Reverse Engineering

M, In-System-Configuration
a %’% Controllers

%

N ¥ ~w Jessy Diamond Exum (diamondman)

NWNS Initial Project
Yy X 3-4 year in the making
7 7400 logic based processor

Agenda

1. An attempt to build a Processor (and how it
ended in flames)

2. A Walkthrough of reversing the Digilent & Xilinx
JTag Controllers

3. A New Hope: Generalizing Controller Access

(efficiently speak to devices with any type of controller)

4. Questions

Enter the rabbit hole

Wanted to make a processor

- 7400 logic (informed by college)

- Took Coursera class (Computer Architecture

- Logic board hell not worth it
- boards were huge, power hungry, read only
- Solution: FPGA S

T T T L G
- : (VAL e L o E.'-'._ LS LUBR Y
Problem: FPGA i m_mﬁw_‘_;_‘i .- :,

""""f" Hﬁmﬁf@%ﬂmﬁﬁ' i

'hﬂm‘ui

TR | -.l’__..-il T) e

tes

Xilinx Spartan 3e dev board Digilent

- Ethernet, VGA, PS2 (keyboard), decent price

- USB plug and play (Jtag controller built in).

- Did blinky light examples with schematic capture

- Xilinx tools not great at schematic capture. (note
powerpoint vs photoshop)

- Learned Verilog: an HDL (words not schematic,
faster to work with, industry standard)
Lessons+samples: www.asic-world.com/verilog/

Prerequisi

http://www.asic-world.com/verilog/
http://store.digilentinc.com/

‘
Getting Started

- Wanted to write a video driver (to control VGA
monitor), because it is cool. ~one week. First time
implementing electrical protocol (ADD FB post)

- Challenge 1: Story about pixel by pixel not
working/clock limitation.

- Challenge 2: Xilinx’s configuration tool (impact)
only worked on Windows, Linux kernel 2.5 and
older, and libusb drivers would not load
(mystery at the time).

The Slippery Slope

Load failure because Xilinx’'s IMPACT manually
loading libusb from centos location. Different in
Debian. Not using LD to do it automatically.

LD Preload, and remaining issues

Challenging to debug/reverse engineer
because proprietary, 15 gigs of binaries, C++/.
net/java, and against EULA

Considered switching vendors, e.g. Altera,
except they were all broken.

Not that it would matter...

Section Il
No board, no plan, time to reflect.

Bought several progressively better Digilent boards:
Coolrunner 2 Starter Board (XC2C256) — cheap CPLD

Basys 2 (Spartan 3e) — low end FPGA

Nexys 2 (Spartan 3e) — low end, but better board
Nexys 3 (Spartan 6) — Intermediate board

Atlys (Spartan 6) — high end chip and board

New (slightly irrational) Goals...

- Make open tools to compile HDL and flash chips
- Must work with Linux

- Support multiple Digilent boards

Which means... | needed to know how Digilent’s
boards worked:
- Programming Xilinx Chips
- Jtag & oscilloscope
- Digilent USB Commands
- usb, wireshark

What the Jtag is Jtag?

- Thought JTAG was just a programming protocol

- Found youtube videos (EEVBIog) on history hitp:
/[/lyoutu.be/TIWILeCS5BUs

- What is ISC?

- Highly Extensible. Pros and cons.

- Has auto detect

- TMS pin control chip state

- Learned init process

http://youtu.be/TlWlLeC5BUs
http://youtu.be/TlWlLeC5BUs
http://youtu.be/TlWlLeC5BUs

Observing the programming:
Had an oscilloscope (Amazing purchase)

Probed Clock and TMS
Detected board (Adept)
Captured Waves
Waveform was correct

Learning how to initialize the board
- Already have waveforms

- Need to know how to control board
- USB->controller->JTAG

- Wireshark

Vendor _
Drivers

R USB/IP/etc

DIGILENT f

 '_,1 JIEP T

Packet Log aveform Log
Inducing Cause and Effect:

Captured packets of JTAG initialization
Python packet replay
Concerns
Results

Source J.‘ t|n tion Protocol Le narr Info

9
e
1

-l.
1

12
13
14
15
16
17
18

Interpreting Packets
- Reading (http://www.usbmadesimple.co.uk http:

/[/lwww.beyondlogic.org/usbnutshell/usb3.shtml)
- Categorized
- Mistakes (dealing with ‘facts’)
- Rules for beginners (remember sammy jankis)
- Editing replay
- Command set overview

http://www.usbmadesimple.co.uk/
http://www.beyondlogic.org/usbnutshell/usb3.shtml
http://www.beyondlogic.org/usbnutshell/usb3.shtml
http://www.beyondlogic.org/usbnutshell/usb3.shtml

New Sources:
- Pace Slowed
- Found Adept SDK (by digilent)
- Digilent Only (as expected)
- Exposed functionality
- New Commands
- Gave names to variables/parameters
- Wrote C program using Adept SDK
- Results (learned bit options, check theories).

