
© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Reverse Engineering Flash
Memory for Fun and Benefit
Jeong Wook (Matt) Oh / 2014

oh@hp.com

oh.jeongwook@gmail.com

mailto:oh@hp.com
mailto:oh.jeongwook@gmail.com

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.2

De-soldering

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.3

De-soldering

Use an SMT Rework station with an hot air blower:
• The solder alloy melts at around 180 and 190°C (360 and 370°F), but I recommend setting the

temperature slightly higher

Note: Before applying high heat to the chip, put insulating tape around the target area

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.4

FTDI FT2232H & NAND Flash
Memory

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.5

FTDI FT2232H breakout board

A chip for USB communication
• Provides USB 2.0 Hi-Speed (480Mb/s) to UART/FIFO IC

Note: Put female pin headers on each port extension

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.6

MCU Host Bus Emulation Mode

FTDI FT2232H supports multiple modes

• Use ‘MCU Host Bus Emulation Mode’ for this case

The FTDI chip emulates an 8048/8051 MCU host bus

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.7

FT2232H Commands

By sending commands and
retrieving results, the software
reads or writes bits through I/O
lines.
• See FTDI’s note for more detail

Commands Operation Address

0x90 Read 8bit address

0x91 Read 16bit address

0x92 Write 8bit address

0x93 Write 16bit address

0x82 Set High byte (BDBUS6, 7)

0x83 Read High byte (BDBUS6, 7)

http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.8

NAND Flash memory pins and names
1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

39

38
37
36
35
34
33
32
31
30
29
28
27
26
25

48
47
46
45
44
43
42
41
40

R/B

RE

CE

Vcc

Vss

CLE

ALE

WE

WP

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

I/O0

Vcc

Vss

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.9

Connection between FT2232H and NAND Flash
Memory

The connections are mostly based on the
information from Sprites Mod , but there
is a slight modification between BDBUS6
and CE (9) connection.

FT2232H

NAND Flash
Memory

29

30

31

32

41

42

43

44

19

16

17

8

12

13

37

36

18

9

7

ADBUS0

ADBUS1

ADBUS2

ADBUS3

ADBUS4

ADBUS5

ADBUS6

ADBUS7

ACBUS5

ACBUS6

ACBUS7

BDBUS2

BDBUS3

3.3v

GND

BDBUS6

BDBUS7

I/O0

I/O1

I/O2

I/O3

I/O4

I/O5

I/O6

I/O7

WP

CLE

ALE

RE

WE

Vcc

Vss

Vcc

Vss

CE

RB

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.10

NAND Flash reader/writer

You need an FTDI FT2232H breakout board, a
USB cable, a TSOP48 socket and wires

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.11

TSOP48 socket

Pin 1 location

Place your NAND Flash chip inside the TSOP48 socket:
• This socket is very useful
• Use it to directly interact with the extended pins and avoid touching and possibly

damaging any Flash memory chip pins

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.12

Data Lines
FT2232H Use NAND Flash Pin number Description

ADBUS0 Bit0 I/O0 29

DATA INPUT/OUTPUT

Input command, address and data

Output data during read operations

ADBUS1 Bit1 I/O1 30

ADBUS2 Bit2 I/O2 31

ADBUS3 Bit3 I/O3 32

ADBUS4 Bit4 I/O4 41

ADBUS5 Bit5 I/O5 42

ADBUS6 Bit6 I/O6 43

ADBUS7 Bit7 I/O7 44

Low byte
• 0x90,0x91,0x92,0x93 commands can be used to set values

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.13

Data Control Lines

FT2232H Use NAND Flash Pin number Description

ACBUS5 Bit13 WP 19 WRITE PROTECT

Write operations fail when this is not high

ACBUS6 Bit14 CLE 16 COMMAND LATCH ENABLE

When this is high, commands are latched into the command

register through the I/O ports

ACBUS7 Bit15 ALE 17 ADDRESS LATCH ENABLE

When this is high, addresses are latched into the address

registers

High byte
• 0x91, 0x93 can be used to set values

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.14

I/O and Strobe Lines

• BDBUS6 (I/O0), BDBUS7 (I/O1) is controlled by 0x83, 0x82 command
• RD#, WR# is connected to RE, WE pin on NAND Flash

FT2232H Use NAND

Flash

Pin number Description

BDBUS6 I/O0 CE 9 CHIP ENABLE

Low state means, the chip is enabled.

BDBUS7 I/O1 RB 7 READY/BUSY OUTPUT

This pin indicates the status of the device operation.

