
Cryptographic Function Identification
in Obfuscated Binary Programs

REcon 2012

Joan Calvet – j04n.calvet@gmail.com

Presentation Outline

 Introduction to the Problem

 Proposed Solution

 Examples

 What’s Next ?

2

INTRODUCTION TO THE PROBLEM

3

What’s this ?

4

What’s this ?

5

6

Tools Answer

Crypto Searcher “TEA”

Draca v0.5.7b “TEA/RC5/RC6”

Findcrypt v2 Ø

Hash & Crypto Detector v1.4 “TEA/XTEA/TEAN”

PEiD KANAL v2.92 “TEA/N, RC5, RC6”

Kerckhoffs Ø

Signsrch 0.1.7 “TEA”

SnD Crypto Scanner v0.5b Ø

7

Tools Answer

Crypto Searcher “TEA”

Draca v0.5.7b “TEA/RC5/RC6”

Findcrypt v2 Ø

Hash & Crypto Detector v1.4 “TEA/XTEA/TEAN”

PEiD KANAL v2.92 “TEA/N, RC5, RC6”

Kerckhoffs Ø

Signsrch 0.1.7 “TEA”

SnD Crypto Scanner v0.5b Ø

That’s indeed the Tiny Encryption Algorithm!

8

What about
this one?

9

What about
this one?

No particular
constants

10

Tools Answer

Crypto Searcher Ø

Draca v0.5.7b Ø

Findcrypt v2 Ø

Hash & Crypto Detector v1.4 Ø

PEiD KANAL v2.92 Ø

Kerckhoffs Ø

Signsrch 0.1.7 Ø

SnD Crypto Scanner v0.5b Ø

11

Tools Answer

Crypto Searcher Ø

Draca v0.5.7b Ø

Findcrypt v2 Ø

Hash & Crypto Detector v1.4 Ø

PEiD KANAL v2.92 Ø

Kerckhoffs Ø

Signsrch 0.1.7 Ø

SnD Crypto Scanner v0.5b Ø

Sigh.. That was still TEA!

12

What Can We Do ?

• How to recognize different TEA
implementations in a more reliable way ?

• Is there something such implementations
have to share ?

(If so, we could use it in obfuscated programs!)

13

Input-Output Relationship

 For a key K and an encrypted text C, any TEA
implementation produces the same decrypted
text C’.

14

Input-Output Relationship

 For a key K and an encrypted text C, any TEA
implementation produces the same decrypted
text C’.

 Could we identify TEA implementations by
using their deterministic I/O relationship ?

(or any other cipher)

15

PROPOSED SOLUTION

16

 Let’s say P is a program implementing an
unknown cryptographic algorithm.





17

How To Use Input-Output Relationship ?

 Let’s say P is a program implementing an
unknown cryptographic algorithm.

 First idea: execute P on all possible input states
and check if the outputs are the same than a
known cryptographic algorithm.

(not realistic!)



18

How To Use Input-Output Relationship ?

 Let’s say P is a program implementing an
unknown cryptographic algorithm.

 First idea: execute P on all possible input states
and check if the outputs are the same than a
known cryptographic algorithm.

(not realistic!)

 But we can observe one particular P execution
and collect its input-output parameter values...

19

How To Use Input-Output Relationship ?

For example:

0xDEADBEEF

0x42

P

0xCAFEBABE

20

For example:

• Now imagine that when we execute a reference
implementation of TEA with the key 0x42 and the
input text 0xCAFEBABE, it produces 0xDEADBEEF.

What does it mean for P?

0xDEADBEEF

0x42

P

0xCAFEBABE

21

For example:

• Now imagine that when we execute a reference
implementation of TEA with the key 0x42 and the
input text 0xCAFEBABE, it produces 0xDEADBEEF.

What does it mean for P?

• It proves that P implements TEA on these
particular input values.

0xDEADBEEF

0x42

P

0xCAFEBABE

22

Final Goal

• We are going to prove that a particular
program P behaves like a known cryptographic
algorithm during a particular execution.

• It means that we are not going to prove a
general semantic equivalence between P and
a cryptographic algorithm.

23

Workflow

Given a program P:

 Step 1: Collect P execution trace.

