
Shooting the OS X El Capitan Kernel
Like a Sniper

Liang Chen@chenliang0817
QidanHe @flanker_hqd

About us

• Liang	Chen
• Senior	Security	Researcher
• Main	focus:	browser	vulnerability	research,	OS	X	kernel,	Android	Root

• Qidan He
• Senior	Security	Researcher
• Main	focus: Sandbox	escape,	mobile	security,	Kernel	research

• Tencent Security	Team	Sniper	(KeenLab and	PC	Manager)	won	Master	
of	Pwn in	this	year’s	Pwn2Own

Agenda

• OS X kernel exploitation mitigation recap

• New approach to exploit kernel under sandboxed process

• Demo

OS X kernel mitigation

• kASLR
• kslide is	assigned	upon	booting.	(Kexts and	kernel	share	the	same	slide)

• DEP
• Disallow kernel RWX

• SMEP
• Disallow kernel code execution from userland address space

Mitigation introduced by El Capitan

• SMAP
• Disallowmemory access from userland address space
• Enabled only on supported CPU architecture

• From unsupported architecture

• Supported architecture

Mitigation introduced by El Capitan

• OOL leak mitigation 1: Structure change in vm_map_copy
After El CapitanBefore El Capitan

Kdata pointer is	good	 candidate	for	AAR	with	overflow	
vulnerability

Kdata pointer	is	removed

Mitigation introduced by El Capitan

• OOL leak mitigation 1: Structure change in vm_map_copy
• Still	able	to	achieve	limited	OOB	read,	by	increasing	size	field

• “OS	X	kernel	is	as	strong	as	its	weakest	part”:
http://powerofcommunity.net/poc2015/liang.pdf

• “Free to other zone” approach by @qwertyoruiop:	
• “Attacking	the	XNU	Kernel	in	El	Capitan”:	https://www.blackhat.com/docs/eu-
15/materials/eu-15-Todesco-Attacking-The-XNU-Kernal-In-El-Capitain.pdf

Mitigation introduced by El Capitan
• OOL leak mitigation 2

• Introduced in 10.11.1
• Changing size field can lead to panic when reading/receivingOOL data

Mitigation introduced by El Capitan

• OOL leak mitigation 2:What happened

mach_msg_ool_descriptor_t vm_map_copy

Two	redundant	 size	fields

Mitigation introduced by El Capitan

• OOL leak mitigation 2
• Check	mach_msg_ool_descriptor_t.size ==	mach_msg_ool_descriptor_t.address.size

Panic	if	size	mismatch

What	if	copy->size	is	
modified	 in	between?
TOCTTOU?	Ah!

Mitigation introduced by El Capitan

• OOL leak mitigation
• Make	general	info	leak	approach	harder

• Still	vulnerable
• TOCTTOU	issue	exists	(Although	very	small	time	window)
• Other	approaches

• Effective	mitigation
• Harder	kernel	exploitation
• Even	for	perfect	overflow	vulnerability	(length	+	content	both	controllable)

OS X kernel exploitation requirement

• Leak	kslide
• vm_map_copy followed	by	vtable object	- Mitigated

• Leak	address	pointer	of	controllable	data
• Bypass	SMAP/SMEP

• Needed	by	both	ROP	approach	and	AAR/AAW	primitive	approach
• mach_port_kobject – Mitigated

• Even	worse	thing	is…
• We	need	perfect	overflow	bug	to	achieve	those
• Many	bugs/exploitation	approach	are	not	reachable	from	remote	attack	
surface	(Safari	browser)

How about non-perfect write? Even harder…
Remind me the hard time of IE exploitation in 2012...

Memory Spraying
• Heap spraying concept on browsers

• Helpful to exploitation development (Extremely useful before we got info leak)
• Widely used on 32bit systems
• Effective whenmemory is larger than address space
• On 64bit systems, less effective

Run the code three times:

Result in:

256 *	4G memory to reliably fill specific data at target address

Memory Spraying in Kernel

• OOL vm_map_copy is still good candidate for memory spraying
• OOL data keeping in kernel before receiving

• But…
• OS X Kernel is 64bit
• Address space larger than physical memory
• Seems hard?

