
Extraordinary String Based Attacks

About Me

 Security Researcher at Azimuth Security

 Past presentations

 Heaps of Doom (/w Chris Valasek)

 Kernel Attacks Through User-Mode

Callbacks

 Kernel Pool Exploitation on Windows 7

 Generally interested in operating system

internals and bug finding

 Recent focus on embedded platforms

This Talk

 A rather unusual Windows bug class

 Affects Windows atoms

 3 vulnerabilities patched 2 days ago in

MS12-041

 Allows a non-privileged user to run code

in the context of a privileged process

 E.g. the Windows login manager (winlogon)

 No need to run arbitrary code in Ring 0

 DEP/ASLR? SMEP? No problem!

Previous Work

 Atoms briefly mentioned in Windows

sandboxing literature

 Stephen A. Ridley – Escaping the Sandbox

 Tom Keetch – Practical Sandboxing on

Windows

 Getadmin exploit (1997)

 Exploited unchecked pointer in NtAddAtom

 API issue – not specific to atom misuse

Outline

 Atoms

 Vulnerabilities

 Attack Vectors

 Exploitation

 Windows 8

 Conclusion

Smashing the Atom

Atoms

 A Windows data type used to store strings
and integers
 Referenced using 16-bit values

 Stored in a hash table known as an atom
table

 Generally used to share information
between processes
 Initially designed to support Dynamic Data

Exchange (DDE)

 Also used by the operating system

Atom Tables

 Defined in the local (application) or

global (system) scope

 Application defined tables are fully

managed in user-mode

 System defined tables are managed by

the kernel

 Callouts to win32k where necessary

 Two common system tables

 Global And User Atom Tables

Local Atom Table

 Defined per application

 Table initialization handled transparently

to applications

 Exposed through an own set of APIs

(kernel32)

 AddAtom, DeleteAtom, FindAtom, …

 Actual implementation in runtime library

(NTDLL)

Global Atom Table

 Defined per window station

 win32k!CreateGlobalAtomTable

 Accessible to any application in the

same window station by default

 Can also be job specific if global atoms

UI restrictions are enabled

 Exposed through an own set of APIs

prefixed “Global”

 GlobalAddAtom, GlobalDeleteAtom, …

Window Station

Global Atom Table (DDE)

Client Process

Client

Window

Global Atom Table

Server Process

Server

Window

Registers conversation

topic string atom

Sends message with

topic atom Uses the atom to look

up the topic string

Atom

User Atom Table

 Defined per session

 win32k!UserRtlCreateAtomTable

 Holds data used by the User subsystem

 Window class names

 Clipboard format names , …

 Not exposed to user applications directly

 However, some APIs allow values to be

inserted and queried

 RegisterWindowMessage

Atom Table Interaction

Kernel-Mode

User-Mode

Windows 7 SP1

AddAtom GlobalAddAtom

InternalAddAtom

RtlAddAtomToAtomTable

NtAddAtom

RtlAddAtomToAtomTable

UserGlobalAtomTableCallout

UserAddAtom

User Subsystem

NTDLL

KERNEL32

NTOSKRNL
WIN32K

Atom Types

 Two types of atoms

 Strings and integers

 Both types are managed by the same

atom table

 Defined with separate atom value ranges

 No type information needed

 Both types are handled using the same

APIs

String Atoms

 Registered upon passing a string to

RtlAddAtomToAtomTable

 Assigned an atom value in the range

0xC001 through 0xFFFF

 Subsequently used to look up the string

 Limits the string size to 255 bytes

 Reference counted to keep track of use

 Example: Window class names

Integer Atoms

 Integer values map directly to the atom

value

 Never actually stored in the atom table

 Defined in the range 1 to 0xBFFF

 Only stores decimal values up to 49151

 Only registered for the sake of

consistency

 Example: Standard clipboard formats

Atom Table Creation

 Created using RtlCreateAtomTable

 Initialized with an integer representing

the number of hash buckets (default 37)

 A string atom is inserted into a bucket

based on its string hash

 Used for efficient lookup of string atoms

 The atom table itself is defined by the

RTL_ATOM_TABLE structure

Atom Table Structure

typedef struct _RTL_ATOM_TABLE

{

/*0x000*/ ULONG32 Signature;

/*0x004*/ struct _RTL_CRITICAL_SECTION CriticalSection;

/*0x01C*/ struct _RTL_HANDLE_TABLE RtlHandleTable;

/*0x03C*/ ULONG32 NumberOfBuckets;

/*0x040*/ struct _RTL_ATOM_TABLE_ENTRY* Buckets[1];