 Step 2: Extract possible cryptographic algorithms
with their parameters from P execution trace
(here is the magic).

 Step 3: Identify these algorithms by comparing
their I/O relationship with those of known
algorithms.

24

STEP 1: COLLECT EXECUTION TRACE

25

Execution Trace

 Pin: Dynamic Binary Instrumentation
framework.

Address Instruction

Read
Registers

Written
Registers

Read
Memory

Written
Memory

4012b3 push ebp
ebp 0012de28

 esp 0012bd98
esp 0012bd94 12bd94 0012de28

4012b4 mov ebp, esp esp 0012bd94 ebp 0012bd94

4012b6 push ebx
ebx 02f00010

esp 0012bd84
esp 0012bd80 12bd80 2f00010

...
 26

 STEP 2: CRYPTOGRAPHIC
ALGORITHM EXTRACTION

27

How To Find Crypto Code ? (1)

• Cryptographic code constitutes only a part of
programs, we need a way to find it.

28

How To Find Crypto Code ? (1)

• Cryptographic code constitutes only a part of
programs, we need a way to find it.

• As we want to play with obfuscated programs,
IDA functions will not be enough...

29

In obfuscated programs, such things can happen:

Win32.Swizzor’s packer

30

• Cryptographic algorithms usually apply a same
treatment on their input-output parameters.

31

How To Find Crypto Code ? (2)

• Cryptographic algorithms usually apply a same
treatment on their input-output parameters.

• It makes loops a cryptographic code feature.

32

How To Find Crypto Code ? (2)

• Cryptographic algorithms usually apply a same
treatment on their input-output parameters.

• It makes loops a cryptographic code feature.

• But there are loops everywhere, not only in
crypto... What kind of loops are we looking for ?

33

How To Find Crypto Code ? (2)

Loops ?

Win32.Mebroot

34

Loops ?

Win32.Mebroot Unrolling optimization

35

Loops ?

Win32.Mebroot Unrolling optimization

36

Looooops

• We look for the same operations applied
repeatedly on a set of data.

37

Looooops

• We look for the same operations applied
repeatedly on a set of data.

 “A loop is the repetition of a same sequence of
machine instructions at least two times.”

(This sequence of instructions is the loop body.)

38

Example

...

401325

401327

401329

40132c

401325

401327

401329

40132c

...

...

add ebx, edi

sub edx, ebx

dec dword ptr [ebp+0xc]

jnz 0x401325

add ebx, edi

sub edx, ebx

dec dword ptr [ebp+0xc]

jnz 0x401325

...

Execution Trace

39

Example

...

401325

401327

401329

40132c

401325

401327

401329

40132c

...

...

add ebx, edi

sub edx, ebx

dec dword ptr [ebp+0xc]

jnz 0x401325

add ebx, edi

sub edx, ebx

dec dword ptr [ebp+0xc]

jnz 0x401325

...

Iteration 1

Iteration 2

Execution Trace

40

Example

...

401325

401327

401329

40132c

401325

401327

401329

40132c

...

...

add ebx, edi

sub edx, ebx

dec dword ptr [ebp+0xc]

jnz 0x401325

add ebx, edi

sub edx, ebx

dec dword ptr [ebp+0xc]

jnz 0x401325

...

Iteration 1

Iteration 2

Execution Trace

41

Loop

What About Nested Loops ?

Simplified CFG

42

What About Nested Loops ?

A
B
B
B
C
A
B
B
C

Execution trace

Simplified CFG

43

What About Nested Loops ?

A
B
B
B
C
A
B
B
C

Loop B
3 iterations

Loop B
2 iterations

Execution trace

Simplified CFG

44

What About Nested Loops ?

A
B
B
B
C
A
B
B
C

Execution trace

Simplified CFG

45

What About Nested Loops ?

A
B
B
B
C
A
B
B
C

Different!

Execution trace

Simplified CFG

46

What About Nested Loops ?

A
B
B
B
C
A
B
B
C

Execution trace

Simplified CFG

47

What About Nested Loops ?

A
B
B
B
C
A
B
B
C

A
X
C
A
X
C

Trace
Rewriting

Execution trace

Simplified CFG

48

What About Nested Loops ?

