
Jessy Diamond Exum (diamondman)

 Reverse Engineering
In-System-Configuration

Controllers

Initial Project
3-4 year in the making

7400 logic based processor

Agenda

1. An attempt to build a Processor (and how it
ended in flames)

2. A Walkthrough of reversing the Digilent & Xilinx
JTag Controllers

3. A New Hope: Generalizing Controller Access
(efficiently speak to devices with any type of controller)

4. Questions

Enter the rabbit hole
Wanted to make a processor
- 7400 logic (informed by college)
- Took Coursera class (Computer Architecture

by David Wentzlaff)!!!!!!!!!
- Logic board hell not worth it

- boards were huge, power hungry, read only
- Solution: FPGA
- Problem: FPGA

Prerequisites
Xilinx Spartan 3e dev board Digilent
- Ethernet, VGA, PS2 (keyboard), decent price
- USB plug and play (Jtag controller built in).
- Did blinky light examples with schematic capture
- Xilinx tools not great at schematic capture. (note

powerpoint vs photoshop)
- Learned Verilog: an HDL (words not schematic,

faster to work with, industry standard)
Lessons+samples: www.asic-world.com/verilog/

Via http://store.digilentinc.com/

http://www.asic-world.com/verilog/
http://store.digilentinc.com/

Getting Started
- Wanted to write a video driver (to control VGA

monitor), because it is cool. ~one week. First time
implementing electrical protocol (ADD FB post)
- Challenge 1: Story about pixel by pixel not

working/clock limitation.
- Challenge 2: Xilinx’s configuration tool (impact)

only worked on Windows, Linux kernel 2.5 and
older, and libusb drivers would not load
(mystery at the time).

The Slippery Slope
- Load failure because Xilinx’s iMPACT manually

loading libusb from centos location. Different in
Debian. Not using LD to do it automatically.

- LD_Preload, and remaining issues
- Challenging to debug/reverse engineer

because proprietary, 15 gigs of binaries, C++/.
net/java, and against EULA

- Considered switching vendors, e.g. Altera,
except they were all broken.

- Not that it would matter…

Section II
No board, no plan, time to reflect.

Bought several progressively better Digilent boards:
- Coolrunner 2 Starter Board (XC2C256) – cheap CPLD
- Basys 2 (Spartan 3e) – low end FPGA
- Nexys 2 (Spartan 3e) – low end, but better board
- Nexys 3 (Spartan 6) – Intermediate board
- Atlys (Spartan 6) – high end chip and board

New (slightly irrational) Goals...
- Make open tools to compile HDL and flash chips
- Must work with Linux
- Support multiple Digilent boards

Which means… I needed to know how Digilent’s
boards worked:
- Programming Xilinx Chips

- Jtag & oscilloscope
- Digilent USB Commands

- usb, wireshark

What the Jtag is Jtag?
- Thought JTAG was just a programming protocol
- Found youtube videos (EEVBlog) on history http:

//youtu.be/TlWlLeC5BUs
- What is ISC?
- Highly Extensible. Pros and cons.
- Has auto detect
- TMS pin control chip state
- Learned init process

http://youtu.be/TlWlLeC5BUs
http://youtu.be/TlWlLeC5BUs
http://youtu.be/TlWlLeC5BUs

Observing the programming:
- Had an oscilloscope (Amazing purchase)
- Probed Clock and TMS
- Detected board (Adept)
- Captured Waves
- Waveform was correct

Learning how to initialize the board
- Already have waveforms
- Need to know how to control board
- USB->controller->JTAG
- Wireshark

USB/IP/etc JTAG
Vendor
Drivers

USBPcap

Packet Log Waveform Log

Inducing Cause and Effect:
- Captured packets of JTAG initialization
- Python packet replay

- Concerns
- Results

Interpreting Packets
- Reading (http://www.usbmadesimple.co.uk http:

//www.beyondlogic.org/usbnutshell/usb3.shtml)
- Categorized
- Mistakes (dealing with ‘facts’)
- Rules for beginners (remember sammy jankis)
- Editing replay
- Command set overview

http://www.usbmadesimple.co.uk/
http://www.beyondlogic.org/usbnutshell/usb3.shtml
http://www.beyondlogic.org/usbnutshell/usb3.shtml
http://www.beyondlogic.org/usbnutshell/usb3.shtml

New Sources:
- Pace Slowed
- Found Adept SDK (by digilent)

- Digilent Only (as expected)
- Exposed functionality
- New Commands
- Gave names to variables/parameters

- Wrote C program using Adept SDK
- Results (learned bit options, check theories).

