
 jtbl  l, cases  // Table jump
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Opcodes: floating point operations

Basically we have conversions and a few arithmetic 
operations
There is little we can do with these operations, they are 
not really optimizable
Other fp operations use helper functions (e.g. sqrt)

 f2i   l,    d   // int(l) => d; convert fp -> int, any size
 f2u   l,    d   // uint(l)=> d; convert fp -> uint,any size
 i2f   l,    d   // fp(l)  => d; convert int -> fp, any size
 i2f   l,    d   // fp(l)  => d; convert uint-> fp, any size
 f2f   l,    d   // l      => d; change fp precision
 fneg  l,    d   // -l     => d; change sign
 fadd  l, r, d   // l + r  => d; add
 fsub  l, r, d   // l - r  => d; subtract
 fmul  l, r, d   // l * r  => d; multiply
 fdiv  l, r, d   // l / r  => d; divide
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Opcodes: miscellaneous

Some operations can not be expressed in microcode
If possible, we use intrinsic calls for them (e.g. sqrtpd)
If no intrinsic call exists, we use “ext” for them and only try 
to keep track of data dependencies (e.g. “aam”)
“und” is used when a register is spoiled in a way that we 
can not predict or describe (e.g. ZF after mul)

 nop            // no operation
 und        d   // undefine
 ext  l, r, d   // external insn
 push l
 pop        d
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More opcodes?

We quickly reviewed all 72 instructions
Probably we should extend microcode
Ternary operator?
Post-increment and post-decrement?
All this requires more research
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Operands!

As everyone else, initially we had only:
– constant integer numbers
– registers

Life was simple and easy in the good old days!
Alas, the reality is more diverse. We quickly added:

– stack variables
– global variables
– address of an operand
– list of cases (for switches)
– result of another instruction
– helper functions
– call arguments
– string and floating point constants
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Register operands

The microcode engine provides unlimited (in theory) 
number of microregisters
Process registers are mapped to microregisters:

– eax => microregisters (mreg) 8, 9, 10, 11
– al => mreg 8
– ah => mreg 9

Usually there are more microregisters than the processor 
registers. We allocate them as needed when generating 
microcode
Examples:

eax.4
rsi.8
ST00_04.4
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Stack as microregisters

I was reluctant to introduce a new operand type for stack 
variables and decided to map the stack frame to 
microregisters
Like, the stack frame is mapped to the microregister #100 
and higher
A bright idea? Nope!
Very soon I realized that we have to handle indirect 
references to the stack frame
Not really possible with microregisters
But there was so much code relying on this concept that 
we still have it
Laziness pays off now and in the future (negatively)
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Stack as viewed by the decompiler

Shadow stkargs

Input stkargs

Return address

Saved registers

Local variables

Output stkargs
(not visible in IDA)

inargtop

inargoff

minimal esp

typical ebp

minstkref

typical ebp

minargref

Local variables

stkvar base 0

Input stkargs

Yellow part is mapped to microregisters
Red is aliasable



32(c) 2018 Ilfak Guilfanov

More operand types!

64-bit values are represented as pairs of registers
Usually it is a standard pair like edx:eax
Compilers get better and nowadays use any registers as a 
pair; or even pair a stack location with a register: sp+4:esi
We ended up with a new operand type:

– operand pair

It consists of low and high halves
They can be located anywhere (stack, registers, glbmem)



33(c) 2018 Ilfak Guilfanov

Scattered operands

The nightmare has just begun, in fact
Modern compilers use very intricate rules to pass structs 
and unions by value to and from the called functions
A register like RDI may contain multiple structure fields
Some structure fields may be passed on the stack
Some in the floating registers
Some in general registers (unaligned wrt register start)
We had no other choice but to add 

– scattered operands

that can represent all the above
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A simple scattered return value

A function that returns a struct in rax:

Assembler code:

struct div_t { int quot; int rem; };
div_t div(int numer, int denom);

mov     edi, esi
mov     esi, 1000
call    _div
movsxd  rdx, eax
sar     rax, 20h
add     [rbx], rdx
imul    eax, 1000
cdqe
add     rax, [rbx+8]



35(c) 2018 Ilfak Guilfanov

A simple scattered return value

…and the output is:

Our decompiler managed to represent things nicely!