Remaining messages:
Several message Iinitialization (mostly read)
Commands OxE8 (seed) and OXEC (check).

- OxES8 write with random
- OxEC read
- OxE8 write with O

Random each time
Used IDA PRO to debug sdk program

- Stepped into initialization function
- C++ Mess. Class per board.
- Address Space Layout Randomization

Found USB code sending OxES8

- Parameter was based on...... uptime?!

USB code for sending OxEC.

- xors of seed with ‘Digr’
Purpose?
Other command findings

Making a new Program:

- Called it adapt

- Converted packets into python functions
- Talking to chip vs programming

- Intro to IEEE 1532 (BSDL)

- Motivation
- Solution
- Failure

- Jed and BSDL parsers

- Naive vision corrected
- Andrew Zonenberg (PhD RPI, IOActive, Recon 2015 “From
Silicon to Compiler”)
- XC2C256 address space translation CSV
- XC2C256 Graycode address
BSDL license issues

- Wrote code for flashing XC2C256

- |Issues

MORE BOARDS!!
- Checking other boards
- Plan: Talk to board — Program Chip

- Observed USB packets of other Digilent boards

Atlas, Digilent Nexys 2, Digilent Nexys 3
All had same API as first board

Initialized with big blob of 0OXxAO messages
Without O0xAOQ, responds with name only

- All boards with 0xAO have different USB chip

- First board had an Atmel AVR instead.
- Controller chip is Cypress EZ USB fx2
- EZ USB chips and firmware.

- Did not want to deal with firmware. Let’s
support more controllers...

27 XILNX

COMNECTOR
Platform Cable USB Il SIGNALS.

CONTROLLERS!
- Initially only cared about programming dev boards
- Learned external controllers used more often

- Controller per vendor

- No instructions for cross vendor use. Why?
- JTAG controllers electrically compatible! Should work
- Drivers!
- Make my own drivers? Documentation?

- Matching hardware is like a fashion statement

- Only Benefits Vendors
- Unacceptable, | can RE more controllers.
- Decided to start with Xilinx’s Controller

Setting up the Xilinx Platform Cable USB

- Monitored programming on windows

- Replay problems

- Monitored powering up on windows
- Big blob of 0XxAO messages: Firmware!
- Took apart: Cypress EZ-USB fx2!!!!

- Kernel driver role in linux

- fxload and udev

Reversing the Platform Cable’s Protocol
- Very different than Digilent’s
- Many commands for settings
- One JTAG command (Digilent had many)
- Full Control of all pins all the time
- Believed to be a 16 bit parameter for
transaction count
- Found documentation from old RE effort
- Described JTAG data format (correct)
- Warning against %4 transitions (wrong)
- Extended documentation
- Speed setting
- 256 different 0x20 messages (lazy OEM)

Adding Xilinx Platform Cable software support
- Wrote controller autodetect
- Improved my API
- Track JTAG state machine
- Functions for state select
- functions for direct register writing
- Existing abstractions were based on Digilent’s
functions...
- Flashing XC2C256 worked with Platform Cable
- Platform Cable slower than expected (stats?)
- How Xilinx iIMPACT does it
- Limited by Digilent based API
- Code too inflexible to allow fast operation
- Need to investigate other controller APls

MORE CONTROLLERS!
- Purchased more controllers:
- Altera USB Blaster
- Found OpenOCD documentation
- Similar to Digilent API
- OpendTAG controller
- Documentation provided by manufacturer
- TOTALLY different than what | had seen
- Keeps track of state machine for you!
- Easy to use (no manual state tracking)
- No fine grain control

Dealing with controller API types

- Three known types:

- One command controls all JTAG lines: Xilinx PCUSB

- Many commands specifying different combinations of lines
to write/hold at value: Digilent, Altera

- State machine control (hide raw bit access): OpendTAG
- Xilinx, Digilent, and Alterra controller API

conceptually the same: grouped bit control
- Very hard to implement OpendTAG driver in
system build for bit manipulation

Pattern Emerging

- Layers of JTAG activity (high level to low level)
- Chip Operations (Flash firmware/Erase)
- Jtag Register Read/Write
- Jtag State Machine Changing
- Jtag bit manipulation

Chip operations -> Register Read/\Write is easy

Register Read/Write -> State Machine Changes is easy
State Machine Changes -> JTAG pin activity is easy
Going backwards is not easy. Similar to decompiling.

