
GPUs for Mobile Malware,
Mitigation and More

by Jared Carlson

Tuesday, June 19, 12

About Myself

I’m a researcher in the Boston area

Have worked and consulted for variety
of companies

Sr. Engineer @ viaForensics

We’re hiring

Tuesday, June 19, 12

Why?

Tuesday, June 19, 12

Why?

Highly Capable

Explosive Growth

SoC/PoP on Mobile
Highly Integrated

Can be used for
Offensive

or Defensive tactics

Tuesday, June 19, 12

Generalizing GPUs
What do folks do on GPUs?

CUDA

OpenCL

Heterogenous computing

Using GPU for general purpose

Physics Crypto

Tuesday, June 19, 12

Motivation for Mobile

Tuesday, June 19, 12

Motivation for Mobile
Increased surface area

Offloading tasks from the CPU

Code signing? Nope...

Easily (re)compiled

Tuesday, June 19, 12

Unified Addressing

Tuesday, June 19, 12

Call Stack for GL

iOS Example

Tuesday, June 19, 12

What can we do?

Tuesday, June 19, 12

What can we do?
Signatures

Track Dynamic Memory

Disassembly

Encryption

And more...

Tuesday, June 19, 12

GL Example
What a shader looks like

#ifdef GL_ES
precision highp float;
#endif

uniform mat4 modelViewMatrix;
uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;

#if __VERSION__ >= 140
in vec3 inNormal;
in vec4 inPosition;
out vec3 varNormal;
out vec3 varEyeDir;
#else
attribute vec3 inNormal;
attribute vec4 inPosition;
varying vec3 varNormal;
varying vec3 varEyeDir;
#endif

void main (void)
{!
! gl_Position! = modelViewProjectionMatrix * inPosition;
! vec4 eyePos = modelViewMatrix * inPosition;
!
! varNormal = normalize(normalMatrix * inNormal);
! varEyeDir = eyePos.xyz;
}

Tuesday, June 19, 12

Some GL Basics
Shared Memory (bandwidth considerations)

Shaders compiled at runtime

API

Primitive
Processing

Vert
Shader

Vertex
Buffer

Objects

Primitive
Assembly

Frag
ShaderRasterizer

Geometry
Shader GL 3+

Tuesday, June 19, 12

Signatures

Tuesday, June 19, 12

Signatures
Vectorized

Sweep a texture across as a
masking operation

// offset is a uniform we control from the CPU
// allowing us to "sweep"
gl_FragColor = texture2D(Texture, TexCoordOut) -
texture2D(Mask, TexCoordOut + offset);

Tuesday, June 19, 12

Signatures

Periodic BC’s

Offsets and other parameters
controlled via uniforms

// offset is a uniform we control from the CPU
// allowing us to "sweep"
gl_FragColor = texture2D(Texture, TexCoordOut) -
texture2D(Mask, TexCoordOut + offset);

Tuesday, June 19, 12

Signatures in Action
// placing breakpoint immediately after:
glReadPixels(0, 0, dimension, dimension, GL_RGBA, GL_UNSIGNED_BYTE, bytes);
//
// at the start... offset (0,0)
(gdb) x/20 bytes
0x6f33000:	

 0xff000000	

 0xffac420f	

 0xff002047	

 0xff000000
0x6f33010:	

 0xff090000	

 0xff5b1a00	

 0xff000000	

 0xff1c002c
0x6f33020:	

 0xff761900	

 0xff080900	

 0xff000001	

 0xff250f00
0x6f33030:	

 0xff000e00	

 0xff0d0013	

 0xff432500	

 0xff00005e
0x6f33040:	

 0xff1d8c1e	

 0xffc23646	

 0xffc36bb4	

 0xffbdc2b5

// later... offset(x,y)
(gdb) x/20 bytes
0x6f33000:	

 0xff070503	

 0xff000000	

 0xff000000	

 0xff000000
0x6f33010:	

 0xff000000	

 0xff000000	

 0xff000000	

 0xff000000
0x6f33020:	

 0xff000000	

 0xff000000	

 0xff000000	

 0xff000000
0x6f33030:	

 0xff000000	

 0xff000000	

 0xff000000	

 0xff000000
0x6f33040:	

 0xff000000	

 0xff520000	

 0xffc36bb4	

 0xffbdc2b5

Tuesday, June 19, 12

Byte Alignment
0 1 2

This solves the texel comparison problem,
plus in practice we should fill our texture!