Low=busy, High=ready.

BDBUS2 Serial Data

In (RD#)

RE 8 READ ENABLE

Serial data-out control. Enable reading data from the

device.

BDBUS3 Serial

Signal Out

(WR#)

WE 18 WRITE ENABLE

Commands, addresses and data are latched on the

rising edge of the WE pulse.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.15

Power Lines

Use NAND

Flash

Pin

number

Description

3v3 POWER 3v3 12 POWER

GND GROUND GND 13 GROUND

3v3 POWER 3v3 36 POWER

GND GROUND GND 37 GROUND

• Power lines

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.16

Read Operation Example

• CLE and ALE go high - the

controller is sending commands

and addresses

• The RE changes phases when

page data is read from the NAND

Flash chip

• The R/B line goes low during the

busy state and back up to high

when the NAND chip is ready

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.17

Basic command sets for usual NAND Flash memory
(small blocks)

Function 1st cycle 2nd cycle

Read 1 00h/01h -

Read 2 50h -

Read ID 90h -

Page Program 80h 10h

Block Erase 60h D0h

Read Status 70h

There are more complicated commands available depending on the chipsets.
• The pins and other descriptions presented here are mostly focused on small block NAND Flash models (512

bytes of data with 16 bytes OOB)
• The model with a large block size uses a different set of commands, but the principle is the same

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.18

Read operation

To read a page, it uses the Read 1 (00h, 01h) and Read 2 (50h) functions

To read a full page with OOB data from small block Flash memory, you need to read it 3 times:

• The 00h command is used to read the first half of the page data (A area)

• The 01h command is used to read the second half of the page data (B area)

• Finally, the 50h command is used to retrieve the OOB of the page (spare C area)

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.19

Read operation

• CLE is set to high (1) when commands (00h, 01h, 50h) are passed
• ALE is set to high (1) when addresses are transferred
• R/B pin is set to low (0) when the chip is busy preparing the data

RE and WE are used to indicate the readiness of the data operation on the I/O lines:
• When the WE signal is rising, new bytes (command and address in this case) are sent to the I/O pins
• When the RE signal is falling, new bytes come from the NAND Flash memory chip if any data is available

0 1

1

1 (Ready)R/B=0 (busy)

0

0

1 (Ready)

CLE

ALE

R/B

RE Falling for each bytes1

00h/01h
/50h

Start Address

A0 – A7 A9 – A25
Data OutputI/O0~7

WE 1Rising for each bytes

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.20

Reading data
Write

Command
Write

Address

Read
Data

1. First, the WE and CLE logic changes to
send commands.

2. Next, the WE and ALE will change state to
send addresses.

3. Finally, RE is used to signal reading of
each byte.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.21

Reading a small block page

• NAND_CMD_READ0
(00h)

• NAND_CMD_READ1
(01h)

• NAND_CMD_READOOB
(50h) Read spare C

area (512-527)

Read A area
(0-255)

Read B area
(256-511)

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.22

Reading data

Download the FlashTool
code from here first. You
should install prerequisite
packages like pyftdi and
libusbx. With everything
setup, you can query basic
Flash information using
the –i option.

You can also read the raw data
with the –r option. It takes
some time to retrieve all the
data depending on the size of
the memory.

FlashTool supports sequential
row read mode. You can specify
the –s option and it will use the
mode and increase reading
performance. The speed of
reading is 5-6 times faster than
normal page-by-page mode.

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/eblot/pyftdi
http://libusbx.org/

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.23

Write operation pin states

The writing operation is done through sequence-in command (80h) and
program command (10h):

• The read status command (70h) is used to retrieve the result of the write operation
• If I/O0 is 0, the operation was successful

0 1

1

1 (Ready)
R/B=0
(busy)

0

0

1 (Ready)

CLE

ALE

R/B

RE Falling1

80h
Address Input

A0 – A7 A9 – A25
I/O0~7 Page + OOB data

WE 1Rising for each bytes

70h I/O0=status

Rising 1

10h

1

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.24

Writing a small block page with spare C area

Write A area
(0-255)

Write B area
(256-511)

Write spare C
area (512-527)

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.25

Writing Data

After command and address are

sent, WE fluctuates repeatedly to

send bytes.

