
P A G E

CORE SECURITY
Dynamic Binary Instrumentation Frameworks: I know you're
there spying on me

Francisco Falcón ς Nahuel Riva
RECon 2012

June 2012

P A G E

Agenda

2

P A G E

Agenda

Å Who are we?

Å Motivations

Å What is Dynamic Binary Instrumentation?
ÅWhat is Pin?

ÅHow does Pin work?

Å Anti-debug and Anti-VM related work

Å Anti-instrumentation techniques

Å Presentation of eXait

Å Applications of our research

Å Future work

Å Contact info

3

P A G E

Who are we?

4

P A G E

Who are we?

Å We are exploit writers in the Exploit Writers Team of Core
Security.

Å We have discovered vulnerabilities in software of some major
companies (CA, Adobe, HP, Novell, Oracle, IBM, Google).

Å We like low-level stuff, like doing kernel exploitation, assembly
programming, breaking software protections, etc.

Å This is our first talk in a conference!

Å We are from small towns in Argentina.

5

P A G E

Who are we?

6

Nahuel ƛǎ ŦǊƻƳ ǘƘŜ ²ƻǊƭŘ Ψǎ /ŀǇƛǘŀƭ /ƛǘȅ ƻŦ Asado!

P A G E

Who are we?

7

Francisco is from a county that looks like the head of a man!

P A G E

Motivations for our work

8

P A G E

Motivations

Å Dynamic Binary Instrumentation is becoming more popular.

ÅCovert debugging (Saffron - Danny Quist ς BH USA 2007/Defcon 15)

ÅAutomatic Unpacking (Piotr Bania - 2009, Ricardo J. Rodriguez - 2012)

ÅShellcode detection (Sebastian Porst ς Zynamics - 2010)

ÅTaint analysis

Å Instruction tracing

ÅSelf-modifying code analysis (Tarte Tatin Tools - Daniel Reynaud)

ÅExploitation techniques mitigations (Richard Johnson ς Snort 2012)

9

P A G E

Motivations

Å Dynamic Binary Instrumentation is becoming more popular.

ÅLight and Dark side of Code Instrumentation - Dmitriy Evdokimov -

ConFidEncE 2012

ÅHacking Using Dynamic Binary Instrumentation - Gal Diskin - HITB
2012 AMS

Å Improving Software Security with Dynamic Binary Instrumentation -
Richard Johnson - InfoSec Southwest 2012

Å Improvements in the unpacking process using DBI techniques - Ricardo
J. Rodriguez - RootedCon 2012

ÅShellcode analysis using dynamic binary instrumentation - Daniel Radu
and Bruce Dang - CARO 2011

ÅVulnerability Analysis and Practical Data Flow Analysis & Visualization -
Jeong Wook Oh - CanSecWest 2012

1 0

P A G E

Motivations

Å If this trend continues, we think that eventually anti-
instrumentation techniques will arise.

Å !ǇǇŀǊŜƴǘƭȅΣ ǘƘŜǊŜ ƛǎƴΩǘ ŀƴȅ ŎƻƳǇǊŜƘŜƴǎƛǾŜ ǇǳōƭƛŎ
documentation on anti-instrumentation techniques.

1 1

P A G E

What is Dynamic Binary Instrumentation?

1 2

P A G E

What is Instrumentation?

LǘΩǎ ŀ ǘŜŎƘƴƛǉǳŜ ǘƻ ŀƴŀƭȅȊŜ ŀƴŘ ƳƻŘƛŦȅ ǘƘŜ ōŜƘŀǾƛƻǊ ƻŦ ŀ ǇǊƻƎǊŀƳ
by adding code to it.

It can be done:
ÅAt the source code level

ÅAt the binary code level

In turn, it can be:
ÅStatic

ÅDynamic

1 3

P A G E

What is Dynamic Binary Instrumentation?

LǘΩǎ ŀ ǘŜŎƘƴƛǉǳŜ ǘƻ ŀƴŀƭȅȊŜ ŀƴŘ ƳƻŘƛŦȅ ǘƘŜ ōŜƘŀǾƛƻǊ ƻŦ ŀ binary
program by injecting arbitrary code at arbitrary places while it is
executing.