A
B
B
B
C
A
B
B
C

A
X
C
A
X
C

Ok !

Trace
Rewriting

Execution trace

Simplified CFG

49

Loop Detection Algorithm

1. Detects two repetitions of a loop body in the
execution trace.

(non trivial, language w.w is non-context-free)

2. Replaces in the trace the detected loop by a
symbol representing their body.

3. Goes back to step 1 if new loops have been
detected.

50

What’s Next ?

• We extracted possible cryptographic code
from execution traces thanks to a particular
loop definition.

51

What’s Next ?

• We extracted possible cryptographic code
from execution traces thanks to a particular
loop definition.

• For the moment, we assume that each
possible cryptographic algorithm corresponds
to one single loop.

52

What’s Next ?

• We extracted possible cryptographic code
from execution traces thanks to a particular
loop definition.

• For the moment, we assume that each
possible cryptographic algorithm corresponds
to one single loop.

• How can we define parameters from the bytes
read and written in the execution trace ?

53

Loop Parameters (1)

• Distinction between input and output bytes in
the execution trace:

– Input bytes have been read without having been
previously written.

– Output bytes have been written.

54

Loop Parameters (2)

• We want to group together bytes belonging to
the same cryptographic parameter (key, input
text...).

55

Loop Parameters (2)

• We want to group together bytes belonging to
the same cryptographic parameter (key, input
text...).

What criteria can we use ?

56

Loop Parameters (3)

• Grouping of several bytes into the same
parameter:

1. If they are adjacent in memory (too large!)

57

Loop Parameters (3)

• Grouping of several bytes into the same
parameter:

1. If they are adjacent in memory (too large!)

2. And if they are manipulated by the same
instruction in the loop body.

58

Loop Parameters (3)

• Grouping of several bytes into the same
parameter:

1. If they are adjacent in memory (too large!)

2. And if they are manipulated by the same
instruction in the loop body.

59

add ebx, edi

mov eax, [ebx]

...

add ebx, edi

mov eax, [ebx]

...

Loop Parameters (3)

• Grouping of several bytes into the same
parameter:

1. If they are adjacent in memory (too large!)

2. And if they are manipulated by the same
instruction in the loop body.

60

add ebx, edi

mov eax, [ebx]

...

add ebx, edi

mov eax, [ebx]

...

Iteration 1

Iteration 2

Loop Parameters (3)

• Grouping of several bytes into the same
parameter:

1. If they are adjacent in memory (too large!)

2. And if they are manipulated by the same
instruction in the loop body.

61

add ebx, edi

mov eax, [ebx]

...

add ebx, edi

mov eax, [ebx]

...

Iteration 1

Iteration 2

Loop Parameters (3)

• Grouping of several bytes into the same
parameter:

1. If they are adjacent in memory (too large!)

2. And if they are manipulated by the same
instruction in the loop body.

62

add ebx, edi

mov eax, [ebx]

...

add ebx, edi

mov eax, [ebx]

...

Iteration 1

Iteration 2

Loop Parameters (4)

• A parameter is then defined by:

– An identifier: “(memory address|register name):size”

– A value

63

Let’s Recap With a Use-Case

• Tiny Encryption Algorithm:
– Block cipher

– 16-byte key

– 8-byte input text

– Magic constant delta (0x9E3779B9)

• We built a toy program calling the TEA
decryption function on:
– Key : 0xDEADBEE1...DEADBEE4

– Encrypted text: 0x0123456789ABCDEF
64

65

Step 1 : Gather Execution Trace

First
instruction

Last
instruction

66

B

Step 2 : Recognize Loops

B B ...

Machine instruction
sequence B is repeated

67

B B B ...

Step 2 : Recognize Loops

68

Step 3 : Define Loop Parameters

1

2

3 6

5

4

LOOP

Each loop is then a possible cryptographic algorithm!

Final Model

69

Final Model

Key

70

Final Model

Key Encrypted text

71

Final Model

Key Encrypted text

Decrypted text

72

STEP 3: CRYPTO ALGORITHM
IDENTIFICATION

73

Input 1: unknown algorithm A with its parameter values

74

Input 1: unknown algorithm A with its parameter values

Input 2: reference implementations for common crypto algo

def tea (input_text, key):

 ...

def xtea (input_text, key):

 ...

def rc4 (input_text, key):

 ...

