
FROM KERNEL ESCAPE TO SYSTEM CALC

This Time Font
hunt you down

in 4 bytes!

@zer0mem@promised_lu

一步一步
TTF

 what ?

 Pinging TTF

 Different

 start to play

 wild overflow

TECHNIQUE

 data to kernel

 bitmap wants to help!

 bit of math instead write-what

 ruling of bitmap!

 x64, KASLR, NX, SMEP, SMAP, CFG

 echo from the past

 have we problems, security ?

#whoarewe [KEEN TEAM]
We are doing sec research

We like challenges & security

 pwn2own 2013 / 2014 / 2015

 actively contributing to geek community

 working with project zero

 cve / techs / blog / tools / codes / conferences

 GeekPwn organizer

 #shanghai #beijing

Practical Example

NoSuchCon :

http://www.slideshare.net/PeterHlavaty/
attack-on-the-core

SyScan :

http://www.slideshare.net/PeterHlavaty/
back-to-the-core

http://www.nosuchcon.org/ https://syscan.org/ https://www.syscan360.org/

we were talking before of some issues in kernel … … this time we will show it in practice

http://www.slideshare.net/PeterHlavaty/attack-on-the-core
http://www.slideshare.net/PeterHlavaty/back-to-the-core
http://www.nosuchcon.org/
https://syscan.org/
https://www.syscan360.org/

TTF, what is that ?
TRUE TYPE FORMAT

TrueType is an outline font standard developed
by Apple and Microsoft in the late 1980s as a
competitor to Adobe's Type 1 fonts used in

PostScript. It has become the most common
format for fonts on both the Mac

OS and Microsoft Windows operating systems.

The primary strength of TrueType was originally
that it offered font developers a high degree of

control over precisely how their fonts are
displayed, right down to particular pixels, at

various font sizes. With widely
varying rendering technologies in use today,

pixel-level control is no longer certain in a
TrueType font.

…

THIS TOOL (IS) FABULOUS

Offers VM, where in certain conditions you can
with your controlled VM instructions achieve :

◦ READ

◦ WRITE

In certain scenario it offers boosting
surrounding structures in the same pool, what
can leads to :

◦ READ

◦ WRITE

+ some other offering in certain conditions

Ok that was .. lazy [background]

Nice internals in attackers perspective :

https://cansecwest.com/slides/2013/Analysis%20of%20a%20Windows%20Kernel%20Vuln.pdf

Fuzzing fonts, structure info .. :

https://digteam.github.io/assets/tocttou.pdf

https://media.blackhat.com/us-13/US-13-Chan-Smashing-The-Font-Scaler-Engine-in-Windows-
Kernel-Slides.pdf

https://cansecwest.com/slides/2013/Analysis of a Windows Kernel Vuln.pdf
https://digteam.github.io/assets/tocttou.pdf
https://media.blackhat.com/us-13/US-13-Chan-Smashing-The-Font-Scaler-Engine-in-Windows-Kernel-Slides.pdf

Pinging TTF
January meeting
about pwn2own

February decided we will
go after our TTF bugs

March pwn2own, 2 kernel
escapes to system calcs

 building novel TTF fuzzer (@promised_lu)

 let fuzzer run for 3 weeks

 3 *exploitable* bugs discovered at that period

 3-4 weeks for 2 kernel escapes by TTF

more bugs discovered waiting for review now

This time bit different

TTF from the past
 Bug to modify state of virtual machine

 Using VM instructions to pwn kernel

this TTF
 Bug in building state of VM

 Sequence of instruction (4b) to trigger bug

 No more control from VM :\

Shall we play a game ?

#tools & #materials
You will need to parse TTF : TTX

You will need to understand format
to build your own parser / update-er :

View it in human quick & understandable way :
FarManager / ConEmu & plugins

https://pypi.python.org/pypi/FontTools & https://github.com/behdad/fonttools/ http://www.farmanager.com/ https://twitter.com/ConEmuMaximus5

http://www.microsoft.com/typography/otspec/otff.htm

https://github.com/behdad/fonttools/
https://github.com/behdad/fonttools/
http://www.farmanager.com/
https://twitter.com/ConEmuMaximus5
http://www.microsoft.com/typography/otspec/otff.htm

Minimize your problem!
1. As you got crash, problem can be

everywhere

2. Build parsing tools (or use existing ones)

3. Kick all part what is not necessary from
TTF out

4. Start working on minimalized TTF

https://media.blackhat.com/us-13/US-13-Chan-Smashing-The-Font-Scaler-Engine-in-Windows-Kernel-Slides.pdf

https://media.blackhat.com/us-13/US-13-Chan-Smashing-The-Font-Scaler-Engine-in-Windows-Kernel-Slides.pdf

gotcha! Wild Overflow

 finally we got root cause!