1 4

P A G E

What is Pin?

1 5

P A G E

What is Pin?

Å LǘΩǎ ǘƘŜ LƴǘŜƭΩǎ 5ȅƴŀƳƛŎ .ƛƴŀǊȅ LƴǎǘǊǳƳŜƴǘŀǘƛƻƴ CǊŀƳŜǿƻǊƪΦ

Å It works on Windows, Linux and Mac OS X.

Å It works on x86, amd64, Itanium and ARM (discontinued).

Å Its API allows to inject C/C++ arbitrary code.

1 6

P A G E

How does Pin work?

1 7

P A G E

How does Pin work?

ÅPin is a command line tool:

Å pin.bat -t pintool.dll [pintool args] -- program.exe [program
args]

Å pin.bat -pid <program pid> -t pintool.dll [pintool args]

1 8

P A G E

How does Pin work?

Å Pin main components:
ÅPin.exe

ÅPinvm.dll

Å The code you write to instrument programs using the Pin API is
compiled into pintools

1 9

P A G E

How does Pin work?

Å JIT compiler.
Å Input: binary code

ÅOutput: equivalent code with introspection code

ÅThe code is generated only when it is needed

Å The only code that is executed is the code generated by the JIT
compiler.

Å The original code remains in memory just as a reference but it
is never executed.

2 0

P A G E

Anti-debug and Anti-VM related work

2 1

P A G E

Anti-debug and Anti-VM related work

Å Anti-debug techniques papers series by Peter Ferrie
(http://pferrie.host22.com/).

Å Anti-VM techniques papers by Peter Ferrie (same link as
above).

Å Dan Upton ς Detection and Subversion Of Virtual Machines
(http://www.cs.virginia.edu/~dsu9w/upton06detection.pdf).

2 2

http://pferrie.host22.com/
http://www.cs.virginia.edu/~dsu9w/upton06detection.pdf

P A G E

Anti-debug and Anti-VM related work

Å Red pill ς (Joanna Rutkowska).

Å On the Cutting Edge: Thwarting Virtual Machine Detection
(Tom Liston ς Ed Skoudis
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_
Skoudis.pdf).

2 3

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

P A G E

Anti-instrumentation techniques

2 4

P A G E

Anti-instrumentation techniques

Å Code and data fingerprinting of pinvm.dll

Å PE characteristics fingerprint

Å Handles inspection

Å Time detection

Å tƛƴΩǎ WL¢ ŎƻƳǇƛƭŜǊ ŎƻŘŜ ŦƛƴƎŜǊǇǊƛƴǘ

Å Real EIP value

Å Misc techniques

2 5

P A G E

Anti-instrumentation techniques ς Fingerprinting
pinvm.dll

Å Code and data fingerprinting of pinvm.dll

ÅDetect by searching string patterns

ÅDetect by code patterns

2 6

P A G E

Fingerprinting pinvm.dll ς Detect by string patterns

Å Detect by string patterns

ÅάϪ/I!wa-±9w{LhbΥ ϷLŘΥέ

Å "build\ \Source\ \pin\ \ internal-include-windows-ia32\ \bigarray.Hά

Å "LEVEL_BASE::ARRAYBASE::SetTotalά

Å "Source\ \pin\ \base\ \ōƛƎŀǊǊŀȅΦŎǇǇά

2 7

P A G E

Fingerprinting pinvm.dll ς Detect by code patterns

Å Detect by code patterns (pattern 1)

