

About Me

e Security Researcher at
BlackBerry

— (But | don’t represent them)

* Studied electrical engineering, » \§a..
but mostly into software 7
nacking

* First-time hardware hacker/
reverse engineer

 Tamagotchi enthusiast

What are Tamagotchis?

 The same virtual pet toys you remember from
the 90’s

* Functionality has evolved substantially

— Now they can go to school, have jobs, make
friends, get married and have kids!

 Newer versions have an IR interface
so that they can communicate with
other Tamagotchis

TamaTown Tama-Go

 The “Christmas” Tamagotchi from 2010
* Same functionality for smaller hands

e Supports detachable ‘figures’ with extra
games and stores

Goals

Dump Tamagotchi code

Answer the ‘deeper questions’ of Tamagotchi life
Make my gotchis rich and happy

Make a TV-B-Gotchi

Have fun!

¥oscope for Linux
hitp:iikoscope.sourceforge.netf

Reply to this comment

Do | remember correctly that these critters could "have children" when paired up (and you would, | guess, have
multiple virtual critters running around on your Tamagotchi device?)

he idea of decoding the IR and eventually running around having my hotebookipda "impregnating” innocent
amagotchi devices amuses me greatly...

Reply to this comment

what device did you use send a messege backto
globo@olhc.waoll.catholic.edu.au

Hardware Teardown

* Took apart a Tama-Go and Tamagotchi to
determine if code dumping was a possibility

* Looked for helpful interfaces

e Also took apart a figure

Tama-Go Board

N

/ n - ?o -
7.©“um’£}!‘i‘|‘unum!

LA

-

Tama-Go Figure

20

@ (o

| |
Do
P
M
1
a0

ldentifying the Microcontroller

* Considering the lack of external hardware,
MCU was likely under the ‘blob’

* Tried several methods to remove, including
acetone, heat, a razor blade and a chopstick

* Travis Goodspeed kindly offered to decap the

chip with acid 11 r../\ -
w7

//
I ,-x-G

* Eventually, success!

8131

Cuw3 o
Dwa
COea ER

ed

- omom .
- b = A

" "
a~ &

[
bl
-
€3
!
=
=
&
-
2
b
&=
T

(30

}4::

T EEDEE:

ERET

a
Il

a

Eaghaaso

np

TERT
LE%

ENLLED

ce
SESH ME

5‘}1-‘:1

=
-

CONEES

SECLO Mn
SECLL R4
SECL2 R
L6119

-y

GPLB5X Series LCD Controller

8 bit 6502 microprocessor
1536 bytes RAM

320 or 640 kbyte mask ROM (depending on
model), baked to perfection for each

customer
Cﬁ

512 bytes LCD RAM

4 color grayscale LCD controller

SPI

Audio DAC Generalplus

Dumping Mask ROM

* Not sure how to dump mask ROM, but had a
few ideas

— Restore a bad state from EEPROM
— Look for test functionality

— Exploit a vulnerability in figure or IR processing
— Read ROM with a microscope

— Pin manipulation

Test Program?

* GeneralPlus mask ROMs contain a GP test
program that can probably dump code

e Contacted GeneralPlus for a devkit
— Requires an NDA
e Looked around online

— No one seems to have a devkit or know the test
program

r

—

Figure ROM

* Decoding the figure ROM could be useful in a
few ways

— Making your own Tamagotchi games
— Executing code on the Tamagotchi

— Dumping mask ROM

— Understanding Tamagotchi behaviour

4 - & o
= Q %) W) o NI | 0 _ ©
- = . = -
\ -~

S ' ‘2 \
&0 e X Ao
- =

Figure Types

There are two types of Tamagotchi figures,
‘regular’ and ‘lite’

Regular figures contain PCBs with blobs

Lite figures contain unpopulated PCB
— Act as jumpers

Tried jumper-ing regular figures

— Saw functionality of different figures!

Extremely likely figures contain mask ROM

Figure ROM Pads

 The unpopulated PCBs in lite figures appear to
be the same boards used in regular figures

 Makes the mask ROI\/I pad layout visible

Figure ROM Chip

e GeneralPlus makes an SPI ROM with a similar
layout

* Assumed figures use this ROM

Figure ROM Pins

 Based on the GeneralPlus ROM datasheet,
was able to identify the figure pins

1, 4 and 8: Ground/Jumper
2: Serial clock (C)

3: Serial data input (D)

5: Power

6: Chip Select (SB)

7: Serial Data Output (Q)

ROM Dump

* Dumped the ROM using an Arduino as SPI
master

Decoding ROM

 The Tamagotchi has a four-tone display, so
looked for strings of 0x00, 0x55, OxAA and
OxFF, representing images

* Noticed that these strings were preceded by

values which were reasonable for length and
width

Decoding Images

* Tried decoding these images
i

* Eventually, it worked!