} RTL_ATOM_TABLE, *PRTL_ATOM_TABLE;

Windows 7 SP1 (x86)

Atom Table Entries

 Each string atom is represented by an

RTL_ATOM_TABLE_ENTRY structure

 Defines the atom value and string

 Reference counted to keep track of

string (atom) use

 Incremented whenever an identical string is

added to the atom table

 Flags to indicate whether an atom has

been pinned

Atom Table Entry Structure

typedef struct _RTL_ATOM_TABLE_ENTRY

{

/*0x000*/ struct _RTL_ATOM_TABLE_ENTRY* HashLink;

/*0x004*/ UINT16 HandleIndex;

/*0x006*/ UINT16 Atom;

/*0x008*/ UINT16 ReferenceCount;

/*0x00A*/ UINT8 Flags;

/*0x00B*/ UINT8 NameLength;

/*0x00C*/ WCHAR Name[1];

} RTL_ATOM_TABLE_ENTRY, *PRTL_ATOM_TABLE_ENTRY;

Windows 7 SP1 (x86)

For handling string

hash collisions

Used to generate

atom values

Track atom use

Atom Pinning

 If the reference count of an atom overflows,

the atom is pinned

 Indicated by the RTL_ATOM_PINNED (1) flag

 A pinned atom is not freed until its atom

table is destroyed

 E.g. upon destroying a window station or

logging out a user

 Windows also supports on-demand pinning

 RtlPinAtomInAtomTable

 Prevents atoms from being deliberately deleted

Atom Value Assignment

 Atom tables use a separate handle table

for string atom value assignment

 Retrieved using ExCreateHandle

 Attempts to use a recently freed handle

to optimize lookup

 Otherwise performs exhaustive search

 Actual atom value is obtained by OR’ing

the handle index with MAXINTATOM

 Atom = (Handle >> 2) | 0xC000

System Atom Table Access

 System atom tables are generally

available to all user processes

 Designed for sharing information

 In a sandbox, we want to restrict access

in the less privileged components

 Prevent leaking of (sensitive) information

 Prevent deletion of atoms used by other

(e.g. more privileged) applications

Global Atom Table Access

 Access can be restricted using job object

UI restrictions

 JOB_OBJECT_UILIMIT_GLOBALATOMS

 When set, Windows creates a separate

atom table and associates it with the job

object

 The process of choosing the correct atom table is

handled in win32k!UserGlobalAtomTableCallout

 Checks the global atoms UI restriction flag by

calling nt!PsGetJobUIRestrictionsClass

User Atom Table Access

 In Windows 7, there’s no practical isolation

of the user atom table

 More on Windows 8 later

 Accessible to any process running in the

same session

 E.g. using APIs which (indirectly) operate on it

 A process can query the values of any user

atom using GetClipboardFormatName

 No distinction made between clipboard format

strings and other user atom strings

Enumerating User Atoms

Smashing the Atom

Atom Handling Vulnerabilities

 3 separate vulnerabilities in string atom
handling
 Register Class Name Handling Vulnerability

 Set Class Name Handling Vulnerability

 Clipboard Format Name Handling Vulnerability

 Addressed in MS12-041
 http://technet.microsoft.com/en-

us/security/bulletin/ms12-041

 Allows an attacker to take control over
system managed string atoms
 We discuss the implications of this later

http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041

Window Class

 An application describes a window’s

attributes using a window class

 Defined by the WNDCLASS(EX) structure

 lpszClassName sets the class name

 Can either be a string or an atom

 Win32k differs between the two

internally by looking at the high 16-bits

 If only lower 16-bits are set, it is handled as

an atom

Class Name String Atom

 If a string is provided, win32k converts

the string into an atom

 Handled by win32k!UserAddAtom

 Atom value stored in the win32k managed

class data structure (win32k!tagCLS)

 If an atom is provided, the function

simply copies its value to the class data

structure

 No atom validation or retaining of reference

CVE-2012-1864

No reference

acquired when

providing an atom

Atom stored

Windows 7 SP1 (x86)

CVE-2012-1864

 When a class is unregistered,

win32k!DestroyClass releases the

atom reference

 Even when no reference was acquired

previously

 An attacker could register a class using

an atom of a more privileged application

 Could free and reregister the atom with a

different string

Version Prefixed Class Name

 Since Windows XP, class objects define
two class name atoms
 atomClassName

 atomNVClassName

 The former defines the base class name
 Fixed once registered

 The latter prefixes the name with version
specific information
 6.0.7600.16661!ScrollBar

 Allows classes of the same name, but of
different versions to be styled differently