Similar or more complex situations exist for all 64-bit 
processors
Support for scattered operands is not complete yet but we 
constantly improve it

  v2 = div(a2, 1000);
  *a1 += v2.quot;
  result = a1[1] + 1000 * v2.rem;
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More detailed look at microcode transformations

The initial “preoptimization” step uses very simple 
constant and register propagation algorithm
It is very fast
It gets rid of most temporary registers and reduces the 
microcode size by two
Normally we use a more sophisticated propagation 
algorithm
It also works on the basic block level
It is much slower but can:

– handle partial registers (propagate eax into an 
expression that uses ah)

– move entire instruction inside another
– work with operands other that registers (stack and 

global memory, pair and scattered operands)
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Global optimization

We build the control flow graph
Perform data flow analysis to find where each operand is 
used or defined
The use/def information is used to:

– delete dead code (if the instruction result is not used, 
then we delete the instruction)

– propagate operands and instructions across block 
boundaries

– generate assertions for future optimizations (we know 
that eax is zero at the target of “jz eax” if there are no 
other predecessors; so we generate “mov 0, eax”)
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Synthetic assertion instructions

If jump is not taken, then we know that eax is zero

Assertions can be propagated and lead to more 
simplifications
 

jnz eax.4, #0, @5

blk5:
         ...

mov #0.4, eax.4 ; assert
...

falsetru
e
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Simple algebraic transformations

We have implemented (in plain C++) hundreds of very 
small optimization rules. For example:

They are simple and sound
They apply to all cases without exceptions
Overall the decompiler uses sound rules
They do not depend on the compiler

(x-y)+y   => x
x- ~y     => x+y+1
x*m-x*n   =>  x*(m-n)
(x<<n)-x  =>  (2**n-1)*x
-(x-y)    => y-x
(~x) < 0  => x >= 0
(-x)*n    => x*-n
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More complex rules

For example, this rule recognizes 64-bit subtractions:

We have a swarm of rules like this. They work like little 
ants :)

CMB18 (combination rule #18):
  sub xlow.4, ylow.4, rlow.4
  sub xhigh.4, (xdu.4((xlow.4 <u ylow.4))+yhigh.4), rhigh.4
=>
  sub x.8, y.8, r.8

if yhigh is zero, then it can be optimized away

a special case when xh is zero:

  sub    xl, yl, rl
  neg    (xdu(lnot(xl >=u yl))+yh), rh
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Data dependency dependent rules

Naturally, all these rules are compiler-independent, they 
use common algebraic number properties
Unfortunately we do not have a language to describe 
these rules, so we manually added these rules in C++
However, the pattern recognition does not naively check if 
the previous or next instruction is the expected one. We 
use data dependencies to find the instructions that form 
the pattern
For example, the rule CMB43 looks for the 'low' instruction 
by searching forward for an instruction that accesses the 
'x' operand: CMB43:

mul    #(1<<N).4, xl.4, yl.4
low    (x.8 >>a #M.1), yh.4, M == 32-N

=>

mul x.8, #(1<<N).8, y.8
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Interblock rules

Some rules work across multiple blocks:

jl xh, yh, SUCCESS

jg xh, yh, @4

jb xl, yl, SUCCESS

FAILED: ...

SUCCESS: ...

jl x, y, SUCCESS

FAILED: ...

SUCCESS: ...

The “64bit 3-way check” rule transforms
this structure into simple:

(xh means high half of x
xl means low half of x
yh means high half of y
yl means low half of y)
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Interblock rules: signed division by power2

Signed division is sometimes replaced by a shift:

A simple rule transforms it back:

jcnd   !SF(x), b3 

add x, (1<<N)-1, x

sar x, N, r      

sdiv x, (1<<N), r
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Hooks

It is possible to hook to the optimization engine and add 
your own transformation rules
The Decompiler SDK has some examples how to do it
Currently it is not possible to disable an existing rule
However, since (almost?) all of them are sound and do 
not use heuristics, it is not a problem
In fact the processor specific parts of the decompiler 
internally use these hooks as well
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ARM hooks

For example, the ARM decompiler has the following rule:

so that a construct like this:  BX LR
will be converted into: RET

only if we can prove that the value of LR at the "BX LR" 
instruction is equal to the initial value of LR at the entry 
point.

However, how do we find if we jump to the initial_lr? Data 
analysis is to help us

ijmp cs, initial_lr => ret
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Data flow analysis

In fact virtually all transformation rules are based on data 
flow analysis. Very rarely we check the previous or the 
next instruction for pattern matching
Instead, we calculate the use/def lists for the instruction 
and search for the instructions that access them
We keep track of what is used and what is defined by 
every microinstruction (in red). These lists are calculated 
when necessary:

 mov    %argv.4, ebx.4    ; 4014E9 u=arg+4.4    d=ebx.4
 mov    %argc.4, edi.4    ; 4014EC u=arg+0.4    d=edi.4
 mov    &($dword_41D128).4, ST18_4.4 ; 4014EF u=      d=ST18_4.4
 goto   @12               ; 4014F6 u= d=
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Use-def lists

Similar blocks are maintained for each block. Instead of 
calculating them on request we keep them precalculated:

We keep both “must” and “may” access lists
The values in parenthesis are part of the “may” list
For example, an indirect memory access may read any 
memory:

; 1WAY-BLOCK 6 INBOUNDS: 5 OUTBOUNDS: 58 [START=401515 END=401517]
; USE: ebx.4,ds.2,(GLBLOW,GLBHIGH)
; DEF: eax.4,(cf.1,zf.1,sf.1,of.1,pf.1,edx.4,ecx.4,fps.2,fl.1,
;             c0.1,c2.1,c3.1,df.1,if.1,ST00_12.12,GLBLOW,GLBHIGH)
; DNU: eax.4

add    [ds.2:(ebx.4+#4.4)].4, #2.4, ST18_4.4 
; u=ebx.4,ds.2,(GLBLOW,GLBHIGH) 
; d=ST18_4.4
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Usefulness of use-def lists

Based on use-def lists of each block the decompiler can 
build global use-def chains and answer questions like:

– Is a defined value used anywhere? If yes, where 
exactly? Just one location? If yes, what about moving 
the definition there? If the value is used nowhere, 
what about deleting it?

– Where does a value come from? If only from one 
location, can we propagate (or even move) it?

– What are the values are the used but never defined?
These are the candidates for input arguments

– What are the values that are defined but never used but 
reach the last block? These are the candidates for the 
return values
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Global propagation in action

Image we have code like this:

mov #5.4, esi.4

Do some stuff
that does not modify esi.4

call func(esi.4)

blk1

blk3

blk1blk1

blk2
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Global propagation in action

The use-def chains clearly show that esi is defined only in 
block #1:

Therefore it can be propagated:

mov #5.4, esi.4

Do some stuff
that does not modify esi.4

call func(esi.4)

blk1

blk3

blk1blk1

blk2

use:
def: esi.4{3}

use: ...
def: ...

use: esi.4{1}
def: ...

call func(#5.4)
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Data flow analysis

The devil is in details
Our analysis engine can handle partial registers (they are 
a pain)
Big endian and little endian can be handled as well 
(however, we sometimes end up with the situations when 
a part of the operand is little endian and another part – big 
endian)
The stack frame and registers are handled
Registers can be addressed only directly
Stack location can be addressed indirectly and our 
analysis takes this into account
Well, we have to make some assumptions...
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Aliasability

Take this example:

can we claim that %stkvar == 1 after stx?
Naturally, in general case we can not
But it turns out that in some case we can claim it
Namely:

– If we haven't taken the address of any stack variable
– Or, if we did, the address we took is higher (*)
– Or, if the address is lower, it was not moved into eax

Overall it is a tough question

mov #1.4, %stkvar     ; store 1 into stkvar
stx #0.4, ds.2, eax.4 ; store 0 into [eax]
call func(%stkvar)

(*)note: yes, this is one of the assumptions our decompiler makes



53(c) 2018 Ilfak Guilfanov

Stack as viewed by the decompiler

Shadow stkargs

Input stkargs

Return address

Saved registers

Local variables

Output stkargs
(not visible in IDA)

inargtop

inargoff

minimal esp

typical ebp

minstkref

typical ebp

minargref

Local variables

stkvar base 0

Input stkargs

Yellow part is mapped to microregisters
Red is aliasable
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Minimal stack reference

Aliasability is unsolvable problem in general
We should optimize things only if we can prove the 
correctness of the transformation
We keep track of expressions like &stkvar and calculate 
the minimal reference (minstkref)
We assume that everything below minstkref can be 
accessed only directly, i.e. is not aliasable
We propagate this information over the control graph
One value is maintained per block (we could probably 
improve things by calculating minstkref for each 
instruction)
A similar value is maintained for the incoming stack 
arguments (minargref)
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Minstkref propagation

We use the control flow graph:

lea  ecx, [esp+10] ; take offset 10
call func          ; probably uses ecx
mov  rax, [esp+14] ; stkvar sp+14
...

lea  ecx, [esp+20] ; take offset 20
call func          ; probably uses ecx
mov  rax, [esp+14] ; microregister ST14
...

mov  rax, [esp+14] ; stkvar sp+14
...

minstkref=10

minstkref=10

minstkref=20



56(c) 2018 Ilfak Guilfanov

Testing the microcode

Microcode if verified for consistency after every 
transformation
BTW, third party plugins should do the same
Very few microcode related bug reports
We have quite extensive test suites that constantly grow
A hundred or so of processors cores running tests
However, after publishing microcode there will be a new 
wave of bug reports
Found a bug? Send us the database with the description 
how to reproduce it
Most problems are solved within one day or faster
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Publishing microcode

The microcode API for C++ will be available in the next 
version of IDA
Python API won't be available yet
We will start beta testing the next week
Decompiler users with active support: feel free to send an 
email to support@hex-rays.com if you want to participate
Check out the sample plugins that show how to use the 
new API

mailto:support@hex-rays.com
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Was it interesting?

Thank you for your attention!
Questions?
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