Write
Command

Write
Address

Write
Data

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.26

Working with a bare metal
image

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.27

Page+OOB

ECC Bad Block Marker

OOB Area

Data

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.28

ECC (Error Correction Code)

Failures occur with data on memory:

• A checksum can be useful to detect these errors

ECC (Error Correction Code) is a way to correct one bit of failure from a page:

• Besides detecting errors, ECC can correct them too if they are minor

• Uses the concept of Hamming code

Modern Flash memories use various ECC algorithms that have their roots in Hamming code:

• Even similar chipsets from the same vendor may have slightly different ECC algorithms

• Differences are generally minor (tweaks of XOR or shifting orders or methods)

• You need to figure out the correct algorithm to verify the validity of each page and to generate
ECC

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.29

ECC calculation table

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'

P8

P8'

P8

P16'

P16

P16'

P16

...

P32'

P32'

P1 P1' P1 P1' P1 P1' P1 P1'

P2 P2' P2 P2'

P4 P4'

P2048'

P2048

...

...

Representation of bits
on a page with size of
512. Each bit is
represented by a cell
and each row is one
byte. From this matrix,
you can calculate
various checksums
across bits.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.30

Example - P8' calculation

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'

P8

P8'

P8

P16'

P16

P16'

P16

...

P32'

P32'

P2048'

P2048

...

...

P8’ checksum is calculated by XOR-ing all the bits in red

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.31

Example - P16' calculation

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'

P8

P8'

P8

P16'

P16

P16'

P16

...

P32'

P32'

P2048'

P2048

...

...

• Uses bits from byte[0], bytes[1], byte[4], byte[5] and so on until byte[508] and byte[509] for
checksum calculation

• Other column checksums like P8, P16’, P16, P32’, P32, P2048’ and P2048 are calculated in same
manner

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.32

Code for calculating row checksums

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.33

Example - P2 calculation

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P1 P1' P1 P1' P1 P1' P1 P1'

P2 P2' P2 P2'

P4 P4'

The column checksums are calculated over the
same bit locations over all the bytes in the page.

The picture shows how P2 can be calculated by
taking bits 2,3,6,7 from each byte.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.34

Row checksum calculation code

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.35

ECC calculation code

You need to calculate 3 ECC values based on the checksums calculated

The row and column checksum methods are very similar for different NAND Flash
memory models, but ECC calculations tend to be slightly different across different
models

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.36

Bad blocks

• Bad blocks is a very generic concept that is also used with hard disk technology:

• With Flash memory, if errors are more than the ECC can handle, the entire block is marked as
bad

• Bad blocks are isolated from other blocks and are no longer used

• According to the ONFI standard, the first or last pages are used for marking bad blocks

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.37

Example bad block check routine

Some vendors use their own scheme for
marking bad blocks:
• Ex) If the 6th byte from the OOB data of

the first or second page for each block has
non FFh values, it is recognized as a bad
block (Samsung and Micron).

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.38

How a bad block is marked

Start of a bad block

Bad block marker != 0xFF
OOB

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.39

Reverse engineering Flash
memory data

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.40

An example of Flash memory layout

1st stage boot loader
(1 block)

U-Boot

U-Boot Image 1
(Ramdisk)

U-Boot Image 2
(Kernel)

JFFS2

Usual structure of NAND Flash memory used for booting up embedded
systems:

• The first block is always loaded to address 0x00000000
• U-Boot code and images follow
• When boot loading, code and U-Boot images are read only

The JFFS2 file system is used for read and write:
• When a file is saved, it goes to JFFS2 file system

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.41

Low level initialization of the system

This boot loader does low level initialization:
• It loads up the next level boot loader

Note: The image I worked on showed very interesting strings, like the name of the
1st boot loader and some log messages

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.42

U-boot boot code

After the 1st stage boot loader, there is a next
level boot loader that performs various, more
complex operations:

• The kernel image and actual file system are
placed inside

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.43

U-Boot image header structure

Image Name

Magic
Image Length

Compression Type

Image Type

The important value in retrieving the
whole image file is the image length:

• The header size is 0x40 and the
image length is 0x28A03B in this
case. This makes total image size
of 0x28A07B.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.44

Calculating U-Boot image size on a
bare metal image
For my example:

One page is 0x200 bytes, so a page of 0x28A07B/0x200 = 0x1450 and more of
0x28A07B%0x200 = 0x7B bytes are needed

One page on the NAND dump image is 0x210 because of the extra OOB size (0x10)

So the physical address of the image end is similar to the following:

page count * (page size + oob size) + extra data
= 0x1450 * (0x200 + 0x10) + 0x7b
= 0x29E57B

The start address of the image is 0x31800. If you add up this to the size of the image on the
NAND image (0x29E57B), it becomes 0x2CFD7B:

c:\python27\python DumpFlash.py -r 0x00031800 0x002CFD7B -o Dump-00031800-UBOOT.dmp
flash.dmp