 Only XX pages to be overflowing in

 need to alter XX pages in kernel pool without crash ?!

No interaction from VM is possible anymore

Take it easy ?!

x64

 got overflow

 Must control data after

 x64 introduce a lot of gaps

 Spraying as was used before is
ineffective

 But …

 …not in the same pool

http://www.alex-ionescu.com/?p=246

http://www.alex-ionescu.com/?p=246

Look at your pool
Conditional breakpoint command on ExAllocatePool-0x21 on big allocs & results

controlled size & at byte level

Big Pools
RANDOMIZATION

 Not at big pools

Making controlled holes at will

 Precise pool layout

SPRAYING

 still highly effective inside targeted pool

 if you know base of pool, you can hardcode

 kmalloc & kfree at your will

wild overflow is no problem anymore!

By Design #1 [overflows]
1. Do pool layout

I. spray bitmaps

II. create hole for ttf

2. No PAGE_NOACCESS interaction to care about

3. No crash anymore

4. More complicated when randomization in place, but .. doable ..

http://www.slideshare.net/PeterHlavaty/overflow-48573748

http://www.slideshare.net/PeterHlavaty/overflow-48573748

write (overflow) – what ? ... N O !

 follow right path at right
moment

 control output of math
operation - to some extent

going to be complicated ?

You need to

go trough some
math, semi -

controlled write-what

meet some
conditions to write-

semi-what

control kernel
memory

must to use
_gre_bitmap header

member!

By Design #2 [SMAP betrayal]
Controlled data in kernel, bitmap is just an example! Look more, you will find more …

https://msdn.microsoft.com

https://msdn.microsoft.com/

win32k!
_GRE_BITMAP

Session Pool

kmalloc – CreateBitmap

kfree – DeleteObject

Controlled – {Set/Get}BitmapBits

Known-PLAIN-state header!

By Design #3 [plain state, ptr ?!]

PLAIN
header

&buffer

size&lock

feature 1 : user data : kernel data == 1:1
◦ by design #2

feature 2 : *plain* headers [in general]
◦ Properties : size, width, height, …
◦ Pointer to buffers
◦ Pointer to function or ‘vtable’
◦ Pointer to another member struct : lock, …

Consequences :
◦ From user mode I know content of header (size, ..)
◦ I can guess content of header (pointers – base, gran)
◦ I can manipulate it if I have tool to do it [our case]
◦ I can use it when it is necessary [our case]

http://www.slideshare.net/PeterHlavaty/attack-on-the-core

http://www.slideshare.net/PeterHlavaty/attack-on-the-core

Stage #1 [overflow]
What we do :
 Math-calc based overflow

 In right conditions is something
somehow rewritten

 We can rewrite size

 But then we also rewrite Lock

What we get :
 size is bigger (but still small!)

 Lock - DWORD part is corrupted!

Stage #2 [full kernel IO]

* Sometimes getting more tricky

due to more complicated overflow
in our case we need 3 bitmaps
idea is similar ...

What we do :
 spray, &Lock ptr points to

accessible memory

 SetBitmapBits to boost followed
bitmap size to ~0

What we get* :
 FULL KERNEL IO

 {Set/Get}BitmapBits at the
second bitmap

wrap up

Wild
overflow

semi-control
overflowing

bytes

Kernel
memory

(part of it)
control

Bug under
control

Full kernel
IO achieved

what now ?
Era of security features ? X64, KASLR, NX, SMAP, SMEP, CFI ?!

Kernel security …

X64 – virtual address space

KASLR – modules

NX – ExAllocatePool nonexec by default

SMEP – no easy exec anymore +-

SMAP – hopefully SOON

CFI – by control flow guard implementation, hopefully SOON

http://www.slideshare.net/PeterHlavaty/guardians-ofyourcode

http://www.slideshare.net/PeterHlavaty/guardians-ofyourcode

KASLR

 Randomization of module
addresses

 Randomization of pool addresses

 When you do not know where
your target is then is hard to attack

By Design #4 [full kernel IO]

Touching invalid memory ?
[x64 VAS > PAS]

Kernel memory layout ?
[KASLR]

Leak pointer chain to valid module :
◦ Info-leak bug
◦ _sidt / _sgdt

Turn your bug to pool overflow
◦ misuse object on the pool

* Or use old know technique *

Echo from the past [wtf ?!]

 _sidt & _sgdt from wow64 does not leak

 I was lazy to invent new method for second TTF

Wait, hmm, there was something years ago ..

 I was sure it is fixed already, but worth to check

 Leaking Session Pool objects, problem bro ?