- Remaining messages:
- Several message initialization (mostly read)
- Commands 0xE8 (seed) and 0xEC (check).

- 0xE8 write with random
- 0xEC read
- 0xE8 write with 0

- Random each time
- Used IDA PRO to debug sdk program

- Stepped into initialization function
- C++ Mess. Class per board.
- Address Space Layout Randomization

- Found USB code sending 0xE8
- Parameter was based on…… uptime?!

- USB code for sending 0xEC.
- xors of seed with ‘Digi’

- Purpose?
- Other command findings

Making a new Program:
- Called it adapt
- Converted packets into python functions
- Talking to chip vs programming
- Intro to IEEE 1532 (BSDL)

- Motivation
- Solution
- Failure

- Jed and BSDL parsers
- Naive vision corrected

- Andrew Zonenberg (PhD RPI, IOActive, Recon 2015 “From
Silicon to Compiler”)

- XC2C256 address space translation CSV
- XC2C256 Graycode address
- BSDL license issues

- Wrote code for flashing XC2C256
- Issues

MORE BOARDS!!
- Checking other boards
- Plan: Talk to board → Program Chip
- Observed USB packets of other Digilent boards

- Atlas, Digilent Nexys 2, Digilent Nexys 3
- All had same API as first board
- Initialized with big blob of 0xA0 messages
- Without 0xA0, responds with name only

- All boards with 0xA0 have different USB chip
- First board had an Atmel AVR instead.
- Controller chip is Cypress EZ USB fx2
- EZ USB chips and firmware.

- Did not want to deal with firmware. Let’s
support more controllers...

CONTROLLERS!
- Initially only cared about programming dev boards
- Learned external controllers used more often
- Controller per vendor
- No instructions for cross vendor use. Why?

- JTAG controllers electrically compatible! Should work
- Drivers!
- Make my own drivers? Documentation?

- Matching hardware is like a fashion statement

- Only Benefits Vendors
- Unacceptable, I can RE more controllers.
- Decided to start with Xilinx’s Controller

Setting up the Xilinx Platform Cable USB
- Monitored programming on windows
- Replay problems
- Monitored powering up on windows

- Big blob of 0xA0 messages: Firmware!
- Took apart: Cypress EZ-USB fx2!!!!

- Kernel driver role in linux
- fxload and udev

Reversing the Platform Cable’s Protocol
- Very different than Digilent’s

- Many commands for settings
- One JTAG command (Digilent had many)
- Full Control of all pins all the time
- Believed to be a 16 bit parameter for

transaction count
- Found documentation from old RE effort

- Described JTAG data format (correct)
- Warning against %4 transitions (wrong)

- Extended documentation
- Speed setting
- 256 different 0x20 messages (lazy OEM)

Adding Xilinx Platform Cable software support
- Wrote controller autodetect
- Improved my API

- Track JTAG state machine
- Functions for state select
- functions for direct register writing

- Existing abstractions were based on Digilent’s
functions...

