
Exporting IDA
Debug

Information

Overview

● Who am I?
● What's the problem?
● What does this tool do?
● How does it work?
● Demo

about:me

Why export information from IDA?
● An embedded device may have no way to connect IDA remotely

○ Manually referencing IDA is tedious

● Some platforms may have software debuggers that would be useful with
debug info

● Some tools allow interesting dynamic analysis techniques not available
with IDA
○ Ex: Reverse debugging

Use-case: QNX

● Provides a version of GDB for their platform on lots of architectures
○ Downside: it doesn't use the standard protocol

● Lots of connected components of mixed architecture
● Maybe no IP connections

With this plugin: export the debug info from IDA and import into gdb on the
target.

Debug Info Formats

● STABS
○ Designed in the 1980s
○ Puts all info in symbol table
○ Not well standardized

● DWARF
○ Designed along with ELF
○ Used by most modern compilers
○ Binary format

● Windows CodeView/Program Database
○ Mostly undocumented, windows-only

● Many Others
○ COFF, OMF, IEEE-695

dwarfexport

dwarfexport is a plugin for IDA Pro that creates DWARF
debug info using function names/variables

locations/structures extracted from IDA.

It lets you create binaries as though you had built with debugging enabled.

Implementation

What do we need from
IDA?

● Decompiled source
● 'step' points
● Global/local variable locations
● Type information

Decompilation

Intermediate
Representation

┌ FunctionDecl main
└┬ FunctionCall printf
├├─ StringLiteral %d
├└─ NumericLiteral 10

IDA AST

IDA AST

Step Points

Local Variables

● Stack Variables:
○ Location is expressed as an offset from frame base address
○ Note: There is no (complete) SDK interface for this

● Register Variables:
○ Translate the IDA register number to dwarf number

Type Information

As the binary is traversed, maintain a
mapping of `tinfo_t` to DWARF
`die`:

● Extract each struct member
name and type, as well as the
offset from the struct start

● Handle array/pointer types

Demo

Other Uses
● Add debug info for shared libraries and create a fully debugged

environment
● Reverse-debugging

○ Tested using 'rr' on linux

● Hardware Debugging
○ Software frontends for hardware debuggers must use some debug format
○ Green Hill 'MULTI' IDE can import DWARF info

Eclipse

CLion

VS Code

Visual Studio(?)

Limitations
● DWARF debug info is not useful for windows utilities
● Limitations in IDA SDK may make some debug info inaccurate (for now)
● Register number translations must be added on a per-architecture basis
● Local variable values don't display correctly under GDB 8 (released June 4)

Questions?
github.com/alschwalm/dwarfexport

or
goo.gl/MlTkmV

Twitter/Github: @alschwalm

Email:
adamschwalm@gmail.com

