
© 2012 CrowdStrike, Inc. All rights reserved. 

I Got 99 Problem But a Kernel 

Pointer Ain’t One
There’s an info leak party at Ring 0

Alex Ionescu, Chief Architect @aionescu

Recon 2013 alex@crowdstrike.com



Bio

■ Reverse engineered Windows kernel since 1999

■ Lead kernel developer for ReactOS Project

■ Co-author of Windows Internals 5th and 6th Edition

■ Founded Winsider Seminars & Solutions Inc., to provide services 
and Windows Internals training for enterprise/government

■ Interned at Apple for a few years (Core Platform Team)

■ Now Chief Architect at CrowdStrike



Introduction



Outline

■ Introduction

■ Motivation and Previous Work

■ Old School API Leaks

■ System Design Leaks

■ Tracing/Debugging API Leaks

■ System Memory Leaks

■ SuperFetch Leaks

■ Conclusion



Motivation

■ Making Spender (grsecurity) troll really hard

■ “Kernel ASLR has never been broken by anyone I know”

■ Got a really well thought out article in response 



Motivation (seriously)

■ Windows has been making a decent job of improving their ASLR in 
Windows 8

■ And newer protections are yet to come

■ Guessing of user-mode addresses now requires bypassing:

■ High Entropy ASLR

■ Top-down and Bottom-up Anonymous Memory Randomization

■ Heap Allocation Order Randomization

■ …etc…

■ But Kernel ASLR remains a big problem

■ As part of a local exploit, too much information is present/given away on the 
system to the attacker

■ Disparate papers/presentations exist on this issue



Previous Work

■ Too many to list them all

■ Matthew Jurczyk, Tavis Ormandy, Tarjei Mandt & the other usual 
suspects



Old School API Leaks



You Want… Module Base Addresses?

■ NtQuerySystemInformation

■ Class: SystemModuleInformation

■ NEW Class: SystemModuleInformationEx

■ Return type is RTL_PROCESS_MODULES with

■ RTL_PROCESS_MODULE_INFORMATION

■ RTL_PROCESS_MODULE_INFORMATION_EX

■ EX Adds Checksum, TimeStamp, and Original Base

■ Before Windows 8, could also be used to query user-mode 
libraries



You Want… All Kernel Object Addresses?

■ NtQuerySystemInformation

■ Class: SystemObjectInformation

■ Return type is SYSTEM_OBJECT_INFORMATION

■ Contains

■ PVOID of the Kernel Object Address

■ PEPROCESS of the Kernel Object Creator

■ Requires the object type/system to enable “Maintain Type List”



You Want… Named Kernel Object Addresses?

■ NtQuerySystemInformation

■ Class: SystemHandleInformation

■ NEW Class: SystemHandleInformationEx

■ Return type

■ SYSTEM_HANDLE_INFORMATION(_EX)

■ Contains

■ PVOID of the Kernel Object Address

■ HANDLE value in the process

■ Only returns 16-bit handles and PIDs – must use Ex version



You Want… Kernel Lock Addresses?

■ NtQuerySystemInformation

■ Class: SystemLockInformation

■ Return type

■ RTL_PROCESS_LOCKS with

■ RTL_PROCESS_LOCK_INFORMATION

■ Contains

■ PVOID of the Kernel Resource

■ PVOID of Kernel Thread Owner



You Want… Kernel Stack Addresses?

■ NtQuerySystemInformation

■ Class: SystemExtendedProcessInformation

■ Return type

■ SYSTEM_EXTENDED_THREAD_INFORMATION

■ Contains

■ PVOID of the Kernel Stack Base and Kernel Stack Limit

■ PVOID of the TEB



You Want… Kernel Pool Addresses?

■ NtQuerySystemInformation

■ Class: SystemBigPoolInformation

■ Return type

■ SYSTEM_BIGPOOL_INFORMATION with

■ SYSTEM_BIGPOOL_ENTRY

■ Contains

■ PVOID of the Kernel Pool Address (if > 4KB) (“Big”)

■ And Tag



System Design Leaks



Selectors and Descriptors

■ GDT and IDT are required pieces of any x86-based processor 
design

■ GDT highly deprecated in x64

■ Address of the GDT and IDT is stored in GDTR and IDTR

■ CPU instruction exists to retrieve this (SGDT/SIDT)

■ It’s not privileged!

■ Additionally, entries in the GDT can be dumped on 32-bit Windows

■ 32-bit Windows has support for LDT, and implements API for querying it

■ But if no LDT is present, GDT is dumped instead

■ Use NtQueryInformationThread (ThreadDescriptorTableEntry)

■ Reveals three TSS addresses, and KPCR address

■ Does not work on 64-bit because no LDT is supported



ARM Software Thread ID Registers

■ Modern ARM processors implement TLS registers that can be 
used by operating system developers

■ Similar to fs/gs on x86/x64

■ Three are currently defined in the Cortex-A9 architecture

■ TPIDRURW (User Read Write)

■ TPIDRURO (User Read Only)

■ TPIDRPRW (Privileged Read Write)

■ Windows 8 on ARM (Windows RT) uses these registers, as seen 
in the public header files

■ RURW -> TEB

■ RPRW -> KPCR

■ RURO -> KTHREAD!