- Flashing XC2C256 worked with Platform Cable
- Platform Cable slower than expected (stats?)
- How Xilinx iMPACT does it
- Limited by Digilent based API
- Code too inflexible to allow fast operation

- Need to investigate other controller APIs

MORE CONTROLLERS!
- Purchased more controllers:

- Altera USB Blaster
- Found OpenOCD documentation
- Similar to Digilent API

- OpenJTAG controller
- Documentation provided by manufacturer
- TOTALLY different than what I had seen
- Keeps track of state machine for you!
- Easy to use (no manual state tracking)
- No fine grain control

Dealing with controller API types
- Three known types:

- One command controls all JTAG lines: Xilinx PCUSB
- Many commands specifying different combinations of lines

to write/hold at value: Digilent, Altera
- State machine control (hide raw bit access): OpenJTAG

- Xilinx, Digilent, and Alterra controller API
conceptually the same: grouped bit control

- Very hard to implement OpenJTAG driver in
system build for bit manipulation

Pattern Emerging
- Layers of JTAG activity (high level to low level)

- Chip Operations (Flash firmware/Erase)
- Jtag Register Read/Write
- Jtag State Machine Changing
- Jtag bit manipulation

- Chip operations -> Register Read/Write is easy
- Register Read/Write -> State Machine Changes is easy
- State Machine Changes -> JTAG pin activity is easy
- Going backwards is not easy. Similar to decompiling.

- We Need a Compiler/Translator and an Optimizer

LAYER EXAMPLES

4 Program/Erase/Validate Device

3 Execute JTAG Command (Write line of configuration data)

2 Load/Read Register, Change JTAG State

1 Any commands that reads and/or writes 1 or more values from any combination
of TMS, TDI, TDO, and TCK.}

0 JTAG Electrical Activity on TMS/TDO/TCK

Layers and Optimizer:
- Layers and translation operation
- Requirements
- Python implementation (Lazy, results): Source https://github.com/diamondman/Adapt

https://github.com/diamondman/Adapt

Usability Issues of new tools
- Should work out of the box
- Requires target BSDL and address translation

files, move information to Chip Driver
- Controllers require firmware

- Firmware redistribution issues
- The ‘Correct’ way of getting Xilinx firmware

- Register Xilinx account
- Agree to multiple EULAs
- Download and install ‘ISE tools’ (15 GB)
- Copy 21.8 kb file

- Decided all controller firmware should be open.
(Inner Stallman, he would say ‘free software’)

Preparing to dissect:
- EULA, possible workaround: Google search ‘xusb_emb.hex’.
- Found schematic at http://www.mikrocontroller.net/
- Hardware Accelerated: Coolrunner 2 (XC2C256)!!!!
- Behavior of devices (data passing)

http://www.mikrocontroller.net/

Opening up the Xilinx Platform Cable:
- Cypress EZ-USB fx2 architecture

- Intel 8051 based. (Harvard Architecture)
- 256 BYTE stack, including R0-R8
- Attached USB hardware; interaction via shared memory

‘registers’ and interrupts.
- Attached ‘GPIF waveform’ hardware. Interaction via shared

memory ‘registers’ and interrupts.
- Heavily extended interrupt system
- Reading the Reference manual was NECESSARY.

- Loading into IDA PRO
- No architecture auto-detected from hex file.
- IDA 6.5 did not have EZ USB fx2 option.

- Memory segment values obtained from Manual
- Hand entered missing information from Manual.
- ida 6.6 added better support, but not perfect

- Still unaware of 2nd stage interrupts (leaves a lot of
code as binary blobs; entry point not detected.

Inside the Firmware (IDA Pro)
- Less common architecture, no auto decompile (ASM only)
- Missing interrupts: many unknown blobs.
- Remaining blobs:

- Many stubs with no entry points
- Unknown blobs after function calls to ‘code_BD7’

- Data was not valid/reasonable instructions

More on Unknown Blobs in Firmware:
- The unknown function called before blobs was strange

- Took one argument through a register
- Immediately pops the return address off of Stack
- Does not return at end, instead jumps to calculated address
- Loops around incrementing an address
- Calls to this function are followed by invalid code and then

multiple code blocks without references.
- Inexperienced, ended up asking IRC

The Answer to the blobs after function calls:
- Switch statements!
- Part of code generated from the Keil Compiler
- Blobs were lists of conditions and jump locations
- Mysterious function popd return address; the

address of the jump table, and returned context to
calling function

- Realized what I was in for…
- Able to list of all commands

Other strange Keil compiler artifacts:
- Functions for C pointer dereference

- Harvard architecture requires different
instructions for code access and RAM access.