We Need a Compiler/Translator and an Optimizer

TMS 111110100 {32X}¥{32X}*111100000000210 1100 000ARERE1 1100 0AEAEA]1 1000 0..
TDI 00000 0R0R {32X}1M{32X}MO00EEF0E01R1120000E0 01110111 A0 XXXXXXX 0000 1..
TDO Q0eER OROA {32X}H{32X} HOOEEEFREREEEEFA0 ARERE AEELAOLAL PAAL APOLORL RO BR L.
TCK 11111/11311 {32X} H{32X} 1111111123111 M11/31207)210133131131111{1111111 11118
Purpose Read 1°** ID 2™ 1D Enable I5C Select Flash Line Read Line
Ne—C L Read |Shift| Write |R [Shift] Write [Shift Write |®} Read
OPENJTAG RESET| pp |register|Register| IR Register 1 IR Register DR Register 'Rpegister

NTMS WTMS NTMS T T
DIGILENT WTMS WTMS . WTHS | ror |18 WTMS) yror ¥ wrms) Wi

WTMS L WTMS T \WTMS
WTMS WTMSTDI

XILINXPCr TRANSMIT TRANSMIT

;.
W
|| T
H

H

RTDO

LAYER EXAMPLES
4 Program/Erase/Validate Device
3 Execute JTAG Command (Write line of configuration data)

2 Load/Read Register, Change JTAG State

1 Any commands that reads and/or writes 1 or more values from any combination
of TMS, TDI, TDO, and TCK.}

0 JTAG Electrical Activity on TMS/TDO/TCK

Layers and Optimizer:
- Layers and translation operation
- Requirements

- Python implementation (Lazy, results): Source https://github.com/diamondman/Adapt

https://github.com/diamondman/Adapt

Usability Issues of new tools
- Should work out of the box
- Requires target BSDL and address translation
files, move information to Chip Driver
- Controllers require firmware
- Firmware redistribution issues
- The ‘Correct’ way of getting Xilinx firmware
- Register Xilinx account
- Agree to multiple EULASs
- Download and install ‘ISE tools’ (15 GB)
- Copy 21.8 kb file
- Decided all controller firmware should be open.
(Inner Stallman, he would say ‘free software’)

Preparing to dissect:

- EULA, possible workaround: Google search ‘xusb_emb.hex'.
Found schematic at http://www.mikrocontroller.net/
Hardware Accelerated: Coolrunner 2 (XC2C256)!!!!

Behavior of devices (data passing)

http://www.mikrocontroller.net/

Opening up the Xilinx Platform Cable:

- Cypress EZ-USB fx2 architecture
- Intel 8051 based. (Harvard Architecture)
- 256 BYTE stack, including RO-R8
- Attached USB hardware; interaction via shared memory
‘registers’ and interrupts.
- Attached '‘GPIF waveform’ hardware. Interaction via shared
memory ‘registers’ and interrupts.

- Heavily extended interrupt system
Reading the Reference manual was NECESSARY.

- Loadlng into IDA PRO

- No architecture auto-detected from hex file.
- IDA 6.5 did not have EZ USB fx2 option.
- Memory segment values obtained from Manual
- Hand entered missing information from Manual.
- ida 6.6 added better support, but not perfect
- Still unaware of 2nd stage interrupts (leaves a lot of
code as binary blobs; entry point not detected.

Inside the Firmware (IDA Pro)

- Less common architecture, no auto decompile (ASM only)
- Missing interrupts: many unknown blobs.

- Remaining blobs:

- Many stubs with no entry points
- Unknown blobs after function calls to ‘code_BD7’
Data was not valid/reasonable instructions

switch_command_not_ab: : CODE XREF: process_b8_usb_request+2FTj

code 4B5:

moy DPTR. #3ET _UPDAT wvalue L ; action
mov X A, BDPTR

code BD? : Value Bx6C, BxAZ2, BxAd

. byte 8x28, G,
. byte 6. Bx=A8,
. byte 8xE6C, 6,
. byte 6, BxB7,
. byte Bx¥6, B,
. byte 6, BxB7,
. byte 8x7D, G,
. byte 2, 8xCa,
. byte 8x908, 2,
. byte 2, B=ChH,
. byte 8x9E, G,

; CODE XREF: process_bf _ush request+2481j
104, H8xBF ; Lower IO4. 6 PKT_END->LAST_ WWORD
A, wvalue L backup
kkode BD7

., Bx8a,
Bx8C, b, @x28, el 5 . b, B=6F,
6, Bx6F, 6x94, b, 7 » 4 ., Bx98,
8x3a, 4, BXEE,

More on Unknown Blobs in Firmware:

- The unknown function called before blobs was strange

- Took one argument through a register

- Immediately pops the return address off of Stack

- Does not return at end, instead jumps to calculated address

- Loops around incrementing an address

- Calls to this function are followed by invalid code and then
multiple code blocks without references.