Updating Class Name Atom

 An application can update the version
prefixed name of a registered class
 SetClassLongPtr using the GCW_ATOM

(0xFFFFFFE0) index

 Internally, win32k looks up the index
(adjusted) in an offset table
 Finds the offset to the atom value in the class

object structure

 In setting or replacing the version prefixed
class name atom, no validation or
referencing is performed

CVE-2012-1865

Offset to version

prefixed class

name in the class

data structure

Replaces value without

validation and acquiring

or releasing references

Windows 7 SP1 (x86)

Clipboard Formats

 Windows uses atoms to uniquely identify
each clipboard format type

 Applications can also register their own
clipboard formats

 user32!RegisterClipboardFormat

 Registers the atom for the user provided
format name string in the user atom table

 user32!SetClipboardData

 Sets clipboard data of the particular type
using the provided atom value

InternalSetClipboardData

 Handles SetClipboardData requests

 Calls win32k!UserGetAtomName and

win32k!UserAddAtom if the provided

atom is present

 Properly verifies and references the string atom

 If the atom is not present, the function still

saves the data using the (invalid) atom

 Considers the atom to be a default type (integer)

 Fails to check if the atom is really an integer

atom (i.e. below 0xC000)

CVE-2012-1866

References atom if string is

present in the user atom

table

Considers the atom to be

valid, regardless of type

Windows 7 SP1 (x86)

Smashing the Atom

Enumerating Attack Vectors

 Look at how (string) atoms are used by

the system

 Registered window messages

 Clipboard format names

 Window class names

 Cursor module paths

 Hook module paths

 Evaluate how user input may affect

string atom operations

Registered Window Messages

 An application can register new window

messages

 RegisterWindowMessage

 Stored as a string atom in the user atom

table

 Typically used when messaging

between two cooperating applications

 If both register the same string, they receive

the same message value

Registered Window Messages

 Windows does not pin the string atom

for the registered message

 An attacker may potentially free window

message atoms registered by

applications

 Can cause desynchronization between two

applications sending private messages

 E.g. by freeing and re-registering messages

in reverse-order

Clipboard Format Names

 Applications can register their own

clipboard formats

 RegisterClipboardFormat

 Identified as string atoms in the user atom table

 These atoms are not pinned, hence can be

freed by an attacker

 However, clipboard data handling between

privilege levels is subject to UIPI

 List of exempt formats only contain standard

(integer) clipboard formats

Window Class Names

 Names of window classes are stored in
the user atom table

 Atom used by the class object to look up the
class name string

 Windows does not pin the string atoms
of non-system class objects

 An attacker could free the atom used by
the system to identify class objects

 Re-registering the string could cause
lookups to resolve to the wrong object

Cursor Module Names

 Windows stores the module path of a

loaded cursor as a string atom

 atomModName field of the cursor object

 Used to determine if a cursor has

already been loaded

 win32k!_FindExistingCursorIcon

 Windows does not pin this atom

 An attacker could potentially free its value

 Minimal security impact

Hook Module Paths

 Windows allows external modules to be

used when setting windows hooks

 SetWindowsHookEx

 SetWinEventHook

 RegisterUserApiHook

 The module path is stored as a string

atom in the user atom table

 Atom value stored at an index in the global

aatomSysLoaded array

Kernel Mode

Hook Module String Atoms

SetWindowsHook SetWinEventHook RegisterUserApiHook

Hook Object

ihmod

Event Hook Object

ihmod

gihmodUserApiHook

Atom User Atom Table … …

aatomSysLoaded

aatomSysLoaded

array index

Hook Module Loading

 Windows looks up the string atom upon

loading an external module hook

 Invokes a user-mode callback and passes

the string to LoadLibrary

 An attacker who frees any such atom

could possibly inject arbitrary modules

 Hooks play an integral part in Windows

in providing application theming

 Relies on the user api hook

User Api Hook

 Special hooking mechanism introduced

to support Windows themes

 RegisterUserApiHook

 Can only be registered by privileged

processes

 Requires the TCB privilege

 Caller must be running as SYSTEM

 Allows Windows to load a theme client

module into every GUI application

Smashing the Atom

Theme Subsystem

 Introduced in Windows XP

 Extended in Vista to support desktop

composition (DWM)