- General C style pointer must specify memory type
- 3 byte pointers, accessed with functions to

read/write each data type size
- 32 bit math functions

- 8 bit processor must do 32 bit math in software
- Case in code where 32 bit number right shifted 8

bits instead of just reading the 2nd byte
- Expect to find things that make no sense,

particularly in proprietary compilers or compilers for
less common architectures.

Looking for functionality:
- Transaction count is actually 24 bit (16,777,216)
- New commands discovered

- Command for single bit reading/writing
- Command to initialize CPLD firmware upgrade

- Looked at how the processor controls the CPLD
- Uses the ‘GPIF’ feature of the fx2.

- Hardware controlled state machine for
implementing electrical protocols

- GPIF configured with data from uninitialized RAM.
- One more unknown binary blog in firmware.

- 761 bytes!
- About time to look into that….

Memory Initialization Confusion:
- The final Blob of binary data is read at program start
- Code loops over addresses from

the data blob
- Based on the data, writes blocks

of data to addresses in a segment
- Harvard Architecture has no

automatic memory initialization
- In ideal cases, code is efficient
- Translated hand optimized asm

into python and fed it the blob
- All used RAM was initialized
- Contents were not modified, no reason to copy to

RAM from CODE.

Initialization

Main Loop

GPIF Configuration Data:
- Point of GPIF hardware...
- Extracted config data for one GPIF configuration
- Interpreting data:

- By hand is doable but a pain
- Cypress provides a GUI tool

- Imports specially formatted C files
- Produced C file from config

- Have everything to build
alternate firmware

Assembling a Firmware toolchain:
- First firmware goal
- Target: NOT the controller. (why)
- Breakout board:

- Cypress breakout
- 3rd party (ebay/alibaba)

- Compiler: SDCC (NOT KEIL)
- Firmware Loader: fxload
- First test
- Peripheral Library: fx2lib (djmuhlestein)

- USB Descriptor Table
- Tests (with USB)
- Debugging
- Basic commands implemented
- Lesson on reversing vs implementing

https://github.com/djmuhlestein/fx2lib

Moving to the Target Hardware:
- Limitations of dev boards (no CPLD)

- Possible solution: attach CPLD
- Issues (CPLD firmware)

- Issues with real hardware
- Debugging (no serial)
- Had 2 color LED and USB messages

- Problems encountered:
- Races
- Infinite loops/missed conditions

It worked. Source available from
https://github.com/diamondman/adapt-xpcusb-firmware

Xilinx Platform Cable Work Remaining:
- Unknown commands

- Observations
- Assumptions
- SPI surprise

- Check USB high speed
- Check Power Save Mode
- Tests
- Improved Docs (story)
- Packaging

Brief Firmware Work on Digilent (Atlys board):
- Acquiring firmware:

- No local files
- Blobs in shared libraries
- Issue with static analysis

- Wireshark to the rescue
- Decoding 0xA0 messages
- Producing hex file

- Found peripheral monitoring format (voltage)
- Firmware Template and build system

Section III
Putting this to good use.

Immediately Useful: firmware and docs
Long Term: JTAG ‘layers’ and
translator/optimizer

Revisiting Open Tools:
- Controller Drivers and their issues
- Priority of open tools vs vendor tools
- Chip Drivers
- Technical Debt

- Driver Interface
- Modern tool features (OpenOCD)

- Controller Support as a chore

Moving Forward:
- Controller Support Library (Proteus ISC)

- Shared Drivers
- Optimized for controller protocol!
- Common Interface?
- Comes with open firmware
- Programmer access to all layers
- Lower barrier of entry (new tools)

Library Considerations and future work:
- Library or Service (Pulse?)
- Language
- Support for multiple ISC protocols

- Early assumptions, and reality
- Needs

Special Thanks
- Danukeru (getting me to apply)

- Dr. Andrew Zonenberg (Coolrunner 2)
- David Carne (8051)
- John McMasters (community)
- All of silicon pr0n

- Mek Karpeles (...mess)
- Caitlin Morgan (listening to every version)
- Friends (input on proposal)

QUESTIONS?