ACPI Table Data

■ \Device\PhysicalMemory was accessible up until Windows Server 
2003 SP1 in order to dump contents of RAM as desired

■ Functionality was removed, but replaced with new API for

■ ACPI, SMBIOS, and 0xC0000->0xE0000 memory access

■ NtQuerySystemInformation

■ Class: SystemFirmwareTableInformation

■ Use SYSTEM_FIRMWARE_TABLE_INFORMATION

■ Tables can store physical (RAM) addresses to devices and EFI



Trap Handler Leaks

■ Worked with a lot of these while writing ReactOS…

■ As an optimization, the kernel does not always build an SEH frame 
during certain operations

■ Such as a system call

■ Instead, the page fault handler recognizes if the exception came 
from one such optimized location

■ And does correct exception handling back to user-mode

■ However, this is based on reading the EIP!

■ Playing guessing games with the EIP can reveal kernel addresses based on 
the exception generated

■ “j00ru” also discovered that some of these checks make crazy 
assumptions about other registers -> can cause crashes



Memory-Based Leaks



Win32k Shared Memory Regions

■ Two “heaps” are implemented by the window management system

■ Session Heap (contains the object handle table)

■ Desktop Heap (contains the objects themselves)

■ To get session heap: user32!gSharedInfo

■ aheList -> Session Heap Start (handle table)

■ ulSharedDelta  Difference between user and kernel

■ To get desktop heap: TEB->Win32ClientInfo
■ pvDesktopBase  Desktop Heap Start

■ ulClientDelta  Difference between user and kernel



Win32k Objects

■ Win32k Window Manager Handle Entries contain

■ PVOID of the Win32k Object (many/most are mapped in user-space)

■ PVOID of the NT Kernel Object owner (PETHREAD and/or PEPROCESS)

■ Other structures are tagDESKTOPINFO, tagSHAREDINFO, 
tagCLIENTTHREADINFO, tagDISPLAYINFO, tagSERVERINFO

■ These leak addresses of pointers inside kernel mode memory as 
well as things like mouse cursor position, last keys states…

■ The objects themselves contain many pointers to NT 
objects/addreses



HAL Heap

■ When the HAL initializes extremely early in the boot process, it 
does not have access to any memory management functionality

■ The boot loader, HAL, and kernel’s memory manager all 
collaborate to define a region of memory reserved for the HAL

■ 0xFFD00000->0xFFFFFFFF is for the HAL (even on x64)

■ !halpte shows current mappings on x86

■ hal!HalpHeapStart shows start of the heap

■ Used to store ACPI tables, as well as all the HAL Objects on 
Windows 8



Tracing/Debugging API Leaks



Trace-Based ETW/WMI Leaks

■ The kernel has extensive tracing performed through either legacy 
Windows Management Instrumentation (WMI) or Event Tracing for 
Windows (ETW)

■ The relevant (documented) APIs are

■ StartTrace

■ ProcessTrace

■ Many of these come from “MSNT_SystemTrace”

■ See http://msdn.microsoft.com/en-
us/library/windows/desktop/aa364083(v=vs.85).aspx

■ System Profiling Privilege is required

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364083(v=vs.85).aspx


You Want… Kernel Process Pointers?

■ ETW “Crimson” Provider

■ Or Legacy WMI

■ PERF_PROC

■ Return type

■ WMI_PROCESS_INFORMATION

■ Contains

■ PVOID of the Kernel Object Address (“UniqueProcessKey”)

■ PVOID of the Process Page Directory (“DirectoryTableBase”)



You Want… Kernel Thread Pointers?

■ ETW “Crimson” Provider

■ Or Legacy WMI

■ PERF_THREAD

■ Return type

■ WMI_EXTENDED_THREAD_INFORMATION

■ Contains

■ PVOID of the Kernel Stack Base and Stack Limit

■ PVOID of the Kernel Start Address



You Want… Kernel Spinlock Addresses?

■ ETW “Crimson” Provider

■ PERF_SPINLOCK

■ Return type

■ WMI_SPINLOCK

■ Contains

■ PVOID of the Kernel Spinlock Address

■ PVOID of the Kernel Caller Address

■ And if Address is DPC or ISR



You Want… Kernel Resource Addresses?

■ ETW “Crimson” Provider

■ PERF_RESOURCE

■ Return type

■ WMI_RESOURCE

■ Contains

■ PVOID of the Kernel Resource Address



You Want… Kernel IRP and File Object Addresses?

