
BUBBLE STRUGGLE
Call Graph Visualization with Radare2

Marion Marschalek
marion@0x1338.at

@pinkflawd

Static Analysis
is King

Packer /
Evasion

Setup Call home

might or might not
be analyzed

Encrypting files
Keylogging
Screenshots
Screen captures
DDoS
Downloading more malware

What my customer thought

the malware does

What my sandbox thought

the malware does

What the malware REALLY doesWhat I thought the malware does

Github linkr2graphity

Python3

radare2 & r2pipe

NetworkX

pefile

pydeep

numpy

Neo4j/py2neo

https://github.com/pinkflawd/r2graphity

Scalable

Scriptable

GUI-free

Great support

Quick bug fixes

Can analyze entire binaries

Provides
- functions and cross references

- symbols

- strings

- basic PE information

r2
command
cheat
sheet

R2handle = r2pipe.open(<file>)

R2handle.cmd(<cmd>)

Watch magic

aaa – analyze the target binary

afr @ [address] – recursively analyze function at [address]

iS – get information about file sections

iij – get import table in JSON format

axtj @@ sym.* - get cross references on found symbols in JSON

axtj @ [address] – get cross references for [address]

pd 300 @ [address] – disassemble 300 instructions at [address]

pd -30 @ [address] – disassemble backwards 30 instructions at [address]

pdf @ [address] – disassemble function at [address], after e.g. aaa command

izzj – get strings out of entire binary in JSON

iz – get strings out of code section

iEj – get exports of a library

?v $FB @ [address] – get function which contains [address]

aflj – get list of functions with supporting information in JSON

Function Detection is Key

Win8 32-bit benign

(Little agreed on
method to verify
whether TP/FP)

32-bit malicious

(Little agreed on
method to verify
whether TP/FP)

Function Detection is Key

r2graphity

Function call graphs

Function cross references within code section

References to function offsets

Outside executable section(s)

Nodes: functions

=> Offset, size, calling convention

Edges: calls, indirect calls

Strings

String parsing

Evaluation: ASCII, cross references, character
frequency count

String list detection

string length + alingment

string following w/o cross reference

Fitting strings into the graph

Whats the information one can gain from strings?

APIs

Cross references on symbols

Indirect calls

- parsing for mov/lea

- disassembling further

- call and jmp considered xref

Thunk pruning

Dynamic loading

Indirect Calls
„Top-down“

Disassemble upwards

Check the arguments for function cross references

Add edge and tag

Currently only CreateThread and SetWindowsHookEx,
because context

„Bottom-up“

Sweep for nodes without inbound edges

Check for cross references within functions

Add edge and tag

The r2graphity graph structure

NetworkX Graph Structure

FUNCTION as node, attributes: function address, size, calltype, list of calls, list of strings,
count of calls, functiontype[Callback, Export, Supernode], alias (e.g. export name), mnemonic
distribution

FUNCTION REFERENCE as edge (function address -> target address), attributes: ref offset (at)

INDIRECT REFERENCE as edge (currently for threads and Windows hooks, also indirect code and
indirect data references)

API CALLS (list attribute of function node): address, API name

STRINGS (list attribute of function node): address, string, eval

####

Binary Visualization

„Useful“ ain‘t easy

Recovering code structure
from call graphs

Large graphs, small graphs, dense graphs, lose graphs, dense
subgraphs, disconnected subgraphs, …

DLLs & GUI applications

Spaghetti code

Copy/paste code

Packed code

Repetitive patterns

Noise

yellow: 0 API calls
gradually darker: plenty of API calls
node size: out-degree

green: 0 API calls
gradually darker: plenty of API calls

Highlighting memory
allocation habits

How to deal with
large graphs & too
much information

Data reduction and simplification

How to pick features for
visualization

know what your tools support

what your algorithms support

what your data has to say
Layout algorithms

Graph transformations

API gadgets & highlighting

String evaluation

Force directed

Neat overview

Slooow²

Find most important
nodes at a glance

Fruchterman-Rheingold

Force-directed graph layouts

Position graph nodes in a way, that edges are in
equal length and cross as little as possible

Forces can be applied, to pull less connected nodes
further apart

High running time, high number of iterations

ForceAtlas
Repulsion and gravity

Sofacy

Mnemonicism
Arithmetic instructions as indicator for
cryptography, compression or codecs

Leveraging radare2‘s instruction type

shl
shr
mul
div
rol
ror
sar
load

store

Babar

“Behavior”
Gadgets

Scanning for
Gadgets

Pre-defined API patterns
Searching the graph for anchor
Scanning nodes in close vicinity

“Behavior” Gadgets
For APILOADING found {'GetProcAddress': '0x1000def8', 'LoadLibrary': '0x1000def8'}