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_Slides.pdf

gSharedInfo

https://media.blackhat.com/bh-us-11/Mandt/BH_US_11_Mandt_win32k_Slides.pdf

Echo from the past [implementation]

Are we done ?
> Yeah, poping system calcs … but we want kernel EXEC!

Design (#3) strikes back [plain ptr]
some good function pointers at windows kernel are free to overwrite!

◦ we skip some good candidates like HalDispatchTable to pinpoint some different …

SMEP

 X86_CR4_SMEP

 Execute user mode code with
kernel mode privileges results in
BSOD

 Previously heavily used as
exploitation shortcut

‘SMAP’

 X86_CR4_SMAP

 In syscall user pass arguments as
well

 Those arguments have to be
readed

 No unified method for read /
write those inputs is problem for
enabling SMAP

NonExec

 Code is special case of data

 If creating data with EXEC

 any data shipped from user mode
to kernel can be executed

 Unless NonPagedPoolNx
take place at ExAllocatePool

SMAP -> SMEP ?

 { ‘by design #2’ + ‘echo’ / overflow } bypass SMAP

 Page Tables to bypass NonExec & SMEP ?

 Lets say some additional protection

 HyperVisor solution – EPT, TrustZone , …

Page Table attack
VadPwn &

PageTablePwn boost

https://labs.mwrinfosecurity.com/blog/2014/08/15/
windows-8-kernel-memory-protections-bypass/

http://www.slideshare.net/PeterHlavaty/back-to-the-core

Insection:
AWEsome ...

http://www.alex-ionescu.com/?cat=2 - intro

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/
http://www.slideshare.net/PeterHlavaty/back-to-the-core
http://www.alex-ionescu.com/?cat=2

ExAllocatePool

We need to get RWE memory

OK, lets allocate it!

* remember we have kernel IO !!

Flags problem, it must be RWE memory !

Address problem, how to leak it back to user ?

Window tricking [that’s a cheat!]

There we go, some magic function again

Working with window handles

writeable ‘vtable’

‘Unused’ function pointers there

Returning output back to user

Lets mess little bit with logic!

provide window pointer as ExAllocatePool flags ?

Ensure that window pointer can act as writable & executable flag ;)

WINDOW

handle (user argument)

WINDOW
pointer (kernel argument)

output returned to user

that must be nasty …

http://www.slideshare.net/PeterHlavaty/vulnerability-desing-patterns

http://www.slideshare.net/PeterHlavaty/vulnerability-desing-patterns

Control Flow
Guard

 Indirect calls check

 in kernel mode not so widely used
yet, hopefully will be … soon …

 bitmap & registered functions

Control Flow Guard [FDA]

 It covers old way of thinking

 Good for mitigating ROP to some extent

 CFG-bitmap does not care about integrity of objects

 Function-Driven-Attack prone

 FDA is more complicated than ROP but nice way

 You will searching for vfgadgets instead of rop-gadgets

 realize that for now we used function driven attack only (exallocatepool + window tricking) !

http://syssec.rub.de/media/emma/veroeffentlichungen/2015/04/13/COOP-Oakland15_1.pdf http://www.slideshare.net/PeterHlavaty/back-to-the-core

http://syssec.rub.de/media/emma/veroeffentlichungen/2015/04/13/COOP-Oakland15_1.pdf
http://www.slideshare.net/PeterHlavaty/back-to-the-core

By Design #4 [CF stack please]

http://www.slideshare.net/PeterHlavaty/back-to-the-core

We have just one stack

 Data & Control Flow mixed

 any RW instruction can touch stack

… what CFI we are talking about ? …

http://www.slideshare.net/PeterHlavaty/back-to-the-core

Stack hooking

Get address of
stack of your
kernel thread

Use write-where-
what primitive
(kernel IO) to it

Just now, you did
stack hooking of
you own stack

CFI bypassed by
design!

kernelIO.Write(own_stack, own_driver_ep)

poping calcs #2 – d’art

btw. Did you spot something ?
1bit-flip to kernel pwn ?

Any problem here ? [aftermath]
pwn2own – recon => XX - days

we found it in 3weeks – for *security* and fun

Other guys spending much more time at TTF, most likely not for fun nor for security

After we got bug under control, we spent 1-2days with executing it

Additional few days with design - d’art 

Exploitation technique ? Nope, it is package of design features.. OS design is bit old ?

Known security issues persist *PUBLIC* for 4+ years

https://securelist.com/files/2015/06/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf - as a recent example ?

https://securelist.com/files/2015/06/The_Mystery_of_Duqu_2_0_a_sophisticated_cyberespionage_actor_returns.pdf

10.24.2015

Pick a device, name your own challenge!

INTERNS WANTED! WE ARE HIRING! :)

@K33nTeam
hr (at) keencloudtech.com

Q & A

