
Digging Into The Core of Boot

Yuriy Bulygin @c7zero

Oleksandr Bazhaniuk @ABazhaniuk

Agenda

Intro

Recap of MMIO BAR Issues in Coreboot & UEFI

Coreboot ACPI GNVS Pointer Issue

SMI Handler Issues in Coreboot

Write Protections

Conclusions

Intro to Coreboot

Coreboot

• Coreboot is GPLv2 firmware implementation

• Started as LinuxBIOS in 1999 and renamed to Coreboot at 2008

• Supports x86, ARM, MIPS, POWER8, RISC-V

• Mostly in C, with some ASM. ASL for ACPI tables

• Support multiple payloads (“bootloaders”) to boot Chrome OS, Linux…

• Depthcharge, SeaBIOS, TianoCore, FILO

• Modular arch to support many CPUs, SoCs, chipsets, devices

• Supports verified boot rooted in hardware write protected firmware

Coreboot Stages

Boot Block

Cache-as-RAM

(NEM)

CPU Reset

Verstage

ROMStage

RAMStage

Payload

TPM, SPI Init

Vboot
MemInit, SPD,

Ucode update

PCIe enum,

SMM, Option

ROMs, ACPI

Vboot kernel,

EC FW

Read-Only Read-Write

Chrome OS Boot

SoC / CPU

Coreboot RAM stage

Chrome OS

Coreboot Boot Block and Verstage (ROM stage before SKL)

VB_Kernel-A

Recovery Mode

Kernel -A

Applications

Kernel -B

Payload

Read-Only

Read-Write

Recover System from Verified USB

VB_Kernel -B

Verified Boot

• Verified Boot established signature validation mechanism for Chrome OS

• Root of trust is in read-only initial part of Coreboot firmware protected by /WP

pin on SPI devices

• Verstage starting Skylake to reduce amount of read-only ROM stage firmware

(as vulnerabilities in RO firmware cannot be patched w/o voiding warranty)

• Read-only firmware verifies RW firmware (new ROM stage & RAM stage)

• Read-write firmware verifies Chrome OS kernel

• Root public key in read-only flash verifies signature of RW firmware keyblock

• Can be disabled in developer mode (requires physically present user)

Recovery and Developer Modes

Recovery Mode

• RO firmware boots signed image on a USB

• Security or hardware failures trigger entering into recovery mode

Developer Mode

• Prior to entering Dev mode, the system erases local state in TPM and on a hard drive

• Root shell is available in Dev mode

• crossystem dev_boot_usb=1 (boot from USB device)

• crossystem dev_boot_signed_only=0 (load unsigned binaries)

• crossystem dev_boot_legacy=1 (allow boot any payloads including MBR systems)

Read-Only Firmware

Chromebook firmware uses Write Protect pin (/WP) on SPI device to protect RO FW

flashrom –wp-status

WP: status: 0x0094

WP: status.srp0: 1

WP: status.srp1: 0

WP: write protect is enabled.

WP: write protect range: start=0x00600000, len=0x00200000

Winbond W25Q64BV spec

https://cdn.hackaday.io/files/7758331918272/Winbond_25Q64BV.pdf

SPI Chip Layout in Acer C720 Chromebook

futility dump_fmap –h /tmp/c720_spi_dump.bin

Read-Only

Read-Write

SPI Chip Layout in Acer C720 Chromebook

Recap of MMIO BAR Issues

in Coreboot & UEFI

Recap: “MMIO BAR” Issues

Phys Memory

SMI Handlers in SMRAM

OS Memory

Base Address (BAR)

MMIO range

(registers)

Device PCI CFG

Firmware configures chipset and devices

through MMIO

SMI handlers communicate

with devices via MMIO registers

Recap: “MMIO BAR” Issues

Phys Memory

SMI Handlers in SMRAM

OS Memory

Base Address (BAR)

MMIO range

(registers)

Device PCI CFG

SMI

Exploit with PCI access can modify BAR

register and relocate MMIO range

On SMI interrupt, SMI handler firmware

attempts to communicate with device(s)

It may read or write “registers” within

relocated MMIO

Recap: “MMIO BAR” Issues in Coreboot
bar pointer points to

MMIO range of device

B1:D0.F0 which can be

modified by an attacker

SMI handler then uses bar

pointer to write to
LVTMA_BL_MOD_LEVEL

offset (when adjusting

brightness level)

SMI handler can be invoked by

properly configuring I/O Trap

hardware with
BRIGHTNESS_UP/DOWN function

Coreboot ACPI GNVS Pointer Issue

Coreboot x86 SMI Handlers

smm_handler_start

cpu_smi_handler

northbridge_smi_handler

southbridge_smi_handler

SLEEP SMI

APMC SMI

PM1 SMI

GPE0 SMI

GPI SMI

MC SMI

TCO SMI

PERIODIC SMI

MONITOR SMI

GFX MBI

smi_obtain_lock

smi_release_lock

smi_set_EOS

ACPI Global NVS (GNVS) Area

Stores data used to communicate with ACPI and SMM including across S3 sleep:

• SMM interface buffer

• EC Lock function

• Thermal thresholds

• Fan speed

• USB power controls

• ChromeOS Vboot data

• …

typedef struct {

 /* Miscellaneous */

 u16 osys; /* 0x00 - Operating System */

 u8 smif; /* 0x02 - SMI function call ("TRAP") */

 u8 prm0; /* 0x03 - SMI function call parameter */

...

 u32 cmem; /* 0x18 - 0x1b - CBMEM TOC */

...

 /* ChromeOS specific (0x100 - 0xfff) */

 chromeos_acpi_t chromeos;

...