75

Question

• Is there a way to combine A input values such
that tea(), xtea() or rc4() would produce a
combination of A output values ?

76

Question

• Is there a way to combine A input values such
that tea(), xtea() or rc4() would produce a
combination of A output values ?

• Some difficulties:
– Parameter division: a same cryptographic parameter

can be divided into several loop parameter.

77

Question

• Is there a way to combine A input values such
that tea(), xtea() or rc4() would produce a
combination of A output values ?

• Some difficulties:
– Parameter division: a same cryptographic parameter

can be divided into several loop parameter.

– Parameter order: no particular order for A
parameters.

78

Question

• Is there a way to combine A input values such
that tea(), xtea() or rc4() would produce a
combination of A output values ?

• Some difficulties:
– Parameter division: a same cryptographic parameter

can be divided into several loop parameter.

– Parameter order: no particular order for A
parameters.

– Parameter number: we collect more than the
cryptographic parameters.

79

Brute-Force!

80

81

A

82

1. Generate all possible values with A input parameters:

1. Length 4: 00000020, 01234567, deadbee3...

2. Length 8: 0000002001234567, 00000020deadbee3,..

3. ...

A

83

1. Generate all possible values with A input parameters:

1. Length 4: 00000020, 01234567, deadbee3...

2. Length 8: 0000002001234567, 00000020deadbee3,..

3. ...

2. Same thing with A output parameters.

A

84

1. Generate all possible values with A input parameters:

1. Length 4: 00000020, 01234567, deadbee3...

2. Length 8: 0000002001234567, 00000020deadbee3,..

3. ...

2. Same thing with A output parameters.

3. For TEA reference implementation:

1. Possible input texts (8 bytes): 0000002001234567,...

A

85

1. Generate all possible values with A input parameters:

1. Length 4: 00000020, 01234567, deadbee3...

2. Length 8: 0000002001234567, 00000020deadbee3,..

3. ...

2. Same thing with A output parameters.

3. For TEA reference implementation:

1. Possible input texts (8 bytes): 0000002001234567,...

2. Possible keys (16 bytes): ...

A

86

1. Generate all possible values with A input parameters:

1. Length 4: 00000020, 01234567, deadbee3...

2. Length 8: 0000002001234567, 00000020deadbee3,..

3. ...

2. Same thing with A output parameters.

3. For TEA reference implementation:

1. Possible input texts (8 bytes): 0000002001234567,...

2. Possible keys (16 bytes): ...

3. Execute our TEA reference implementation on each possible pair
(input text, key)

A

87

1. Generate all possible values with A input parameters:

1. Length 4: 00000020, 01234567, deadbee3...

2. Length 8: 0000002001234567, 00000020deadbee3,..

3. ...

2. Same thing with A output parameters.

3. For TEA reference implementation:

1. Possible input texts (8 bytes): 0000002001234567,...

2. Possible keys (16 bytes): ...

3. Execute our TEA reference implementation on each possible pair
(input text, key)

4. If the output has been produced during step 2: success!

A

~ 2 minutes

88

EXAMPLES!

Malware And TEA

89

Storm Worm

• Several internet references about the use of
TEA in the Storm Worm packer (aka Tibs).

• Let’s take a look to the code...

90

91

TEA delta

TEA round number

Classic TEA operations

92

Let’s try our
tool...

TEA delta

TEA round number

Classic TEA operations

93

TRACER

Execution
Trace

CRYPTO
EXTRACTION Storm

Worm
Sample

Unknown

Algorithms

94

• For the previous loop, we extracted many
unknown algorithms like these ones:

95

• For the previous loop, we extracted many
unknown algorithms like these ones:

96

• For the previous loop, we extracted many
unknown algorithms like these ones:

Looks like 8-byte cipher block
(like TEA!)

97

Unknown
Algorithms

IDENTIFICATION

...

98

WTF ?

