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OS X kernel mitigation

• kASLR
• kslide is	assigned	upon	booting.	(Kexts and	kernel	share	the	same	slide)

• DEP
• Disallow kernel RWX

• SMEP
• Disallow kernel code execution from userland address space



Mitigation introduced by El Capitan

• SMAP
• Disallowmemory access from userland address space
• Enabled only on supported CPU architecture

• From unsupported architecture

• Supported architecture



Mitigation introduced by El Capitan

• OOL leak mitigation 1: Structure change in vm_map_copy
After El CapitanBefore El Capitan

Kdata pointer is	good	 candidate	for	AAR	with	overflow	
vulnerability

Kdata pointer	is	removed



Mitigation introduced by El Capitan

• OOL leak mitigation 1: Structure change in vm_map_copy
• Still	able	to	achieve	limited	OOB	read,	by	increasing	size	field

• “OS	X	kernel	is	as	strong	as	its	weakest	part”:
http://powerofcommunity.net/poc2015/liang.pdf

• “Free to other zone” approach by @qwertyoruiop:	
• “Attacking	the	XNU	Kernel	in	El	Capitan”:	https://www.blackhat.com/docs/eu-
15/materials/eu-15-Todesco-Attacking-The-XNU-Kernal-In-El-Capitain.pdf



Mitigation introduced by El Capitan
• OOL leak mitigation 2

• Introduced in 10.11.1
• Changing size field can lead to panic when reading/receivingOOL data



Mitigation introduced by El Capitan

• OOL leak mitigation 2:What happened

mach_msg_ool_descriptor_t vm_map_copy

Two	redundant	 size	fields



Mitigation introduced by El Capitan

• OOL leak mitigation 2
• Check	mach_msg_ool_descriptor_t.size ==	mach_msg_ool_descriptor_t.address.size

Panic	if	size	mismatch

What	if	copy->size	is	
modified	 in	between?
TOCTTOU?	Ah!



Mitigation introduced by El Capitan

• OOL leak mitigation
• Make	general	info	leak	approach	harder

• Still	vulnerable
• TOCTTOU	issue	exists	(Although	very	small	time	window)
• Other	approaches

• Effective	mitigation
• Harder	kernel	exploitation
• Even	for	perfect	overflow	vulnerability	(length	+	content	both	controllable)



OS X kernel exploitation requirement

• Leak	kslide
• vm_map_copy followed	by	vtable object	- Mitigated

• Leak	address	pointer	of	controllable	data
• Bypass	SMAP/SMEP

• Needed	by	both	ROP	approach	and	AAR/AAW	primitive	approach
• mach_port_kobject – Mitigated

• Even	worse	thing	is…
• We	need	perfect	overflow	bug	to	achieve	those
• Many	bugs/exploitation	approach	are	not	reachable	from	remote	attack	
surface	(Safari	browser)



How about non-perfect write? Even harder…
Remind me the hard time of IE exploitation in 2012...



Memory Spraying
• Heap spraying concept on browsers

• Helpful to exploitation development (Extremely useful before we got info leak)
• Widely used on 32bit systems
• Effective whenmemory is larger than address space
• On 64bit systems, less effective

Run the code three times:

Result in:

256 *	4G memory to reliably fill specific data at target address



Memory Spraying in Kernel

• OOL vm_map_copy is still good candidate for memory spraying
• OOL data keeping in kernel before receiving

• But…
• OS X Kernel is 64bit
• Address space larger than physical memory
• Seems hard?



Memory Spraying in Kernel

• Question?
• Is OS X Kernel address space really large (than physical address) ?
• kalloc random?



Memory Spraying in Kernel

• Kernel/Kext text	base
• Fixed	base	+	kslide
• Kslide range	:	(0x00	– 0xff)<<21,	max	0x1fe0	0000
• Address	coverage	less	than	512MB	+	Kernel	+	Kext size
• Much	smaller	than	physical	memory	size

• Kernel/Kext data base
• Fixed	base	+	kslide
• Much	smaller	than	physical	memory	size also



Memory Spraying in Kernel
• How about kalloc zone address

• zone_map->hdr.links.start
• Heavily dependent on kslide

• Not too far away from the end of kernel
• Allocation starts from low to high

zone_map.hdr.start kslide zone_map.hdr.start - kslide

0xffffff803b1d4000 0x1c400000 0xffffff801edd4000

0xffffff802071e000 0x1800000 0xffffff801ef1e000

0xffffff80247cc000 0x6a00000 0xffffff801ddcc000

0xffffff803610c000 0x18200000 0xffffff801df0c000



Memory Spraying in Kernel

• Conclusion
• Spray with OOL approach
• With more than 512 MB *	2
• Reliable (Controllabledata at fixed address)