3

Tuesday, June 19, 12

Tiling

Tuesday, June 19, 12

Tiling

Tuesday, June 19, 12

Devices

iPhone 4S - 8 textures, 4096 max. texture
dimension

NVIDIA Tegra 3 ASUS Prime Tablet 16
textures, 2048 max. texture dimension

NEON processors

PowerVR SGX543 vs NVIDIA Tegra 3 -
NVIDIA Trailing but catching up

Tuesday, June 19, 12

Some Characteristics
Using OpenGL ES 2 exclusively

GL ES 1 lacks the control we want,
i.e. no shaders to compile!

Can use code optimized for NEON processor

EIGEN - Android

Accelerate (BLAS/LAPACK) iOS

However, this would be signed code...

Tuesday, June 19, 12

Memory Tracking
A little setup goes along way

Tuesday, June 19, 12

Memory Tracking
A little setup goes along way

Can continuously monitor

Power consumption not really a
problem

class MemoryObject
{
 unsigned char leading[8];
 vector<string> objects;
 // other objects
 unsigned char trailing[8];

 // static methods
 static void Generator(unsigned char ptr[8]) {
 static unsigned char start = 0;
 const unsigned char interval = 0x02;
 start += interval;
 for (int i=0; i<8; i++)
 ptr[i] = start;

 }

public:

 // constructor
 MemoryObject(void) { Generator(leading); objects.push_back("Testing"); Generator(trailing); }

Tuesday, June 19, 12

Frag Shader
varying lowp vec4 DestinationColor;

varying lowp vec2 TexCoordOut;
uniform sampler2D Texture;
uniform sampler2D Mask;
uniform lowp vec2 offset;

// assume we have our signature in four bytes or less, we can grab neighboring texels
bool isValidSignature(lowp vec4 pixel)
{
 lowp float norm;
 norm = dot(pixel.rgb , pixel.rgb);
 bool result = false;
 if (norm > 0.0)
 {
 	

 // for now we just see if the all RGB channels match, this means
 	

 if (pixel.r == pixel.g && pixel.g == pixel.b)
 	

 result = true;
 }
 return result;
}

// basic shader
void main(void) {

 if (isValidSignature(texture2D(Texture,TexCoordOut)))
 {
 gl_FragColor = vec4(1, 0, 0, 1);
 }
 else
 {
 gl_FragColor = vec4(0, 0, 0, 1) * texture2D(Texture, TexCoordOut);
 }

}

Tuesday, June 19, 12

In Practice: Render to
Texture- (BOOL)renderToTexture

{
 BOOL result = NO;
 unsigned char * texturedata = (unsigned char*) malloc(dimension * dimension * 4);

 // bind our texture to render to...
 glBindFramebuffer(GL_FRAMEBUFFER, offScreenTexture);

 // gl calls, as before...
 ...

 //
 // set up our data to be sampled within the texture
 //
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, heapTexture);
 glUniform1i(sampler, 0);

 GetGLError();

 glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, 0);

 // copy from the texture to image...
 glReadPixels(0, 0, dimension, dimension, GL_RGBA, GL_UNSIGNED_BYTE, texturedata);

 // analyze the results...
 if ([self analyzeBuffer:texturedata])
 result = YES;

 // unbind the frame buffer...
 glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);

 free(texturedata);

 return result;
}

Tuesday, June 19, 12

In Practice: Render to
Texture- (BOOL)renderToTexture

{
 BOOL result = NO;
 unsigned char * texturedata = (unsigned char*) malloc(dimension * dimension * 4);

 // bind our texture to render to...
 glBindFramebuffer(GL_FRAMEBUFFER, offScreenTexture);

 // gl calls, as before...
 ...

 //
 // set up our data to be sampled within the texture
 //
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, heapTexture);
 glUniform1i(sampler, 0);

 GetGLError();

 glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, 0);

 // copy from the texture to image...
 glReadPixels(0, 0, dimension, dimension, GL_RGBA, GL_UNSIGNED_BYTE, texturedata);

 // analyze the results...
 if ([self analyzeBuffer:texturedata])
 result = YES;

 // unbind the frame buffer...
 glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);

 free(texturedata);

 return result;
}

Tuesday, June 19, 12

In Practice: Render to
Texture- (BOOL)renderToTexture

{
 BOOL result = NO;
 unsigned char * texturedata = (unsigned char*) malloc(dimension * dimension * 4);

 // bind our texture to render to...
 glBindFramebuffer(GL_FRAMEBUFFER, offScreenTexture);

 // gl calls, as before...
 ...