} __attribute__((packed)) global_nvs_t;

ACPI DSDT

• GNVS area is also defined

in DSDT ACPI table

• GNVS layout is platform

(SoC/southbridge) specific

• BDW/SKL: CBMEM TOC
address at offset 0x18

How do we find CBMEM and ACPI tables?

Coreboot is allocating GNVS area…

Allocate GNVS area in

CBMEM

Create GNVS structure

Save pointer to GNVS in
GNVS_PTR CBMEM area

Add GNVS area to DSDT

ACPI table

Searching for GNVS in ACPI tables…

• GNVS area is allocated in CBMEM backed by in-memory database (IMD)
with CBMEM_ID_ACPI_GNVS

• Pointer to GNVS area is stored in DSDT ACPI table in NVSA field

• The table can be found with chipsec_util acpi list or manually in “Tables” area of

Coreboot memory map

• After decompiling DSDT, NVSA field contains GNVS address (0xBFF2D000)

Searching for GNVS in CBMEM…

IMD Root Signature

IMD Entry ID “GNVS”

Data start offset
IMD Entry Signature

CBMEM_ID_ACPI_GNVS entry in in-memory database (IMD)

So why are we interested in GNVS area?

• GNVS area is allocated during “Write ACPI Tables” boot stage
(bs_write_tables)

• A pointer to GNVS area (GNVP) is also stored in
CBMEM_ID_ACPI_GNVS_PTR area allocated in CBMEM (on Broadwell

based systems and above?)

src\arch\x86\acpi.c

When resuming from S3 Sleep…

Find GNVS_PTR in CBMEM

& read GNVP pointer

Update GNVP pointer

restored from CBMEM in

SMM (if SMI handler exists)

Jump to OS Waking Vector in

FACS table

Updating SMM copy of GNVP pointer…

APM_CNT_GNVS_UPDATE SMI

updates SMM copy of GNVP from

EBX restored from CBMEM

SMI handlers never check GNVS pointer

• GNVS pointer is stored in CBMEM area of DRAM which is preserved across S3

• During S3 resume, the pointer is restored from CBMEM in SMM

• SMI handlers use GNVS as a communication buffer with OS (read settings, write results)

• E.g. IOTRAP SMI handler writes byte 0x0 to gnvssmif (if SMIF value is already 0x32)

 Limited write primitive in SMM (with controlled address but not the value)

That leads to potential vulnerability on S3 resume

• Attacker could modify GNVS pointer in ACPI_GNVS_PTR area in

memory (to e.g. overlap with SMRAM) & cause system to enter S3

• Firmware would restore modified GNVS pointer in SMM upon

resuming from S3 state

• Attacker then could trigger SMI (e.g. IOTRAP) forcing SMI handler

to write/modify memory at controlled GNVS address

• So far only 0x320 and 0x990 write primitives found

• Only some systems have this issue:
• Not all systems with Coreboot store GNVS_PTR (some just store GNVS pointer in SMM

once at normal boot like our IVB based Lenovo x230)

• Not all systems support S3 state

Mitigation Options

• One option is to always store GNVS pointer (GNVP) in SMRAM

and not restore from CBMEM as SMRAM is also preserved in S3

• In general, SMI handlers have to check all pointers/addresses for

overlap with SMRAM just like EDKII does

SMI Handler Issues in Coreboot

SMM/GPU MBI Interface in i82830 SMI Handler

Read SWSMI code

from CPU MMIO
register 0xE0

GPU-SMM MBI Interface in i82830 SMI Handler

Read base address

of GPU MMIO range

GPU-SMM MBI Interface in i82830 SMI Handler

Read base address

of GPU MMIO range

Write “CTNI” magic to offset
0x71428 in GFx MMIO

(address controlled by exploit)

Calling MBI functions…

Read the value from offset
0x71428 in GFx MMIO and

pass it as an argument to MBI

function call

Calling MBI functions…

• SMI handler reads argument for MBI from SWF16 (SW Flags)
register at offset 0x71428 in Graphics MMIO (VGA Display)

• That GPU register is not locked so attacker can control its contents

• The value of the register is an address to banner_id_t structure

Unchecked banner_id pointer… 1/3

• Writes at the controlled address pointed to by version

Unchecked banner_id pointer… 2/3

Unchecked banner_id pointer… 3/3

Write Protections

What about write protections?

• Read-Only part of Coreboot firmware in SPI flash devices is

hardware write protected in Chromebooks Yes, with a screw

asserting /WP in SPI!

• What if you manually flash Coreboot on a random system?

After flashing Coreboot on Lenovo x230…

To summarize

• SMM based firmware write protection is off

• SPI protected range registers are disabled

• TCO and Global SMI are not locked down

• SPI config is not locked

• SMRAM can be DMA’d into

• And the system doesn’t use /WP pin on SPI device like in

Chromebooks

 Super Crazy Developer Mode

That’s the protection…

What about Libreboot?

From https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip

https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip
https://libreboot.org/faq.html#how-do-i-program-an-spi-flash-chip

Conclusion

• Coreboot contains significant amount of platform dependent code

• Platform dependent SMI handlers don’t check pointers

• ACPI NVS is an attack vector as it stored data across S3 sleep state

• Not a lot of public research into Coreboot vulnerabilities

• In Chromebooks, Coreboot uses SPI device’s /WP mechanism and Verified

Boot. In other systems, Coreboot is not write protected

• If you want to build and flash Coreboot on x86 non-Chromebooks, enable

write protection manually (set BC.SMM_BWP)

Thank You!