READY-

=t

Images

The figure contained a lot of images

Text displays appear to be images

Bitrap Image
Bitrmap Image

Bitmap Image

Bitrap Image

im-2-63
Bitrap Image
1.42 KB
im-2-67
Bitrap Image
1.42 KB
im-2-7T1
Bitrap Image
1.42 KB

 Animations are series of images

O A o i o o e
gitmap Image

Bitrap Image Bitrnap Image

im-2-163
Bitrap Image
1.61 KB
im-2-167
Bitmap Image

1.61 KB

Bitrmap Image

Bitmap Image

Bitrnap Image

LI

Bitrmap Image

The Rest of the ROM

* The ROM contains a lot of non-image data

* None of this data is GeneralPlus code
— Wrote a dissasembler

* Likely logic information in some sort of
serialized format

£

T)

Simulating the ROM

Could not obtain compatible flash

Attempted to simulate the ROM using an
Arduino, but chip is too slow

Switched to a Chipkit Uno, this was also too
slow

Eventually used a STM32F4 Discovery board

Simulating the ROM

 Knew the image format, so could alter images

Game Logic

The Tama-Go reads less than 50 bytes of non-
image data during all figure functionality

Game logic is represented by a one byte code
— This logic is executed with images from figure

Changing this code can cause a jump to non-
game screens

— Stats, food, death, etc. Every screen was available

Many codes caused freezing

Evolve Demo

Flash Figures

Flash Figures

 MrBlinky ordered a
set of figures to
experiment with

— They contained flash!

— Built a figure
programmer

— The ability to re-flash
figures made testing
much easier

‘t’.ﬂ(rs J

4 | ’ N -
o O N

> ltems 3

* [tems are implemented using a byte code
format

— Instructions include showing images, playing
sounds and changing Tamagotchi stats

— Some unusual behaviour for invalid instructions

— Posted ‘dev tools’ on github

Clothsy

8.
M A &

._ ESRaE.2010 »‘}m&,

How to Dump the ROM of a Tamagotchi
(According to the Internet)

Fun with Masked ROMs - Atmel

100+ 1. Userompar — warcs

http://
adamsblog.aperturelabs.com/

-0 2. “Use ROP” 2013/01/fun-with-masked-

roms.html

~20 3. Circumvent Windows Stack Cookies

-15 4. Probe the chip

Defeating the Stack Based Buffer
Overflow Prevention Mechanism of

~10 5 . HG I |tC h itn Microsoft Windows Server 2003

http://www.blackhat.com/presentations/
bh-asia-03/bh-asia-03-litchfield.pdf

<5 6. Differential power analysis

How to Dump the ROM of a Tamagotchi
(According to the Internet)

1. Use rompar

Hardware Methods
2. “Use ROP”

3. Circumvent Windows Stack Cookies

4. Probe the chip

Software Methods
5. “Glitch it”

6. Differential power analysis

Hardwaré

Methods

= wnN e

Hardware Possibilities

Use rompar (optical decoding)
Probe the chip
“Glitch it”

Differential power analysis

Hardware Possibilities

* My problems are:

— Don’t have the equipment to get a high resolution
image of ROM

— Don’t have a test device

* My problems are not:
— Hardware security protections

= wnN e

Hardware Suggestions

Use rompar (optical decoding)
Probe the chip
“Glitch it”

Differential power analysis

> whNh e

Hardware Suggestions

Use rompar (optical decoding)
Probe the chip

. “Glitehit™

Differential power analysis

Hardware Suggestions

1. Use rompar (optical decoding)
2. Probe the chip
3. —G—|—I—t—6h—l—t—

Hardware Suggestions

- . od

Hardware Suggestions

1. Use rompar (optlcal decoding)

Decoding with a Light Microscope

John Maushammer attempted to decode the
Tamagotchi ROM with a light microscope

Could not see bits

— Theoretically should have been one bit/four pixels

Bits might be too small

m"
:
_

055866 Qli’iiil »

_ U_IL:_ o g ~ ... '. M
i’) cmNEBf‘ ‘

[.v] rg\:ﬁ' S S Al

CL"'U ; :

y . L3 L?C
‘ r_'\.\) 4 CB:-’—O]’ E !.'
' CA] I

-~

.
e

o
=
)

£

i)
K
w
| %
b
=]