Memory Spraying in Kernel



Memory Spraying in Kernel

• Why spraying?
• A	good	workaround	to	leak	some	kalloc-ed address

• Locate	kernel	ROP	chain	to	bypass	SMAP/SMEP,	thanks	to	OOL’s	spraying	
feature

• Other	good	features	to	help	our	“Sniper”
• Sniper	means	remotely	(from	browser),	faraway	(address),	but	reliable



Case Study



CVE-2016-1815 – ‘Blit’zard - our P2O 
bug
• This	bug	lies	in	IOAcceleratorFamily
• A	vector	write	goes	out-of-bound	under	certain	carefully	prepared	
situations	(8	IOkit calls)	in	a	newly	allocated	kalloc.48	block

• Finally	goes	into	IGVector::add	lead	to	OOB	write

0x28 0x1 size capa storage deadbeefsize capa storage size capa storage

IGV ector

48′block controlled 48′block

Fake IGV ector Fake IGV ector



• rect_pair_t is	pair	of	two	rectangles,	totally	8	floats,	in	range	[-0xffff,	0xffff](hex)
• Overwrite	starts	at	storage	+	24,	ends	at	storage
• In	IEEE.754	representation	the	float	is	in	range	[0x3f800000,	0x477fff00],	 [0xbf800000,	0xc77fff00]
• We	will	not	discuss	about	the	detailed	reason	of	this	vulnerability	here



Found a write-something vulnerability?

• Write	anything	anywhere	– piece	of	cake
• Write	*more*	*restricted*	something	anywhere?
• What	if	you	can	only	write	eight	floats	continuously	in	range	[-0xffff,	
0xffff]?

• Translate	to	range	
• 0x3f800000	3f800000	- 0x477fff00	477fff00
• 0xbf800000	bf800000	- 0xc77fff00	c77fff00



Challenges

• How	to	turn	it	into	RIP	control?
• Write	where?	Write	what?	Stability?	Must	Sandbox	reachable!

• How	to	defeat	kASLR?
• Pwn the	Apple	with	a	single	bug?



Hard, but not impossible!



Challenge #1
• Overwriting	vm_map_copy length?

• Apple	fixed	that	in	10.11.1
• Still	have	ways	to	bypass...

• Not	applicable	to	our	vulnerability
• Why?

• Adjacent	write
• Write	value	qword	not	good

• 0x3f....3f....
• 0xbf....bf....

•Overwriting	some	address?
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• Why	not	overwrite	vptr at	head	of	userclients?
• High	bytes	are	0xffffff7f,	address	content	not	controllable

• Except	RootDomainUserClient
• But	size	too	small	…	problems?
• N*PAGE_SIZE	allocations	are	more	reliable	and	predictable
• Speed	issues



• Spray	Speed	decreases	as	userclient count	increases
• Why?



• Child	IOUserClient need	to	link	to	their	parent	IOService



IORegistryEntry::attachToParent

IORegistryEntry::attachToChild (child	already	contains	refs	to	
parent,	No	need	to	call	attachToParent again

`links`	is	OSArray
arrayMember performs	linear
search

Oh	man	…	Total	time	complexity	here:	O(N^2)



setObject in	makeLinks



Freeing,	allocating	and	copying…
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Hey man check your accelerator

• Nearly	all	IOAcceleratorFamily2	userclients have	a	`service`	pointer	
associated

• Point	to	IntelAccelerator
• Virtual	function	calls
• Heap	location	starts	with	0xffffff80	yeah

• Overwrite	it	and	point	it	to	controllable	memory!



• We	cannot	directly	call	the	fake	`service`’s virtual	function
• Header	of	vm_map_copy cannot	be	controlled

• An	indirect	virtual	function	call	is	needed
• Selector	0x0	(context_finish)	is	our	superstar
• Virtual	function	invoked	on	service->mEventMachine



Preparing memory

• Spray	0x50,000	ool_msgs,	pushing	heap	covering	0xffffff80	bf800000	
(B)	with	controlled	content	(ool)

• kASLR will	push	heap	location	up	or	pull	heap	down	at	each	boot
• This	is	a	stable	fixpointaddress	reachable	in	spraying
• Higher	addresses	not	applicable

• free	middle	parts	of	ool,	fill	with	IGAccelVideoContext covering	
0xffffff80	62388000 (A)

• Perform	write	at	A- 4		+	0x528	descending
• Call	each	IGAccelVideoContext’s externalMethod and	detect	
corruption



(the	offset	was	0x1230	in	10.11.3,	changed	afterwards)



For	the	record

• Now	we	have	known	address	A	covered	with	IGAccelVideoContext.
• Known	address	B	covered	with	vm_map_copy content	controlled.
• With	these	in	minds	lets	move	further	to	infoleak



Selector	0x100	of	IGAccelVideoContext

AppleIntelBDWGraphics::get_hw_steppings come	to	rescue!