- Inexperienced, ended up asking IRC

code found end of buff:
mowvc A, BA+DPTR

moy RB. A

mow a, i

movc A, E4HDPTR

moy DPLB, A

moy DPHA, RO

clr f

jmp RA+DPTR

The Answer to the blobs after function calls:

Switch statements!
Part of code generated from the Keil Compiler
Blobs were lists of conditions and jump locations
Mysterious function popd return address; the
address of the jump table, and returned context to
calling function

Realized what | was in for...
Able to list of all commands

Other strange Keil compiler artifacts:
- Functions for C pointer dereference
- Harvard architecture requires different
Instructions for code access and RAM access.
- General C style pointer must specify memory type
- 3 byte pointers, accessed with functions to
read/write each data type size
- 32 bit math functions
- 8 bit processor must do 32 bit math in software
- Case in code where 32 bit number right shifted 8
bits instead of just reading the 2nd byte
- Expect to find things that make no sense,
particularly in proprietary compilers or compilers for
less common architectures.

Looking for functionality:

- Transaction count is actually 24 bit (16,777,216)
- New commands discovered

- Command for single bit reading/writing

- Command to initialize CPLD firmware upgrade
- Looked at how the processor controls the CPLD

- Uses the ‘GPIF’ feature of the fx2.

- Hardware controlled state machine for
Implementing electrical protocols

- GPIF configured with data from uninitialized RAM.
- One more unknown binary blog in firmware.

- 761 bytes!

- About time to look into that....

Memory Initialization Confusion:

- The final Blob of binary data is read at program start

- Code loops over addresses from
the data blob

- Based on the data, writes blocks
of data to addresses in a segment

- Harvard Architecture has no
automatic memory Initialization

- In ideal cases, code is efficient

- Translated hand optimized asm
iInto python and fed it the blob

- All used RAM was Initialized

- Contents were not modified, no reason to copy to
RAM from CODE.

GPIF Configuration Data:
- Point of GPIF hardware...
- Extracted config data for one GPIF configuration
- Interpreting data:
- By hand is doable but a pain
- Cypress provides a GUI tool
- Imports specially formatted C files
- Produced C file from Conflg
- Have everything to build
alternate firmware

Assembling a Firmware toolchain:
- First firmware goal
- Target: NOT the controller. (why)
- Breakout board:
- Cypress breakout
- 3rd party (ebay/alibaba)
- Compiler: SDCC (NOT KEIL)
- Firmware Loader: fxload
- First test
- Peripheral Library: fx2lib (djmunlestein)
- USB Descriptor Table
- Tests (with USB)
- Debugging
- Basic commands implemented
- Lesson on reversing vs implementing

https://github.com/djmuhlestein/fx2lib

Moving to the Target Hardware:
- Limitations of dev boards (no CPLD)

- Possible solution: attach CPLD

- Issues (CPLD firmware)

- |Issues with real hardware

- Debugging (no serial)

- Had 2 color LED and USB messages
- Problems encountered:

- Races

- Infinite loops/missed conditions

It worked. Source available from
https://github.com/diamondman/adapt-xpcusb-firmware

“n{\ ;\ |
\

L_-,:
ke

o

-
—
[
-
—
v
—
-

Xilinx Platform Cable Work Remaining:
- Unknown commands
- Observations
- Assumptions
- SPI surprise
- Check USB high speed
- Check Power Save Mode
- Tests
- Improved Docs (story)
- Packaging

Brief Firmware Work on Digilent (Atlys board):
- Acquiring firmware:
- No local files
- Blobs in shared libraries
- Issue with static analysis
- Wireshark to the rescue
- Decoding OxAO messages
- Producing hex file
- Found peripheral monitoring format (voltage)
- Firmware Template and build system

Section Il
Putting this to good use.

Immediately Useful: firmware and docs
Long Term: JTAG ‘layers’ and
translator/optimizer

Revisiting Open Tools:
- Controller Drivers and their issues
- Priority of open tools vs vendor tools
- Chip Drivers
- Technical Debt

- Driver Interface

- Modern tool features (OpenOCD)
- Controller Support as a chore

Moving Forward.:
- Controller Support Library (Proteus ISC)
- Shared Drivers
- Optimized for controller protocol!
- Common Interface?
- Comes with open firmware
- Programmer access to all layers
- Lower barrier of entry (new tools)

Library Considerations and future work:
- Library or Service (Pulse?)
- Language
- Support for multiple ISC protocols
- Early assumptions, and reality
- Needs

Special Thanks
- Danukeru (getting me to apply)

- Dr. Andrew Zonenberg (Coolrunner 2)
- David Carne (8051)

- John McMasters (community)

- All of silicon prOn

- Mek Karpeles (...mess)
- Caitlin Morgan (listening to every version)
- Friends (input on proposal)

N '
W_ “Mm‘ 44985
QUESTIONS?

.{