W

Decoding with a SEM

* An oil company employee offered to look at
the ROM with a SEM and FIB

— Apparently mining and oil companies have tons of
them sitting around

* Unfortunately, there was a long queue

e Started looking at software methods in the
meantime

(BRI R

B

Software Methods

SR E S E

Software Possibilities

1. “Use ROP”
2. Circumvent Windows stack cookies

Software Possibilities

Software Possibilities

* My problems are:
— Don’t know how to execute code or dump ROM
— Don’t have any debug outputs

— Don’t have any working code or shell code

* My problems are not:

— Exploit mitigations

— Non-executable memory

The Hannah I\/Iontana Hackers

Dumped the ROM of a
Hannah Montana toy by :
dumping ROM to LCD and

photographing it

* Unable to get further
details

Possible on a
Tamagotchi?

Game Logic

The Tama-Go reads less than 50 bytes of non-
image data during all figure functionality

Game logic is represented by a one byte code
— This logic is executed with images from figure

Changing this code can cause a jump to non-
game screens

— Stats, food, death, etc. Every screen was available

Many codes caused freezing

6502 Facts

* Memory mapped into a single address space

* No MMU

— Unmapped addresses return O (usually)
— Invalid instructions execute undefined behaviour

e Reset s rare

— Great for explotation

First Attempt

 Assumed ‘game codes’ were indexes into a
jump table

— Invalid indexes would cause jumps (RTS) to non-
pointer data

* Only controllable RAM is LCD RAM
— 0x1000-0x1200

* Made a NOP sled and hoped

N e i —— — s =

o CIBWYT-TABan dair2010 CHINAGE sl |
b .‘ \ -'J.)I 4 ‘ |

,/.
-

Code OxCC

* Did not work, but code 0xCC had interesting
behavior

— Buzzed when bit 3 of byte 68 was set and
detected figure detach

— Froze otherwise

e Also noticed that some middle indexes

9 @ 9 g; o, .. O.kb
w \ ¥ ;_~ » ~\
e -

S

New Theory

e All indexes are valid, but the stack isn’t set up

correctly

* OxCC plays the noise when button pressed

i1f |sound enabled:
play sound()

/ LCD RAM

Game code jump

Jump to|a

else:

table address

Jump to|b -*
?7?77?

New Theory

* Butif
— A pointer to the LCD RAM is on the stack
— Stack confusion is occurring
— There’s 255 possibilities

* Why isn’t it working?