 Hooks into USER32 in order to

customize non-client region metrics

 Loads an instance of uxtheme.dll into

every Windows application

 Uses the user api hook registered by

winlogon

Theme Server

 Manages the theme subsystem

 Runs in a service host process

 Registers //ThemeApiPort

 Keeps track of the Windows theme

configuration for all running sessions

 Each GUI (themed) process keeps an

active connection with the theme server

 Used to retrieve updated theme

configurations

Theme Api Port Connections

kd> !alpc /lpc 8701a458

8701a458('ThemeApiPort') 1, 10 connections

 85a17ae0 0 -> 85e53038 0 853c3790('winlogon.exe')

 872802f8 0 -> 863df540 0 853d8540('winlogon.exe')

 85289f00 0 -> 853e3038 0 853c3790('winlogon.exe')

 86464d18 0 -> 8538a928 0 853d8540('winlogon.exe')

 85be9038 0 -> 8533c2e0 0 853ea5c0('mmc.exe')

 87257980 0 -> 86fd6458 0 85e63030('explorer.exe')

 871fd038 0 -> 86f3db98 0 85dfc8a0('dwm.exe')

 85a53368 0 -> 8534f298 0 852eb030('explorer.exe')

 871c76a0 0 -> 8659ef00 0 852aa030('calc.exe')

 872bc8f8 0 -> 85e6b370 0 853a4388('procexp.exe')

Theme Session Initialization

 On each new session, Winlogon calls

UXINIT to interface with the Theme Server

 Acts as the theme server client

 Sends a ThemeApiConnectionRequest packet

to //ThemeApiPort over ALPC

 Once connected, Winlogon registers a set

of callbacks

 CThemeServerClient::SessionCreate()

 Allows the theme server to load themes and

install and remove theme hooks

Theme Hooks Installation

 For installing hooks, the theme server
service injects a thread into Winlogon

 UXINIT!Remote_ThemeHooksInstall

 Winlogon (from UXINIT) subsequently
calls RegisterUserApiHook

 Takes a structure defining the library to load
and the function (export) to execute

 Library:
%SystemRoot%/System32/uxtheme.dll

 Function: ThemeInitApiHook

Windows 7 SP1

Session 0

Ux Theme Architecture

Winlogon

Service Host

UXINIT Theme

Service

Process

UXTHEME

Registers the

User Api Hook

Request applications

(via message broadcast)

to retrieve new theme

configuration

ThemeApiPort

Loaded on demand

by the USER

subsystem

Informs winlogon

about theme changes

RegisterUserApiHook

 Called by winlogon (UXINIT) to register

the user api hook

 NtUserRegisterUserApiHook

 Registers a string atom for the module

path in the user atom table

 Atom stored in win32k!aatomSysLoaded

array

 Array index stored in

win32k!gihmodUserApiHook

xxxLoadUserApiHook

 Retrieves the value of the UAH string

atom held by aatomSysLoaded

 Module (uxtheme.dll) path

 Calls win32k!ClientLoadLibrary to load

the module in a user-mode callback

 Client side calls user32!InitUserApiHook

which hooks several user-mode functions

 Subsequently called by USER32 to theme

various aspects of the user interface

User Mode

(Process)

Kernel Mode

UxTheme Loading

USER32

xxxLoadUserApiHook

xxxCreateWindowEx xxxDefWindowProc xxxRealDefWindowProc

UXTHEME

ClientLoadLibrary

Leveraging UxTheme

 Windows does not pin the string atom of

the UxTheme library path

 An attacker could potentially free the

atom and take control of the string

 Atoms values used to perform lookups, i.e.

no use-after-free of pointer values

 May cause subsequent processes to

load the module of the specified string

Plan of Attack

 Invoke an arbitrary module into a more

privileged process

 E.g. running as SYSTEM

 Requirements

 Spawn a new (privileged) process

 Running in the same session

 Must invoke the USER subsystem (i.e. load

user32.dll)

System Processes

 Two SYSTEM processes in a typical

user session

 Client-Server Runtime SubSystem (CSRSS)

 Windows Login Manager (winlogon)

 CSRSS manages the Windows

subsystem

 CSRSS and system worker threads are

prevented from loading the user api hook

 Checks in win32k!xxxLoadUserApiHook

Winlogon and LogonUI

 Winlogon spawns a separate LogonUI

process

 Loads credential providers

 Displays the Windows login interface

 Started on demand whenever Windows

needs to present the login interface

 Runs on the Secure Desktop (/winlogon))

 Only System processes can run on this desktop

 Hence, LogonUI runs as System

Targeting LogonUI

 Demo

Smashing the Atom

App Container

 A new application security boundary

introduced in Windows 8

 Not just specific to WinRT / metro

applications

 Allows more granular access control

 Introduces the concept of capabilities

 E.g. Internet access, music/picture/video

libraries, removable storage, etc.