99

Original TEA source code

Storm Worm implementation

100

Original TEA source code

Storm Worm implementation

101

Original TEA source code

Storm Worm implementation

102

Original TEA source code

Storm Worm implementation

This is not TEA: parenthesis at the wrong place!

103



Ok, Storm Worm implementation added to the base...
(this is not TEA)

104

Trojan.SilentBanker

• Several internet references about the use of
TEA in SilentBanker.

• Let’s take a look to the code...

(sounds familiar, isn’t it ?)

105

106

 = sub [ebp+arg_0], 0x9E3779B9

TEA round number

TEA classic constant
(delta * round number)

Classic TEA operations

107

 = sub [ebp+arg_0], 0x9E3779B9

TEA round number

TEA classic constant
(delta * round number)

Classic TEA operations
Let’s try
our tool...

108

• For the previous loop, we extracted many
unknown algorithms like these ones:

109

• For the previous loop, we extracted many
unknown algorithms like these ones:

Looks like 8-byte cipher block
(like TEA!)

110

Fail.. Again !?

111

Same implementation than in the Storm Worm!

112

 !!

• They probably both copied/pasted a wrong
source code from the internet.

• Started to look for it: Google, TEA Wikipedia
page,... nothing!

• At some point, I remembered something
these two malware families have in common...

113

They both came from Russia!

114

115

116

117

Russian
Website

TEA source
code

118

Russian
Website

TEA source
code

Storm
Worm

119

MORE EXAMPLES!

RC4

120

RC4 (1)

• RC4 algorithm:

– Stream cipher

– Variable-length key

– Two loops generate a pseudorandom stream into
a 256 bytes substitution-box (S-BOX).

– A final loop does the actual decryption.

• We have to extend our model to regroup
different loops into a same algorithm.

121

Interlude: Loop Data Flow

• Two loops L1 and L2 are in the same
algorithm:

– If L1 started before L2 in the trace.

– If L2 uses as input parameter an output parameter
of L1.

(or the contrary!)

122

RC4 (2)

• We built a toy program calling the RC4
decryption function on:

– Key : “SuperKeyIsASuperKey” (19 bytes)

– Encrypted text: “AAA....AA” (1024 bytes)

123

Statically speaking
it looks like this...

Loop 1

Loop 2

Loop 3

124

125

Tools Answer

Crypto Searcher Ø

Draca v0.5.7b Ø

Findcrypt v2 Ø

Hash & Crypto Detector v1.4 Ø

PEiD KANAL v2.92 Ø

Kerckhoffs Ø

Signsrch 0.1.7 Ø

SnD Crypto Scanner v0.5b Ø

126

Tools Answer

Crypto Searcher Ø

Draca v0.5.7b Ø

Findcrypt v2 Ø

Hash & Crypto Detector v1.4 Ø

PEiD KANAL v2.92 Ø

Kerckhoffs Ø

Signsrch 0.1.7 Ø

SnD Crypto Scanner v0.5b Ø

Let’s try our tool...

127

Step 1 : Gather Execution Trace

First
instruction

Last
instruction

128

Step 2 : Recognize Loops

L1 L2 L3

129

Step 2 : Recognize Loops

L1 L2 L3

130

Step 3 : Define Loop Parameters

L1 L2 L3

131

Step 4 : Connect Loops With Data-Flow

L1 L2 L3

132

Loop Data Flow Graph (oriented, acyclic)

L1 L2 L3

133

L1 L2 L3

We consider each path in the graph as a possible
cryptographic algorithm!

(in order to deal with algorithm combinations)

134

L1 L2 L3

We consider each path in the graph as a possible
cryptographic algorithm!

(in order to deal with algorithm combinations)

135

L1 L2 L3

We consider each path in the graph as a possible
cryptographic algorithm!

(in order to deal with algorithm combinations)

136

L1 L2 L3

We consider each path in the graph as a possible
cryptographic algorithm!

(in order to deal with algorithm combinations)

137

L1 L2 L3

We consider each path in the graph as a possible
cryptographic algorithm!

(in order to deal with algorithm combinations)

138

Final model for the longest path

Input text

Output text

139

Final model for the longest path

Key Input text

Output text

140

Final model for the longest path

Key Input text

S-Box Output text

141

Final model for the longest path



142

Win32.Sality.AA

• Several internet references about the use of
RC4 in Sality.AA protection layers.