5418D4A6 897424 04 MOV DWORD PTR SS:[ESP+4], ESI

5418D4AA 895C24 10 MOV DWORD PTR SS:[ESP+10], EBX

5418D4AE 895424 14 MOV DWORD PTR SS:[ESP+14], EDX

5418D4B2 894C24 18 MOV DWORD PTR SS:[ESP+18], ECX

5418D4B6 894424 1C MOV DWORD PTR SS:[ESP+1C], EAX

5418D4BA 33C0 XOR EAX,EAX

5418D4BC 894424 20 MOV DWORD PTR SS:[ESP+20],EAX

5418D4C0 8C4C24 20 MOV WORD PTR SS:[ESP+20], CS

5418D4C4 894424 28 MOV DWORD PTR SS:[ESP+28],EAX

5418D4C8 8C5C24 28 MOV WORD PTR SS:[ESP+28], DS

5418D4CC 894424 24 MOV DWORD PTR SS:[ESP+24],EAX

5418D4D0 8C5424 24 MOV WORD PTR SS:[ESP+24], SS

5418D4D4 894424 2C MOV DWORD PTR SS:[ESP+2C],EAX

5418D4D8 8C4424 2C MOV WORD PTR SS:[ESP+2C], ES

5418D4DC 894424 30 MOV DWORD PTR SS:[ESP+30],EAX

5418D4E0 8C6424 30 MOV WORD PTR SS:[ESP+30], FS

5418D4E4 894424 34 MOV DWORD PTR SS:[ESP+34],EAX

5418D4E8 8C6C24 34 MOV WORD PTR SS:[ESP+34], GS

2 8

P A G E

Fingerprinting pinvm.dll ς Detect by code patterns

Å Detect by code patterns (pattern 2)

01750110 CD 00 INT 0

01750112 E9 0B080000 JMP 01750922

01750117 90 NOP

01750118 CD 01 INT 1

0175011A E9 03080000 JMP 01750922

0175011F 90 NOP

01750120 CD 02 INT 2

01750122 E9 FB070000 JMP 01750922

01750127 90 NOP

01750128 CD 03 INT 3

0175012A E9 F3070000 JMP 01750922

0175012F 90 NOP

01750130 CD 04 INT 4

01750132 E9 EB070000 JMP 01750922

01750137 90 NOP

01750138 CD 05 INT 5

0175013A E9 E3070000 JMP 01750922

[é]

It continues until INT FF

2 9

P A G E

Anti-instrumentation techniques ς Detect by PE
characteristics

Å Detect by PE characteristics

ÅDetect by pinvm.dll presence

Å Detect by pinvm exported functions

Å Detect by pintools exported functions

Å Detect by sections names

3 0

P A G E

Detect by PE characteristics ς Detect by pinvm.dll
presence

Å Detect by pinvm.dll presence

3 1

P A G E

Detect by PE characteristics ς Detect by pinvm
exported functions

Å Detect by pinvm.dll exported functions

ÅPinWinMain

ÅCharmVersionC

3 2

P A G E

Detect by PE characteristics ς Detect by pintools
exported functions

Å Detect by pintools exported functions

ÅCharmVersionC

ÅClientIntC

3 3

P A G E

Detect by PE characteristics ς Detect by sections
names

Å Detect by sections names

ÅPintools sections

Å.pinclie

Å.charmve

ÅPinvm sections

Å.charmve

3 4

P A G E

Anti-instrumentation techniques ς Handles
Inspection

Å Handles inspection

ÅDetect by Event handles

ÅDetect by Section handles

ÅDetect by Process handles

3 5

P A G E

Handles inspection ς Detect Event handles

Å These objects are used by Pin for IPC (Inter Process
Communication)

3 6

P A G E

Handles inspection ς Detect by Section handles

Å These objects are used by Pin for IPC (Inter Process
Communication)

3 7

P A G E

Handles inspection ς Detect by Process handles

3 8

P A G E

Anti-instrumentation techniques ς Detect by
execution delay

Å Detect time variations

Å5ŜǘŜŎǘ tƛƴΩǎ ƻǾŜǊƘŜŀŘ

3 9

P A G E

Detect by execution delay ς Time variations

Å Detect execution delay introduced by Pin

 printf ("HMODULE: %x \ n", LoadLibrary ("user32.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("ntmarta.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("gdi32.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("advapi32.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("comctl32.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("comdlg32.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("crypt32.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("dbghelp.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("ole32.dll"));

 printf ("HMODULE: %x \ n", LoadLibrary ("urlmon.dll"));

Å Non-ƛƴǎǘǊǳƳŜƴǘŜŘ ŜȄŜŎǳǘƛƻƴ Ғ мр ǘƻ ол miliseconds.