■ ETW “Crimson” Provider

■ PERF_FILENAME

■ EVENT_TRACE_FLAG_DISK_IO

■ Return type

■ WMI_DISKIO_READWRITE

■ PERFINFO_FILE_INFORMATION/FILE_READ_WRITE

■ Contains

■ PVOID of the IRP

■ PVOID of the FILE_OBJECT



You Want… Kernel Page Fault Addresses?

■ ETW “Crimson” Provider

■ PERF_ALL_FAULTS

■ Return type

■ WMI_PAGE_FAULT

■ Contains

■ PVOID of the Fault Address

■ PVOID of the Program Counter



And there’s more…

■ DPC/ISR Tracing reveals the kernel pointer of every interrupt and 
DPC handler

■ Image Load Tracing reveals kernel base address of every kernel 
module

■ Pool Tracing reveals kernel address of every pool allocation

■ Even non-big ones

■ New Windows 8 Object/handle-based Notifications

■ Leak the Kernel Object Pointer (and handle)



Triage Dumps

■ NtSystemDebugControl was a goldmine API in Windows XP

■ Allowed complete Ring 0 control from Ring 3 

■ In Server 2003 SP1, almost all commands were disabled

■ A driver, kldbgdrv.sys is used by WinDBG instead

■ Calls KdSystemDebugControl, which checks if /DEBUG is active

■ In Vista, a new command was added, and allowed even without 
being in /DEBUG mode

■ SYSDBG_COMMAND::SysDbgGetTriageDump

■ Debug Privilege is required



What’s in a Triage Dump?

■ A typical crash dump header

■ KPCR, KPRCB, KUSER_SHARED_DATA, DPC Queues, Timer Table, 
etc…

■ Information on the process that was selected for the dump

■ PEPROCESS structure and relevant fields

■ Information on all the threads part of the process selected

■ PETHREAD structure and relevant fields

■ APC queue, pending IRPs, and wait queues

■ Kernel Stack Trace and Context

■ And then Win32k “callback“ gets called…

■ Dumps all tagTHREADINFO + tagPROCESSINFO

■ Dumps all global variables!



SuperFetch API Leaks



What’s SuperFetch?

■ System component that tracks usage patterns and activities 
across one or multiple users on the machine

■ Application Launch

■ System Power Transitions

■ User Session Transitions

■ Also tracks usage

■ All File I/O

■ All Page Faults

■ Builds predictive database of application launches (Markov chain) 
and informs memory manager of priorities that each page should 
be given in memory and in the cache

■ Based on usage patterns over periods of up to 6 months



SuperFetch API

■ SuperFetch lives in user-mode!

■ sysmain.dll service inside one of the hosts

■ How does it track all page faults and File I/O

■ Partially through IOCTLs to FileInfo driver

■ Partially through undocumented API

■ NtQuerySystemInformation

■ Class: SystemSuperfetchInformation

■ Implements a variety of subclasses…



SuperFetch Information Subclasses

■ SUPERFETCH_INFORMATION must be the buffer passed in

■ SUPERFETCH_INFORMATION_CLASS determines the operation

■ Query all “sources”

■ Dump memory lists

■ Dump PFN database and page usages

■ ~12 total queries in Win7, ~20 in Win8

■ Need version number (45 on Windows 7)

■ Need “magic password” (‘Chuk’)

■ Need System Profile privilege



SuperFetch Information Leaks

■ Querying for all sources will dump all PEPROCESS pointers

■ Querying for the trace (if you don’t race with the actual SuperFetch 
service, or if you disable it) will dump file object pointers, virtual 
addresses, and program counters

■ But the real deal is querying the PFN database!

■ PFN Database contains information on every physical page on the system 
and its usage

■ A few years ago, I wrote a tool to dump this…

■ Now there’s RAMMap



Conclusion



Key Takeaways

■ Unlike certain platforms such as iOS/OS X where kernel 
information disclosures seem to be taken rather seriously (even 
the GDT/IDT is aliased to prevent leaking the kernel base 
address!), Windows has a rather liberal policy toward kernel 
pointers

■ Not quite as bad as Linux, however. Microsoft does care.

■ Why don’t they “fix” these?

■ Most of the times, the answer is app compatibility

■ Other times, it’s developer support/requests

■ However, requiring admin rights across the board for such system-
level APIs may hit the right balance

■ That’s not enough for DRM/Surface environments, however



Further Reading

■ The NDK (Native Development Kit) is a header kit that I maintain 
which has the closest possible undocumented structure definitions

■ Even “j00ru” used old/incorrect/unknown structures in his papers 

■ NDK was built with information from PDBs, ASSERTs (before 
NT_ASSERT), private PDB (yep… the Windows 8 ones are still on the 
symbol server….) and .h leaks over the years, etc…

■ *NO* source code leak/etc material used.

■ J00ru’s blog and most recent talks at CONFidence 2013 and 
Syscan 2013



QA

■ Greetz/shouts to: j00ru, msuiche, lilhoser