 //
 // set up our data to be sampled within the texture
 //
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, heapTexture);
 glUniform1i(sampler, 0);

 GetGLError();

 glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, 0);

 // copy from the texture to image...
 glReadPixels(0, 0, dimension, dimension, GL_RGBA, GL_UNSIGNED_BYTE, texturedata);

 // analyze the results...
 if ([self analyzeBuffer:texturedata])
 result = YES;

 // unbind the frame buffer...
 glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);

 free(texturedata);

 return result;
}

Tuesday, June 19, 12

Disassembly
Can leverage vectorized NEON processor

Texture math, not that difficult

ARM = 32 bit insts = 4 channels = RGBA (it’s fate)

What could you do?

Tuesday, June 19, 12

Dynamic DisASM
This work inspired by the thesis, “Approximate
Disassembly using Dynamic Programming” by
Shah

Basic Idea is to approximate disassembly by using
optimization efforts.

Excellent candidate for GPU & Vectorized calls
because of the mathematical formulation of the
problem.

Tuesday, June 19, 12

Accelerate Framework
 m = read_matrix_from_file(matrixfile);

 __CLPK_integer mn = (__CLPK_integer) m->numberOpcodes;
 float * vec, * result;
 vec = (float*) malloc(sizeof(float) * m->numberOpcodes);
 result=(float*)malloc(sizeof(float) * m->numberOpcodes);

 // populate the vector...
 populate_vector(vec, m->numberOpcodes, m->opcodes, argv[1]);

 cblas_sgemv(CblasColMajor, CblasNoTrans, mn, mn, alpha, m->elements,
 mn, vec, 1, beta, result, 1);

 char * chosen_opcode = choose_opcode(result, m->numberOpcodes,
 m->opcodes);
 printf("%s\n",chosen_opcode);
 // print_vector(result, m->numberOpcodes);

 free(vec);
 free(result);
 destroy_matrix(m);
 return 0;

Tuesday, June 19, 12

Accelerate Framework
iOS’s current answer to OpenCL

Can leverage vectorized
algorithms - BLAS/LAPACK

Excellent for image, vector, signal
processing

 m = read_matrix_from_file(matrixfile);

 __CLPK_integer mn = (__CLPK_integer) m->numberOpcodes;
 float * vec, * result;
 vec = (float*) malloc(sizeof(float) * m->numberOpcodes);
 result=(float*)malloc(sizeof(float) * m->numberOpcodes);

 // populate the vector...
 populate_vector(vec, m->numberOpcodes, m->opcodes, argv[1]);

 cblas_sgemv(CblasColMajor, CblasNoTrans, mn, mn, alpha, m->elements,
 mn, vec, 1, beta, result, 1);

 char * chosen_opcode = choose_opcode(result, m->numberOpcodes,
 m->opcodes);
 printf("%s\n",chosen_opcode);
 // print_vector(result, m->numberOpcodes);

 free(vec);
 free(result);
 destroy_matrix(m);
 return 0;

Tuesday, June 19, 12

Exploring DisASM
let's use our C-code to on-the-fly generate
disassembly using probability tables
last_instruction = False
application = './optimization'
args = ''
digraph = 'simple.digraph'
recreated = []
index = 0
for instr in samples:
 if (instr == 'xxx'):
 # call out...
 try:
 prob_instruction = subprocess.check_output([application,last_instruction,digraph])
 instr = prob_instruction
 print "replacing %s with %s " % (instructions[index],instr)
 except:
 print "Error in our C-code, time to debug..."
 # append...
 recreated.append(instr)
 last_instruction = instr
 index+=1

Now we test our disassembly to see how much we got right...

Tuesday, June 19, 12

Exploring DisASM
let's use our C-code to on-the-fly generate
disassembly using probability tables
last_instruction = False
application = './optimization'
args = ''
digraph = 'simple.digraph'
recreated = []
index = 0
for instr in samples:
 if (instr == 'xxx'):
 # call out...
 try:
 prob_instruction = subprocess.check_output([application,last_instruction,digraph])
 instr = prob_instruction
 print "replacing %s with %s " % (instructions[index],instr)
 except:
 print "Error in our C-code, time to debug..."
 # append...
 recreated.append(instr)
 last_instruction = instr
 index+=1

Now we test our disassembly to see how much we got right...

Simulating in Python

Tuesday, June 19, 12

Encryption

Operate on Texture A

Render to Texture A

Render to Texture B

Just another render call

This is not atypical
consumption, just
an atypical usage -

TinyWings

Tuesday, June 19, 12

Be Creative
A simple example...

If you understand how to work with the
“signed” API calls then you can alter your
shader(s).

Therefore, OTA updates for encryption
algorithms? Yes...

Bottom line - you have adaptive computational
resources at your disposal!