g

Command Prompt - o [ES

\Program Files (x86>\Sunplus\FortisIDE-U1.6.12>x2s /P /T8 A
NO: SYNTARX 65602: SYNTAX 2500: 6582 SUN b ¢ type addressing modes
AA1: ADC #Hdd ADC A.dd 69H S56H 2 2 cpu3d ; immediate
AR2: ADC aa ADC A.<aa> 65H 17H 2 3 cpu3 ; Zero page
AA3: AND #dd AND A.dd 29H 54H 2 2 cpu3d ; immediate
AA4: AND aa AND A.<aa> 25H 15H 2 3 cpu3 ; Zero page
AR5 : BCC ?7? JR NC.?7? 96H 28H 2 2 cpu3d ; relative
AA6: BCS ?7? JR C,.?7? BAH 38H 2 2 cpu3 ; relative
AA7: BEQ ?7? JR Z,?? FBH 3AH 2 2 cpu3 ; relative
AA8: BIT aa BIT <aa> 24H 11H 2 3 cpu5 ; ZEero page
AA?: BIT aaaa BIT <aaaa> 2CH 51H 3 4 cpu5 ; abhsolute
A1@A: BMI ?7? JR M.?? 36H 18H 2 2 cpu3 ; relative
A11: BNE ?7? JR NZ.?7? DBH 2AH 2 2 cpu3d ; relative
A12: BPL 7?7 JR P.?? 16H G8H 2 2 cpu3 ; relative
A13: BRK BRK BBH BBH 1 7 cpuld ; implied
A14: BUC ?7? JR NOU . ?7? 56H BAH 2 2 cpu3 ; relative
A15: BUS ?7? JR ou.,.?? 76H 1AH 2 2 cpu3d ; relative
A16: CLC CCF 18H 48H 1 2 cpu3d ; implied
A17: CLI EI 58H 4AH 1 2 cpu3d ; implied
A18: CLU CUF B8H 78H 1 2 cpu3 ; implied
A19: CHMP #dd CP A.dd CIH 66H 2 2 cpu3d ; immediate
A20: CMP aa CP A,.Caa> C5H 27H 2 3 cpu3 ; Zero page
A21: CMP aa.X CP A,.Caa+®d DS5H 2FH 2 4 cpu3 ;zero page indexed x
A22: CPX #dd CP X.dd EBGH 32H 2 2 cpu3 ; immediate
B23: CPR aa CP d.Ca> E4H 33H 2 3 cpu3d ; Zero page
A24: DEC aa DEC <aa> C6H A3H 2 5 cpu3 ; Zero page
A25: DEC aa.® DEC <aa+X> D6H ABH 2 6 cpu5 szero page indexed x
A26: DEX DEC X CAH E2H 1 2 cpu3d ; implied
A27: EOR #dd Z0R A.dd 49H 46H 2 2 cpu3d ; immediate
A28: EOR aa Z0R A.<aa> 45H @7H 2 3 cpu3 ; Zero page
A29: EOR aa.® Z0R A.<{aa+k> 55H BGFH 2 4 cpu5 zero page indexed x
A38: INC aa INC <aa> E6H B3H 2 5 cpu3 ; ZEero page
A31: INX INC X E8H 72H 1 2 cpu3d ; implied
A32: JMP aaaa JP aaaa 4CH 43H 3 3 cpu3 ; absolute
A33: JMP <(aaaa> JP (aaaa> 6CH 53H 3 5 cpu3d ; indirect absolut
A34: JSR aaaa CALL aaaa 20H 16H 3 6 cpu3 ; absolute
A35: LDA #dd LD A.dd A9H 74H 2 2 cpu3d ; immediate
A36: LDA aa LD A,.Caa> ASH 35H 2 3 cpu3 ; Zero page
A37: LDA aa.® LD A,.(aa+®> BS5H 3DH 2 4 cpu3 ;zero page indexed x
A38: LDA aaaa LD A, C(aaaa> ADH ?5H 3 4 cpu3 ; absolute
A392: LDA aaaa.R LD A.Caaaa+X> BDH 7DH 3 4 cpu3d ;;absolute indexed x
A40: LDA (aa.X) LD A.{(Caa+X>> A1H 34H 2 6 cpu3 ; indexed indirect x
A41: LDX #dd LD .dd A2H BBH 2 2 cpu3d ; immediate
A42: LDR aa LD g.Caad A6H BiH 2 3 cpu3 ; ZEero page
A43: LDX aaaa LD . C(aaaa> AEH F1iH 3 4 cpu5 ; abhsolute
A44: NOP NOP EAH F2H 1 2 cpu3 ; implied
A45: ORA #dd OR A.dd B9H 44H 2 2 cpu3d ; immediate
A46: ORA aa OR A,.Caa> B5H B5H 2 3 cpu3 ; ZEero page
A47: PHA PUSH A 48H 42H 1 3 cpu3d ; implied
A48 : PHP PUSH F B8H 46H 1 3 cpuld ; implied
A49: PLA POP A 68H 52H 1 4 cpu3 ; implied
A5@: PLP POP F 28H 56H 1 4 cpu3 ; implied
A51: ROL A ROL A 2AH DBH 1 2 cpu3d ; accumulator
A52: ROL aa ROL <aa> 26H 914H 2 5 cpu3 ; Zero page
553: ROR A 3{0) } Q 6AH Qgﬂ 1 g cpu§ H accumulator

g Sy g Sy

'

g

Code Execution

 Switched
iInstruction sets

e Used simpler
shellcode

* Using the correct
Instruction set, it
worked on the s e S
fourth index I tried, oo =
Oxd4

Dumping Memory

* Wrote code to dump
entire memory space of
Tamagotchi

* Qutput memory over
SPl using port A
(buttons)

* Decoded output with
signal analyzer

Paging

The ROM is larger than the memory space
First page is always mapped

Other pages are mapped one at a time
Determined 0x3000 is page port
Dumped all 19 pages

Pages

* Quickly identified pages by inspection
— Pages O to 6 are code
— Pages 7 to 9 are blank