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.45

U-Boot image disassembly

IDA doesn’t do well with multi-file images

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.46

Multi-file image

1st image length 2nd image length End of image length

U-Boot header
Multi-file image This image has two images inside it

with lengths of 0x000E9118 and
0x001A0F17

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.47

Mounting RAMdisk image

When image 0 looks like a code file, image 1 has more interesting contents:
• You can identify that it is gzip compressed
• After decompression, if you run file command on the file, it shows that the

file is an ext2 file system file

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.48

Mounting RAMdisk image

After pushing the image, you can mount the
MTD block device using the mount command
and browse and modify the file.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.49

mkimage information for 2nd U-Bootimage

Start of gzipped
kernel image

IDA loads this image up without any issues. There are no hidden images.
• Unfortunately the code shown by IDA is the bootstrapping code that decompresses

following the gzipped kernel image
• To identify the start of the kernel image, search for the gzip image magic value (0x8b1f)

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.50

Kernel image disassembly

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.51

JFFS2 erase marker location from a page and spare
column bytes

Identifying the JFFS2 file system from the
raw NAND Flash image is relatively easy

Usually JFFS2 puts specialized
erasemarkers inside the spare column of
each page

Erasemarker
ECC Bad block

indicator
(FF=Clean)

OOB

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.52

Mounting JFFS2 file system using a MTD

First, you need to create a MTD device:
• Load related Linux kernel modules like

mtdram, mtdblock and JFFS2. This creates a
MTD device on the system.

After successful mounting, you can navigate and
modify the file system on the fly

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.53

Writing JFFS2 data

1. Dump mtdblock data to a file

2. Add OOB area
• python DumpFlash.py -R -o mtdblock0.oob.dmp

mtdblock0.dmp

3. Program memory at JFFS2 location

• python FlashTool.py -w mtdblock.mod.oob.dmp

-R 0x12820 0xffffffff

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.54

SMT Re-soldering

After modifying the raw data and writing it back to the
Flash memory, re-solder the chip:
• The re-soldering process is not much different from usual SMT

soldering
• SMT was originally developed for automatic soldering of the PCB

components
• The chips are usually small and the pitch of the pins is also relatively

small
• Soldering these chips to the PCB manually is challenging, but not

terribly difficult
• There are many different methods, but I placed the chip on the pin

location and heated the pins using the soldering iron
• The solder residue left from previous de-soldering process melts

again and the chip can be soldered again using this solder
• Various other detailed technologies can be found on the Internet

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.55

Bridge & damaged pins

There are many pitfalls with SMT soldering and one of the
big issues is bridging:

• The pitch for NAND flash TSOP48 model is 0.5 mm (which is extremely
small). The solder can go over multiple pins and create shorts

One of the big problems with re-soldering is possible
damage to the board:

• Excessive heat is applied during desoldering and it can damage the PCB
board

• Be extra careful when you re-solder the chips!
• Luckily, with Flash memory, many pins are not used at all. If the damaged

patterns are not used, then the chips operate normally
• Check with the chip datasheet to see if damaged patterns are used by the

chip

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.56

My tools

FlashTool – Python Implmentation of Flash reader/writer software
• https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

• Write support

• Fast sequential row read mode support

• More experimental code coming.

Enhanced NandTool (forked from original NandTool): added writing support
• https://github.com/ohjeongwook/NANDReader_FTDI

• Write support, which is missing from original NANDTool project from Sprites Mode

DumpFlash.py: Flash image manipulation tool (ECC, Bad block check)
• https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

DumpJFFS2.py: JFFS2 parsing tool
• https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.57

Conclusion
Interacting directly with Flash memory is useful when JTAG can’t be used:
• This is increasingly relevant as vendors obfuscate or remove JTAG interfaces to protect their intellectual property

• By directly interacting with the low level Flash memory interface, you can access data that sometimes can’t be
retrieved otherwise

The de-soldering method is referred to as destructive, but it is still possible to re-solder
the chip to the system using SMT soldering methods:
• There is more chance of damaging the circuit board, but the chance of success is still high enough

There are many factors when extracting, modifying and reconstructing a bare metal
image with your modification like ECC, bad blocks and JFFS2 erasemarkers:
• You might try to modify code from many places like the boot loaders, the kernel or the JFFS2 root image

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.58

Credits

Original design of NAND reader/writer

Sprites Mod

NANDTool

Sprites Mod and Bjoern Kerlers