• Let’s take a look...

(suspense...)

143

Loop 1

Loop 2

Loop 3

....

144

Loop 1

Loop 2

Loop 3

....

145

Loop 1

Loop 2

Loop 3

....

Hmpf.. Let’s try!

146

TRACER

Execution
Trace

CRYPTO
EXTRACTION Sality

Sample

Unknown
Algorithms

147

(Multi-loops)

For the previous 3 loops, we extracted one
algorithm:

148

For the previous 3 loops, we extracted one
algorithm:

149

For the previous 3 loops, we extracted one
algorithm:

150

For the previous 3 loops, we extracted one
algorithm:

X86 ExecutableCode!

151

For the previous 3 loops, we extracted one
algorithm:

X86 ExecutableCode!

152

For the previous 3 loops, we extracted one
algorithm:

X86 ExecutableCode!

153

Unknown
Algorithm

IDENTIFICATION

...

154



155

RC4 extracted from two Sality.AA binaries

156

RC4 extracted from two Sality.AA binaries

157

RC4 extracted from two Sality.AA binaries

158

RC4 extracted from two Sality.AA binaries

159

RC4 extracted from two Sality.AA binaries

160

RC4 extracted from two Sality.AA binaries

161 Crypto parameters always at the same offsets!

MORE EXAMPLES!

Modified TEA

162

Remember This ?

163

Remember This ?

 The magic TEA constant (delta) and the round
number are seen as input parameters,
because they are initialized before the loop
and used inside.

Delta Round number

164

Modified TEA Implementation

• delta = 0x12345678 (normally 0x9E3779B9)

• round number = 16 (normally 32)

165

• TEA reference implementation extended:

def tea (input_text, key):

 ...

166

• TEA reference implementation extended:

def tea (input_text, key):

 ...

167

def tea (input_text, key, delta, round_number):

 ...

• TEA reference implementation extended:

def tea (input_text, key):

 ...

168

def tea (input_text, key, delta, round_number):

 ...

Example: Mozilla CTF

• Challenge “Awesome Corp. Secured Ranges”

• Binary program protected by PE Spin

• In the core binary, a strange algorithm...

169

170

171

LOOP 1

172

LOOP 1

Common
TEA
operations

173

LOOP 1

Common
TEA
operations

Not the TEA
round number

Not the TEA
delta

174

175

LOOP 2

176

LOOP 2

TEA
round number!

177

Loop Data Flow Graph

LOOP1 LOOP2

3 possible cryptographic algorithms

178

LOOP1 +
LOOP2

LOOP1

LOOP2

Method Recap

1. We collect an execution trace.

2. We extract possible cryptographic algorithms with
their parameter values.

3. We compare the input-output relationship with
known algorithms.

179

We prove that a program behaves like a known crypto
algorithm during one particular execution path.

Conclusion (1)

• Interesting alternative to pure syntactic-
identification for crypto algorithms:
– Resistance against usual obfuscation techniques.

– Gives the exact parameters.

• As any dynamic technique, you have to know
how to exhibit interesting execution paths.

• It is easy to bypass, like any program analysis
technique 

180

Conclusion (2)

• The identification process itself is generic:

– Collect the execution trace

– Extract the type of code you are looking for (here
is the magic)

– Get I/O values

– Compare with reference implementations

181

Conclusion (3)

• Nice work: Felix Gröbert “Automatic
Identification of Cryptographic Primitives in
Software”, 27th CCC

http://code.google.com/p/kerckhoffs/

182

http://code.google.com/p/kerckhoffs/

What’s Next ? (1)

• That’s only the beginning! Just wanted to
show that it is feasible and useful.

• What about more complex algorithms ? What
about hash functions ? Compression
algorithms ?

• What about proprietary algorithms ?

183

• Make a real tool. This one is just a PoC.

• How to use the analyst knowledge ? In
practice he often knows where the crypto is,
analyzing a complete execution trace is more
an academic hobby.

184

What’s Next ? (2)

Thank you for your attention ;-)

j04n.calvet@gmail.com

185