— Page 10 contains images and a image pointer
table

— Pages 11 to 18 contain image data

 Dumped images from image pages

lmages

el & APPLE PIE @ @ B SEREE = =" = SHOOTHIE =] & & SUNDAE v v bve
p18pics90 p18pics91 p18pics92 p18pics93 p18pics94 p18pics95 p18pics96 p18pics97 p18pics98 p18pics99 pl18pics100 p18pics101 pl18pics102 pl8pics103 pl8pics104 pl8pics105 pl8pics106 p18pics107
g & & 8 ¥ % % e & 5 oo, gy etz s, o,
218pics108 p18pics109 pl18pics110 pl8pics111 pl8pics112 pl8pics113 pl8pics114 pl18pics115 pl18pics116 pl18pics117 pl8pics118 pl8pics119 §pl8pics120 p18pics121 pl18pics122 pl18pics123 pl18pics124 pl8pics125
s e e 0 o Cwy S s B O wm e s
p18pics126 p18pics127 pl18pics128 pl18pics129 pl18pics130 pl8picsi31 pl8pics132 pl8pics133 pl8pics134 pl8pics135 pl18pics136 pl8pics137 pl8pics138 pl8pics139 pl8pics140 pl8pics14l pl8pics142 pl18picsi43
e s wn g, e, e oo, ez, ez, .
p18pics144 pl18pics145 pl18pics146 pl8pics147 pl8pics148 pl18pics149 pl8pics150 pl8pics151 pl8pics152 pl8pics153 pl8pics154 pl18pics155 pl8pics156 pl8pics157 18pics158 p18pics159 pl18pics160 pl18pics16l
—
ver .0 91 . % . . .
ROM ROM ROM .|
18pics162 p18pics163 pl18pics164 pl18pics165 pl8pics166 pl18pics167 § pl18pics168 pl8pics169 pl18pics170 pl8pics171 pl8pics172 pl18pics173 pl8pics174 pl8pics175 pl8pics176 pl8pics177 pl8pics178 pl18pics179
-~ o

GeneralPlus Test Program

* Analyzed GeneralPlus Test Program

 Hoped it would make dumping other GP
ROMs easier

C015
co3a
COSF
cos4
Coas
COCE
COF3
Ciis
C13D
Clez
C187
Cl1AC
CiDl

48 AD

29
29

S0
C4 BE

00
1B
FO
FA

n
o

oD
30
F8
FC
23
78
74
30
23
EA
8D
8D

S8 AS
D3|D0
€0 70
32 24
Fe|FB
0710

8D|70
37|29
30 4C
AZ 52
CA|DO

€8 AR

7|30
SD 30

D3
D8

Ccs
Fl
ocC
14
8D
13
FO
30
48
48
48

GeneralPlus Test Program

* Polls port A for a code, runs test and outputs
results on port B

* Two interesting codes, 3 and 0x16

* Code 3 checksums custom address range
— Unfortunately contains a bug so it doesn’t work

— & -

SEREE -
550Q

N

Test Program Code Dump

* Code 16 fills RAM up with code from Port B
and jumps to it!

 Can dump code from any GeneralPlus LCD
controller so long as Port A, Port B and TEST

are bonded
|I|||| :

é-;' _‘\V &
> -
N\ B il
4
EN
N N y \\
. >
|
4 4
! #
X ;_.
& y ¢
\ < '
- >
w ¢ \
- Ste 5 / =
. - (V) &
~'.‘\ 17 =
- b4 \
. N 4
(S S
< TR
2
/
4

MORE INTERACTIVE

—’;:.’rg‘."(;‘fe/ '[,al Ly L_L/u‘(l

ROM Reversing

e Started using IDA
— Learning curve was steep
— No paging support
* Eventually wrote a simulator
based on py65
— Added support for LCD and ports

— Slowly decoded the secrets of
Tamagotchi life

Thecatchr
& & %

|

S

o
Ao

we dint
o 100s slhags.

.
i

Tamagotchi Internals

e After start-up, Tamagotchis cycle through a
single loop, driven by tm1 interrupts

e Always in one of Ox41 states
— Table determines state actions
— Can have substates and subsubstates and ...
— State entry behaves differently

— States are responsible for all behaviour (buttons,
sound) except for physical LCD update and SPI poll

— A LOT of pointer tables

Secrets So Far ...

* What makes a Tamagotchi a boy or a girl?

— Determined from entropy source C4, based on
how many times tm1 has fired since the
Tamagotchi started up

 What toddler a baby grows into is random

— Intentionally evened out
— Some toddlers are higher-maintenance than

others
WOl

Secrets So Far ...

e What teen a toddler becomes is based on care
— Two factors

 What adult a teen becomes depends on care
and training

— Toddler care matters

* You can potty train your Tamagotchi

Conclusions @
5

Dumped Tamagotchi code
_earned to dump all GeneralPlus chips
_earned about Tamagotchi internals

_earned the secrets of Tamagotchi life

Most importantly, good times were had by
all...

xcept for the Tamagotchis

More Info

B & 5

http://www.kwartzlab.ca/author/natalies/

natashenka@kwartzlab.ca
@natashenka

Yoo ®