Tuesday, June 19, 12

GPU Malware

First paper used GPU decryption as a method to
deliver the malicious payload

As GPGPU (general) methods become increasingly
available this is likely to increase

Tuesday, June 19, 12

A Demo

- (IBAction)corruptMemory:(id)sender
{
 NSLog(@"Corrupting Memory");
 // grab memory from C and corrupt it...
 unsigned int i,s = (unsigned int) sizeof(Matrix);
 unsigned char * p = (unsigned char *) C;
 for (i=0; i<s; i++) {
 p[i] = i;
 }

 ...

 ...
 glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, 0);

 // copy from the texture to raw...
 glReadPixels(0, 0, dimension, dimension, GL_RGBA, GL_UNSIGNED_BYTE, texturedata);

 // analyze the results...
 if ([self analyzeBuffer:texturedata])
 result = YES;

 // unbind the frame buffer...
 glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer);

 return result;

- (void)viewDidLoad
{
 [super viewDidLoad];
! // Do any additional setup after loading the view, typically from a nib.

 unsigned int i, j;
 void * heap_space = (void*) malloc(sizeof(Matrix) * 3);
 A = new Matrix(3,3);
 B = new Matrix(3,3);
 C = new Matrix(3,3);

Tuesday, June 19, 12

Renderscript
Mechanism to leverage all resources on device.

Compiles C99 code to shaders, Java classes,
etc.

Interesting caching mechanism

No control

Shaders are... so-so...

Allows device considerations to be offloaded

Tuesday, June 19, 12

Tuesday, June 19, 12

Use Cases
How can you use this today?

Limiting factors today for strict GPU
usage is the number of textures

Mathematical, especially vectorized,
techniques are best suited for more
complex tasks

Tuesday, June 19, 12

Uses for Tomorrow
We’ve shown a variety of ways, but keep
in mind that this is a rapidly growing
area

Generalized techniques are clearly coming

Device access and memory architectures
for Mobile an area to watch.

Tuesday, June 19, 12

Tools & Frameworks

Tuesday, June 19, 12

Tools & Frameworks

GLKit
Renderscript

OpenCL CUDA

GL Extensions

OpenGL ES 2

Tuesday, June 19, 12

CARMA
Ubuntu Linux ARM board

with CUDA
CPU
NVIDIA® Tegra® 3 ARM Cortex A9 Quad-Core
GPU
NVIDIA® Quadro™ 1000M with 96 CUDA® Cores
Memory

1 CPU Memory: 2 GB

2 GPU Memory: 2 GB

Peak Performance
270 Single Precision GFlops
CPU - GPU Interface
PCIe x4 Gen1 link
Network
1x Gigabit Ethernet
Storage
1x SATA Connector
USB
3x USB 2.0
Display
HDMI
Software

1 Linux Ubuntu Derivative OS

2 CUDA® Tool Kit

Tuesday, June 19, 12

Follow the $$$
Economics

http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html

Source

Attacker Math?

Tuesday, June 19, 12

http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html
http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html

Follow the $$$

Security

Economics

Games

http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html

Source

Attacker Math?

Tuesday, June 19, 12

http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html
http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html

Follow the $$$

Security

Economics

Games

http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html

Source

Apple & Google command 58 % of portable games in US
 Approx 3.5+ Billion $$

Attacker Math?

Tuesday, June 19, 12

http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html
http://www.appleinsider.com/articles/11/11/09/apples_iosgoogle_android_command_58_of_us_portable_game_revenue.html

What have you
learned?

GPU/Vectorized processors are ready today.

Shaders allow you a way to deliver unsigned
code, OTA, across platforms

GPUs will be used as part of cyber for
tomorrow

Tuesday, June 19, 12

What Can You do?

Download some source

source located at github: https://github.com/
jcarlson23/gpumalware

Ask Questions

jared.carlson23@gmail.com

Tuesday, June 19, 12

http://github.com/jcarlson23/gpumalware.git
http://github.com/jcarlson23/gpumalware.git
http://github.com/jcarlson23/gpumalware.git
http://github.com/jcarlson23/gpumalware.git
mailto:jared.carlson23@gmail.com
mailto:jared.carlson23@gmail.com

Thanks
DARPA - @mudge, Peiter Zaitko

MITRE - Seth Landsman, Alan Stone, Rob
Dingwell, Nick Harezga, and Ayal Spitz

VSR - George Gal and Dan Rosenberg

viaForensics - Andrew Hoog and Thomas Cannon

Tuesday, June 19, 12

Questions?

Tuesday, June 19, 12