Å LƴǎǘǊǳƳŜƴǘŜŘ ŜȄŜŎǳǘƛƻƴ Ғ мнлл ǘƻ мрлл miliseconds.

Å Depends on your ƳŀŎƘƛƴŜΩǎ power.

4 0

P A G E

Anti-instrumentation techniques ς JIT compiler
detection

Å Detect the JIT compiler

ÅDetect ntdll.dll hooks

ÅDetect by page permissions

ÅDetect by common API calls

4 1

P A G E

JIT compiler detection ς Detect by common API calls

Å Detect by ntdll.dll hooks

77610038 KiUserApcDispatcher $- E9 C367BBDC JMP pinvm .541C6800

776100EC KiUserCallbackDispatcher $- E9 FB66BBDC JMP pinvm .541C67EC

77610134 KiUserExceptionDispatcher $- E9 EF66BBDC JMP pinvm .541C6828

77639E49 LdrInitializeThunk $- E9 C6C9B8DC JMP pinvm .541C6814

4 2

P A G E

JIT compiler detection ς Detect by page permissions

Å Detect by page permissions

Å This technique

may not work with

programs which

already have a JIT

compiler.

4 3

P A G E

JIT compiler detection ς Detect common API calls

Å Detect by common API calls

ÅZwAllocateVirtualMemory

ÅAllocationType = MEM_COMMIT | MEM_RESERVE

ÅProtect = PAGE_EXECUTE_READWRITE

Å This technique may not work with programs which already
have a JIT compiler.

4 4

P A G E

Anti-instrumentation techniques ς Real EIP value

Å Real EIP value

 (Remember that: the original
code remains in memory just as a
reference but it is never executed)

ÅDetect by FSTENV

ÅDetect by FSAVE

ÅDetect by FXSAVE

ÅDetect by Interruptions

4 5

P A G E

Real EIP value ς Detect by FSTENV

 __asm

 {

 fldz;

 fstenv [esp-0x1c];

 mov eax, [esp-0x10];

 mov RealEIP, eax;

 }

Å FSTENV saves the FPU environment, which includes the
instruction pointer.

Å Alternative: FNSTENV

4 6

P A G E

Real EIP value ς Detect by FSTENV

4 7

P A G E

Real EIP value ς Detect by FSTENV

VirtualQuery((LPCVOID)RealEIP, &mbi, sizeof(mbi));

if((DWORD)hGlobalModule == (DWORD)mbi.AllocationBase)

 return NOTDETECTED;

else

 return DETECTED;

4 8

P A G E

Real EIP value ς Detect by FSAVE

 __asm

 {

 FLDZ

 FSAVE (108-BYTE) PTR SS:[ESP-6C]

 MOV EAX,DWORD PTR SS:[ESP-60]

 }

Å FSAVE stores the FPU state (FPU environment + register stack).

Å Alternative: FNSAVE

4 9

P A G E

Real EIP value ς Detect by FXSAVE

 __asm

 {

 LEA EAX, [ESP-0x20C];

 AND EAX, 0xFFFFFFF0;

 FLDZ;

 FXSAVE [EAX];

 MOV EAX, [EAX+8];

 }

Å FXSAVE writes the state of the x87 FPU + MMX registers + SSE
registers.

 5 0

P A G E

Real EIP value ς Detect by Interruptions

__asm {
 xor eax,eax;

 xor edx,edx;

 int 0x2e;

 nop;

 mov RealEIP, edx;

}

ÅThis technique was documented by the corkami project
(http://code.google.com/p/corkami/).

ÅThis technique only works on 32 bits systems (Windows
XP/Vista/Seven).

ÅDoes not work on WoW64 (it raises an exception).

5 1

http://code.google.com/p/corkami/