 Has its own namespace

App Container Launch

 CreateProcess allows processes to be run
in app containers
 E.g. used by IE 10 “Enhanced Protected Mode”

 Creates a low box token and assigns it to
the created process
 BasepCreateLowBox

 Sets up the namespace directories and
Global, Local, and Session symlinks
 /Sessions/<num>/AppContainerNamedObjects/

<package-sid>

 BasepCreateLowBoxObjectDirectories

Low Box Token

 The crux of the app container

 Basically an extension of the token
object (nt!_TOKEN)

 TokenFlags defines whether a token is a low
box token

 #define TOKEN_NOT_LOW 0x2000

 #define TOKEN_LOWBOX 0x4000

 Created by the kernel using a dedicated
system call

 NtCreateLowBoxToken

NtCreateLowBoxToken

 Allows applications to arbitrarily create low
box tokens

 Requires a base token
 Must not be impersonating

 Cannot already be a low box token

 Assigns capabilities (SIDs) to a token

 References a set of handles by duplicating
them into the system process
 Guarantees that objects (i.e. namespace) stay

valid for the lifetime of the token

NtCreateLowBoxToken

NTAPI

NTSTATUS

NtCreateLowBoxToken(

OUT HANDLE * LowBoxTokenHandle,

IN HANDLE TokenHandle,

IN ACCESS_MASK DesiredAccess,

IN OBJECT_ATTRIBUTES * ObjectAttributes OPTIONAL,

IN PSID PackageSid,

IN ULONG CapabilityCount OPTIONAL,

IN PSID_AND_ATTRIBUTES Capabilities OPTIONAL,

IN ULONG HandleCount OPTIONAL,

IN HANDLE * Handles OPTIONAL

);

Low Box Number Entry

 Each low box token is assigned a low

box number entry

 Creates a hard link between the token and

the package sid

 nt!_SEP_LOWBOX_NUMBER_ENTRY

 Defines the low box (app container) id

 Unique session specific numeric identifier

 Retrieved from the session lowbox bitmap

(nt!_SESSION_LOWBOX_MAP)

Low Box Atoms

 Windows 8 introduces low box atoms

 Implemented using a new atom table

reference structure

 Allows atoms to be stored in the same

table, while restricting access from other

apps

 Prevents atoms from being deleted by

low box (app container) applications

Atom Reference Structure

 Embedded by the atom table entry structure

 Creates a link between the atom and the low
box id

 Flags field indicates whether the atom should
be shared globally
 #define ATOM_FLAG_GLOBAL 0x2

 Can be set using the new AddAtomEx API

kd> dt nt!_RTL_ATOM_TABLE_REFERENCE

+0x000 LowBoxList : _LIST_ENTRY

+0x010 LowBoxID : Uint4B

+0x014 ReferenceCount : Uint2B

+0x016 Flags : Uint2B

Atom Table

Atoms in Windows 8

Atom Table Entry

Atom Table

Reference

Atom Table

Reference

App

Container ID

Atom Table

Reference

App

Container ID

Low box atom string

references

Defines whether atoms should

be accessible to low box apps

RtlpLookupLowBox

 Called when querying, deleting, or pinning
an atom
 Calls RtlpQueryLowBoxId to determine

whether a low box token is active

 Returns the atom table entry if
 The entry belongs to the current low box id

 The entry permits access from low box apps

○ Flags & ATOM_FLAG_GLOBAL

 Can optionally override (set by argument)
the entry and always deny low box access
 Used by RtlDeleteAtomFromAtomTable

Demo

 run_lowbox

Smashing the Atom

Developer Advice

 Always reference atoms on use

 Be cautious about trusting information

held by the global atom table

 Avoiding it is probably best

 Use job objects to restrict global atom

table access on untrusted processes

 Windows 8: Use the low box token for

added security

 Intra-table atom access restriction

System Hardening

 Not all kernel vulnerabilities involve

semantically invalid memory access

 Mitigations may be less effective

 OS hardening generally helps limit the

impact of such vulnerabilities

 Code signing (page hashing) can

address rogue module injection

 Already used by Apple in iOS

Thanks!

 Questions

 @kernelpool

 kernelpool@gmail.com

 Greetz

 redpantz, aionescu, meder, mdowd, hzon,

endrazine, msuiche, taviso, djrbliss, jono,

mxatone, cesarcer, beist, ++

 REcon

mailto:kernelpool@gmail.com

References

 http://msdn.microsoft.com/en-

us/library/windows/desktop/ms649053(v

=vs.85).aspx

 http://technet.microsoft.com/en-

us/security/bulletin/ms12-041

http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041