Memory Spraying in Kernel

• Question?
• Is OS X Kernel address space really large (than physical address) ?
• kalloc random?

Memory Spraying in Kernel

• Kernel/Kext text	base
• Fixed	base	+	kslide
• Kslide range	:	(0x00	– 0xff)<<21,	max	0x1fe0	0000
• Address	coverage	less	than	512MB	+	Kernel	+	Kext size
• Much	smaller	than	physical	memory	size

• Kernel/Kext data base
• Fixed	base	+	kslide
• Much	smaller	than	physical	memory	size also

Memory Spraying in Kernel
• How about kalloc zone address

• zone_map->hdr.links.start
• Heavily dependent on kslide

• Not too far away from the end of kernel
• Allocation starts from low to high

zone_map.hdr.start kslide zone_map.hdr.start - kslide

0xffffff803b1d4000 0x1c400000 0xffffff801edd4000

0xffffff802071e000 0x1800000 0xffffff801ef1e000

0xffffff80247cc000 0x6a00000 0xffffff801ddcc000

0xffffff803610c000 0x18200000 0xffffff801df0c000

Memory Spraying in Kernel

• Conclusion
• Spray with OOL approach
• With more than 512 MB *	2
• Reliable (Controllabledata at fixed address)

Memory Spraying in Kernel

Memory Spraying in Kernel

• Why spraying?
• A	good	workaround	to	leak	some	kalloc-ed address

• Locate	kernel	ROP	chain	to	bypass	SMAP/SMEP,	thanks	to	OOL’s	spraying	
feature

• Other	good	features	to	help	our	“Sniper”
• Sniper	means	remotely	(from	browser),	faraway	(address),	but	reliable

Case Study

CVE-2016-1815 – ‘Blit’zard - our P2O
bug
• This	bug	lies	in	IOAcceleratorFamily
• A	vector	write	goes	out-of-bound	under	certain	carefully	prepared	
situations	(8	IOkit calls)	in	a	newly	allocated	kalloc.48	block

• Finally	goes	into	IGVector::add	lead	to	OOB	write

0x28 0x1 size capa storage deadbeefsize capa storage size capa storage

IGV ector

48′block controlled 48′block

Fake IGV ector Fake IGV ector

• rect_pair_t is	pair	of	two	rectangles,	totally	8	floats,	in	range	[-0xffff,	0xffff](hex)
• Overwrite	starts	at	storage	+	24,	ends	at	storage
• In	IEEE.754	representation	the	float	is	in	range	[0x3f800000,	0x477fff00],	 [0xbf800000,	0xc77fff00]
• We	will	not	discuss	about	the	detailed	reason	of	this	vulnerability	here

Found a write-something vulnerability?

• Write	anything	anywhere	– piece	of	cake
• Write	*more*	*restricted*	something	anywhere?
• What	if	you	can	only	write	eight	floats	continuously	in	range	[-0xffff,	
0xffff]?

• Translate	to	range	
• 0x3f800000	3f800000	- 0x477fff00	477fff00
• 0xbf800000	bf800000	- 0xc77fff00	c77fff00

Challenges

• How	to	turn	it	into	RIP	control?
• Write	where?	Write	what?	Stability?	Must	Sandbox	reachable!

• How	to	defeat	kASLR?
• Pwn the	Apple	with	a	single	bug?

Hard, but not impossible!

Challenge #1
• Overwriting	vm_map_copy length?

• Apple	fixed	that	in	10.11.1
• Still	have	ways	to	bypass...

• Not	applicable	to	our	vulnerability
• Why?

• Adjacent	write
• Write	value	qword	not	good

• 0x3f....3f....
• 0xbf....bf....

•Overwriting	some	address?