Leaking strategy

• By	spraying	we	can	ensure	0xf…	62388000(A)	 (lies	an	
IGAccelVideoContext

• And	0xf...	Bf800000(B)	 lies	an	vm_map_copy	with	size	0x2000
• Overwrite	the	service	pointer	to	B,	point	to	controlled	vm_map_copy	
filled	with	0x4141414141414141	 (at	0x1288	set	to	A	- 0xD0)

• Test	for	0x41414141	by	calling	get_hw_steppings on	sprayed	
userclients

• If	match,	we	get	the	index	of	userclient	being	corrupted
• a2[4]	returns	a	byte	at	A!



IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000

service field

0xff… bf800000

IntelAccelerator …

KALLOC.8192 ZONE

+0x528



IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000

service field

0xff… bf800000

IntelAccelerator …

KALLOC.8192 ZONE

+0x528

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000 0xff… bf800000

IntelAccelerator …

+0x528

vm_map_copy… …

vm_map_copy …



KALLOC.8192 ZONE

bf800000
bf801000

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000 0xff… bf800000

IntelAccelerator …

+0x528

vm_map_copy …



Leaking strategy?

• Wait…	what	if	the	predict	address	fall	at	the	1st	page	instead	of	0th?
• Middle	of	userclients	- 50%	chance
• Middle	of	vm_map_copy		- 50%	chance
• Write	twice	to	ensure	100%	success	rate

• OOB	write	at	A	and	A+0x1000
• A	- 0xD0	both	at	0x1288	and	0x288 for	vm_map_copy

+0x1000	lies	0



KALLOC.8192 ZONE

bf800000
bf801000

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000 0xff… bf800000

IntelAccelerator …

+0x528

vm_map_copy …



KALLOC.8192 ZONE

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000
0xff… bf800000

IntelAccelerator …

+0x1528

vm_map_copy …

0xff… bf801000

0xff… 62389000

+0x528

+0x288

0xff… bf800000

vm_map_copy

0xff… bf7ff000

+0x140

0xff… 6238a000



KALLOC.8192 ZONE

vm_map_copy header

+0x1140

niddle(filled 0x41414141) filled with 0x41414141

+0x1288

IGAccelVideoCont
ext

IGAccelVideoCont
ext vm_map_copy vm_map_copy…

0xff… 62388000
0xff… bf800000

IntelAccelerator …

+0x1528

vm_map_copy …

0xff… bf801000

0xff… 62389000

+0x528

+0x288

0xff… bf800000

vm_map_copy

0xff… bf7ff000

+0x140

0xff… 6238a000



Replace with …N
+1000

Fill ool_msg with service offset point to 
0xf… …N

Trigger IOConnect 
Call Leaked byte zero?

let N=N+1, free 
and refill ool_msgs

KEXT vptr leaked

8 bytes all leaked?

kernel offset 
leaked

redo with vptr value 



Leaking strategy

• We	can	use	an	additional	read	to	determine	if	the	address	is	at	A	or	
A+0x1000

• If	we	try	A	but	its	actually	at	A+0x1000,	we	will	read	byte	at	+0x1000	of	
IGAccelVideoContext,	which	is	0,	then	we	can	try	again	with	A+0x1000	to	read	
the	correct	value

• Free	and	fill	the	vm_map_copy living	at	B	to	increment	the	location	to	
read	by	1	byte

• Free	and	fill	vm_map_copy ,	modified	with	leaked	vptr to	leak	kernel	
section	offset,	thus	kslide

• Better	way exists	- exercise	for	readers	J



Final workflow
• Spray	0x50000	ool_msgs with	data	size	0x2000	(2GB),	taint	with	
0x41414141,	write	A	at	0x1288	and	0x288	offset

• Free	middle	parts	of	ool_msgs,	fill	in	IGAccelVideoContext
• Trigger	oob write	at	A	- 0x4	+	0x528	and	A	-4	+	0x528	+0x1000
• Iterate	all	opened	IGAccelVideoContext	userclients,	call	get_hw_steppings	
and	look	for	4141,	adjust	0x1288	and	0x288	if	needed

• Change	to	A+0x1000	if	0	got
• Advance	read	location	1byte	by	1,	read	out	KEXT	vtable	address	and	then	
kern	address	offset

• Refill	ool_msgs	bundled	with	ROP	chain,	call	context_finish
• Pwn



Conclusion

• We	discussed	previous	exploitation	techniques	and	their	exploitations
• We	present	a	new	generalized	exploitation	technique	working	even	
on	restricted	OOB	write	abstracted	from	our	`blitzard`	exploitation
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Demo	&&	Questions?

• POC	will	be	available	at	https://github.com/flankerhqd/blitzard/ in	a	
few	weeks

• We	will	talk	about	the	`blitzard`	itself	internals	at	Las	Vegas	Blackhat
USA	2016,	see	you	there	J