For APILOADING found {'GetProcAddress': '0x10014e88', 'LoadLibrary': '0x10014e88'}

For READFILE found {'ReadFile': '0x100032a0', 'CreateFile': '0x100032a0'}

For READFILE found {'ReadFile': '0x1000d6b0', 'CreateFile': '0x1000d6b0'}

For APILOADING2 found {'GetModuleHandle': '0x1000fbd3', 'GetProcAddress': '0x1000fbd3'}

For APILOADING2 found {'GetModuleHandle': '0x1000f8ef', 'GetProcAddress': '0x1000fbd3'}

For APILOADING2 found {'GetModuleHandle': '0x10012552', 'GetProcAddress': '0x10012552'}

For SHELLEXEC found {'ShellExecute': '0x1000d330'}

For FILEITER found {'FindClose': '0x1000d330', 'FindFirstFile': '0x1000d330', 'FindNextFile': '0x1000d330'}

For CREATETHREAD found {'CreateThread': '0x1000ebc2'}

For CREATETHREAD found {'CreateThread': '0x10009b10'}

For CREATETHREAD found {'CreateThread': '0x10002190'}

For CREATETHREAD found {'CreateThread': '0x1000a050'}

For CREATETHREAD found {'CreateThread': '0x10001820'}

For CREATETHREAD found {'CreateThread': '0x10001000'}

For WRITEFILE found {'WriteFile': '0x1000d880', 'CreateFile': '0x1000d880'}

For WRITEFILE found {'WriteFile': '0x1000a4f0', 'CreateFile': '0x1000a4f0'}

For WRITEFILE found {'WriteFile': '0x10001f80', 'CreateFile': '0x10001f80'}

For RECV found {'recv': '0x1000b290', 'send': '0x1000b290'}

For SCREENSHOT found {'GetDeviceCaps': '0x100094d0', 'CreateCompatibleBitmap':

'0x100094d0', 'BitBlt': '0x100094d0', 'CreateCompatibleDC': '0x100094d0'}
For REGQUERY found {'RegOpenKey': '0x10001000', 'RegQueryValue': '0x10001000'}

t

Color-code functionality families

Subgraph Expansion

Grey: functions
Yellow: API calls
Red: strings

Expansion
Transformation

Banito

Similarity Visualization: Animalfarm Binaries

String Constants

Human readable strings give information away

Presence or absence of readable strings is relevant
information

Graph structure, character frequency and character
repetition allow string constant evaluation

CheshireCat

Sizing string nodes
by „readability“

String character
frequency histogram
per sample

2-0-7-9-31-0-0-3-30

2-2-7-12-37-1-0-4-38

2-8-8-11-39-1-0-4-38

2-4-7-13-37-5-0-3-34

3-5-7-16-40-6-0-4-38

2-5-7-14-36-5-0-3-38

3-6-7-12-35-4-0-3-30

2-4-7-13-29-5-0-3-29

2-4-7-7-27-0-0-3-29

3-4-7-10-27-0-0-3-29

3-4-7-12-27-4-0-3-29

13-233-274-464-276-1381-1895-265-190

13-233-274-464-276-1381-1895-265-190

2-2-5-11-25-1-0-4-46

2-2-5-11-25-1-0-4-46

2-2-5-11-25-1-0-4-46

2-2-5-11-25-1-0-4-46

2-2-5-11-25-1-0-4-46

3-0-3-8-13-0-1-3-2

3-1-3-8-13-0-1-3-2

3-1-3-8-13-0-1-3-2

12-195-121-175-177-769-1319-75-49

12-195-122-175-177-784-1324-76-50

12-194-123-163-184-786-1308-81-49

12-195-120-156-188-781-1308-76-47

12-195-121-158-163-785-1323-73-43

12-195-122-157-187-770-1255-76-48

12-195-123-156-183-769-1324-73-49

9-193-101-134-160-757-1277-76-48

12-195-121-160-189-786-1304-81-49

Bucketsize of 0.01

Count of strings per bucket

0.04 is a reasonable edge

Resilient to little changes

Subset of
Sofacy

String character
frequency histogram
per sample

Bucketsize of 0.01

Count of strings per bucket

0.04 is a reasonable edge

Resilient to little changes

Corner Cases and Issues

C++

VB/.NET

Delphi xD

Other exotic compilers

Large binaries

Loops

Inner programming logic

Help in static analysis

Borderline foolproof packer detection

Persisting of analysis results

(Unintentional) disassembly framework bug report factory

Marketing will faint, I swear

Scales

Open source

Lightweight

Parse once, analyse forevaaa

Thank you!!1!
marion@0x1338.at

@pinkflawd