0xffffff80 81abcdef

HIGH

LOW

IOUserClient
Object

bf

80

00

00

bf

80

00

00

ff

ff

ff

80

81

ab

cd

ef

0xffffff80 81abcdef

HIGH

LOW

IOUserClient
Object

bf

80

00

00

bf

80

00

00

ff

ff

ff

80

81

ab

cd

ef

RAX	RSI	controllable

• Why	not	overwrite	vptr at	head	of	userclients?
• High	bytes	are	0xffffff7f,	address	content	not	controllable

• Except	RootDomainUserClient
• But	size	too	small	…	problems?
• N*PAGE_SIZE	allocations	are	more	reliable	and	predictable
• Speed	issues

• Spray	Speed	decreases	as	userclient count	increases
• Why?

• Child	IOUserClient need	to	link	to	their	parent	IOService

IORegistryEntry::attachToParent

IORegistryEntry::attachToChild (child	already	contains	refs	to	
parent,	No	need	to	call	attachToParent again

`links`	is	OSArray
arrayMember performs	linear
search

Oh	man	…	Total	time	complexity	here:	O(N^2)

setObject in	makeLinks

Freeing,	allocating	and	copying…

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Total	Spray	Time

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Average	Spray	Time

It’s	in	2016	and	we	still	have	a	O(N^2)	time
complexity	function	in	the	core	of	a	modern	
operating	system…

(X	axis	multiply	by	0x500*5,	y	axis	in	second)

Hey man check your accelerator

• Nearly	all	IOAcceleratorFamily2	userclients have	a	`service`	pointer	
associated

• Point	to	IntelAccelerator
• Virtual	function	calls
• Heap	location	starts	with	0xffffff80	yeah

• Overwrite	it	and	point	it	to	controllable	memory!

• We	cannot	directly	call	the	fake	`service`’s virtual	function
• Header	of	vm_map_copy cannot	be	controlled

• An	indirect	virtual	function	call	is	needed
• Selector	0x0	(context_finish)	is	our	superstar
• Virtual	function	invoked	on	service->mEventMachine

Preparing memory

• Spray	0x50,000	ool_msgs,	pushing	heap	covering	0xffffff80	bf800000	
(B)	with	controlled	content	(ool)

• kASLR will	push	heap	location	up	or	pull	heap	down	at	each	boot
• This	is	a	stable	fixpointaddress	reachable	in	spraying
• Higher	addresses	not	applicable

• free	middle	parts	of	ool,	fill	with	IGAccelVideoContext covering	
0xffffff80	62388000 (A)

• Perform	write	at	A- 4		+	0x528	descending
• Call	each	IGAccelVideoContext’s externalMethod and	detect	
corruption

(the	offset	was	0x1230	in	10.11.3,	changed	afterwards)

For	the	record

• Now	we	have	known	address	A	covered	with	IGAccelVideoContext.
• Known	address	B	covered	with	vm_map_copy content	controlled.
• With	these	in	minds	lets	move	further	to	infoleak

Selector	0x100	of	IGAccelVideoContext

AppleIntelBDWGraphics::get_hw_steppings come	to	rescue!

Leaking strategy

• By	spraying	we	can	ensure	0xf…	62388000(A)	 (lies	an	
IGAccelVideoContext

• And	0xf...	Bf800000(B)	 lies	an	vm_map_copy	with	size	0x2000
• Overwrite	the	service	pointer	to	B,	point	to	controlled	vm_map_copy	
filled	with	0x4141414141414141	 (at	0x1288	set	to	A	- 0xD0)

• Test	for	0x41414141	by	calling	get_hw_steppings on	sprayed	
userclients

• If	match,	we	get	the	index	of	userclient	being	corrupted
• a2[4]	returns	a	byte	at	A!

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000

service field

0xff… bf800000

IntelAccelerator …

KALLOC.8192 ZONE

+0x528

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000

service field

0xff… bf800000

IntelAccelerator …

KALLOC.8192 ZONE

+0x528

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000 0xff… bf800000

IntelAccelerator …

+0x528

vm_map_copy… …

vm_map_copy …

KALLOC.8192 ZONE

bf800000
bf801000

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000 0xff… bf800000

IntelAccelerator …

+0x528

vm_map_copy …

Leaking strategy?

• Wait…	what	if	the	predict	address	fall	at	the	1st	page	instead	of	0th?
• Middle	of	userclients	- 50%	chance
• Middle	of	vm_map_copy		- 50%	chance
• Write	twice	to	ensure	100%	success	rate

• OOB	write	at	A	and	A+0x1000
• A	- 0xD0	both	at	0x1288	and	0x288 for	vm_map_copy

+0x1000	lies	0

KALLOC.8192 ZONE

bf800000
bf801000

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000 0xff… bf800000

IntelAccelerator …

+0x528

vm_map_copy …

KALLOC.8192 ZONE

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000
0xff… bf800000

IntelAccelerator …

+0x1528

vm_map_copy …

0xff… bf801000

0xff… 62389000

+0x528

+0x288

0xff… bf800000

vm_map_copy

0xff… bf7ff000

+0x140

0xff… 6238a000

KALLOC.8192 ZONE

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000
0xff… bf800000

IntelAccelerator …

+0x1528

vm_map_copy …

0xff… bf801000

0xff… 62389000

+0x528

+0x288

0xff… bf800000

vm_map_copy

0xff… bf7ff000

+0x140

0xff… 6238a000

Replace with …N
+1000

Fill ool_msg with service offset point to
0xf… …N

Trigger IOConnect
Call Leaked byte zero?

let N=N+1, free
and refill ool_msgs

KEXT vptr leaked

8 bytes all leaked?

kernel offset
leaked

redo with vptr value

Leaking strategy

• We	can	use	an	additional	read	to	determine	if	the	address	is	at	A	or	
A+0x1000

• If	we	try	A	but	its	actually	at	A+0x1000,	we	will	read	byte	at	+0x1000	of	
IGAccelVideoContext,	which	is	0,	then	we	can	try	again	with	A+0x1000	to	read	
the	correct	value

• Free	and	fill	the	vm_map_copy living	at	B	to	increment	the	location	to	
read	by	1	byte

• Free	and	fill	vm_map_copy ,	modified	with	leaked	vptr to	leak	kernel	
section	offset,	thus	kslide

• Better	way exists	- exercise	for	readers	J

Final workflow
• Spray	0x50000	ool_msgs with	data	size	0x2000	(2GB),	taint	with	
0x41414141,	write	A	at	0x1288	and	0x288	offset

• Free	middle	parts	of	ool_msgs,	fill	in	IGAccelVideoContext
• Trigger	oob write	at	A	- 0x4	+	0x528	and	A	-4	+	0x528	+0x1000
• Iterate	all	opened	IGAccelVideoContext	userclients,	call	get_hw_steppings	
and	look	for	4141,	adjust	0x1288	and	0x288	if	needed

• Change	to	A+0x1000	if	0	got
• Advance	read	location	1byte	by	1,	read	out	KEXT	vtable	address	and	then	
kern	address	offset

• Refill	ool_msgs	bundled	with	ROP	chain,	call	context_finish
• Pwn

Conclusion

• We	discussed	previous	exploitation	techniques	and	their	exploitations
• We	present	a	new	generalized	exploitation	technique	working	even	
on	restricted	OOB	write	abstracted	from	our	`blitzard`	exploitation

Credits

• Marco	Grassi
• Qoobee
• Wushi
• Windknown
• qwertyoruiop
• Ufotalent

Demo	&&	Questions?

• POC	will	be	available	at	https://github.com/flankerhqd/blitzard/ in	a	
few	weeks

• We	will	talk	about	the	`blitzard`	itself	internals	at	Las	Vegas	Blackhat
USA	2016,	see	you	there	J

