
DRAFT FOR REVIEW 1

GPUs for Malware and More on Mobile Devices
Jared Carlson

CONTENTS

I Introduction 3

II Overview of Algorithms 3
II-A Signature Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II-B Memory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II-C Dynamic Disassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II-D Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

III Signature Checking 4
III-A General Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

IV Memory Analysis 6
IV-A Texture Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IV-B Heap Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

V Dynamic Disassembly 10
V-A Why This Works Even Better for Mobile . . . . . . . . . . . . . . . . . . . . . . . 10
V-B Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
V-C In Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

VI Encryption 16

VII Device and Platform Information 18

VIII Optimizations and Other Tricks 18

IX Hardware Integration 19

X Strategies 20

XI GPU Assisted Malware 21

XII Summary 21

XIII Future Research 21

XIV Conclusion 21
XIV-A Next Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

XV Acknowledgment 21

J. Carlson is a Senior Engineer with viaForensics.
E-mail: jared.carlson23@gmail.com

Manuscript developed as part of DARPA CFT grant



DRAFT FOR REVIEW 2

References 22

Appendix A: Example Code 23

Appendix B: Project Templates 23
B-A iOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B-B Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

LIST OF FIGURES

1 Looking at an Attack Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 We sweep a masking texture over our payload or other memory region, performing texture

operations to find our signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Sample Screenshot of Memory as a Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Flow diagram of online JIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Relationships between LLVM and Renderscript Core Libs . . . . . . . . . . . . . . . . . . . 20

LIST OF TABLES

I Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

LISTINGS

1 Sample ObjC code to Generate Texture From File . . . . . . . . . . . . . . . . . . . . . . 5
2 Signature Check on Star Exploit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Simple Memory Object to Manage Dynamic Memory . . . . . . . . . . . . . . . . . . . . 6
4 Watching the Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 GL code to read in our GPU results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6 Simple GDB Capture of GPU results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Sample Shader that can test for a simple byte signature . . . . . . . . . . . . . . . . . . . 9
8 Simple Shader Identifies Signature as Red . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9 Script to grab ARM opcodes from Executables . . . . . . . . . . . . . . . . . . . . . . . . 11
10 Sample Disassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
11 Python Script to Exercise Disassembler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
12 Main for creating disassembly tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
13 Simple Shader for Square Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . 16
14 Code Fragment from rsdProgram.cpp within frameworks/base/libs/rs/driver . . . . . . . . . 20
15 Render Method for iOS project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
16 Sample disassembly using the Accelerate framework . . . . . . . . . . . . . . . . . . . . . 24
17 Simple NDK usage for rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
18 To Move into Vectorized C++ for the NEON Processor . . . . . . . . . . . . . . . . . . . 33



DRAFT FOR REVIEW 3

Abstract

This paper, produced as part of a DARPA CFT grant, discusses how to use the GPU and other vectorized
processors for cybers tasks, starting with defensive measures. We address mobile devices for their novelties, tight
integration with CPUs and the difficulty of coming up with OTA updates or other vendor concerns.

The views expressed are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. This is in accordance with DoDI 5230.29, January 8, 2009

Index Terms

Security, ARM, GPU, iOS, Android, OpenGL, Vector, SIMD, DARPA

I. INTRODUCTION

GPUs have seen rapid growth over the past decade, with rapid improvement in their integration into
mobile devices. This has been powered by gaming sales, and other user interface desires from the

consumer market. But within the hacking world we can see how capable these chips are and how they’ve
recently been used for aiding malware proliferation [2]. What’s even more interesting in mobile devices
is the integration within a System-on-Chip (SoC) or Package-on-Package (PoP) chipset.

Mobile devices, with a diverse set of communication channels have RF for bluetooth, cellular and
other bands such as NFC for certain configurations. Current top-of-the-line system chips will typically be
comprised of an ARM CPU, GPU as well as a SIMD Accelerator, a NEON chip for example. Our goal
was to see what can we do with these other chips could offer for malware defense schemes. By doing
this, we are effectively increasing the defense surface, forcing an attacker to understand the system and
not just the CPU. Naturally the first choice is the GPU but recent SoC’s (System on a Chip) include a
NEON chip, and SDK’s and other tools are being developed to allow developers increasing access and
capabilities to leverage the processors outside of the the CPU. Examples of these on iOS and Android
are the Accelerate framework as well as the Renderscript toolset provided on Android.

II. OVERVIEW OF ALGORITHMS

The main challenge when dealing with the GPU, or the NEON processor for that matter, is that we
need to focus on SIMD (Single Instruction Multiple Data) based algorithms and how to incorporate them
into malware defense. This means that we want to explore some existing capabilities and see how they
map to the GPU, as well as tasks that seem especially suited for GPU assistance. With this in mind, we
explored the following schemes to see what could be done on the GPU or other SIMD processors.

A. Signature Checks
A staple of anti-virus software, signature checks are a basic capability that we want to explore using

the GPU. We also want to establish that we can reuse this basic premise for other, related tasks such as
pattern recognition.

B. Memory Analysis
More advanced attacks could alter in-memory objects, spray a payload into the heap or other tasks to

exploit the program. We want to show how small modifications in code management can lend itself to
allow GPU tracking and integrity checks.

C. Dynamic Disassembly
Being able to disassemble incoming instructions would allow for a variety of analysis tasks to consume

the disassembled instruction sets and make decisions or alter existing parameters. Here we want to show
that we can leverage vectorizable code and if necessary that the building blocks to handle this on the
GPU are present today, and likely increasingly accessible tomorrow.



DRAFT FOR REVIEW 4

D. Encryption
Malware decryption, the unpacking of a virus by the GPU, was one of the first noted uses for the GPU

within the hacking community. However, here we explore encrypting live memory objects, data blobs and
other sensitive parameters to obfuscate the code and help mitigate an attack.

III. SIGNATURE CHECKING

Signature checking is a staple of malware detection schemes often used in commercial anti-virus
software. In our work, we investigate how can use the GPU to augment our ability to find and detect
malicious signatures with a payload or other binary fragment.

It’s worth mentioning a significant advantage of using a shader is our ability to dynamically compile
the shader and create a GPU program to perform the signature check. In other words, even within a third
party application we can replace text or insert text into a database. This text, can be used in the form
of a shader and would then be compiled when the application next launches, giving the application a
mechanism for Over-The-Air updates or other less intrusive ways to modify an existing defense.

As an example of recognizing a malicious signature, let’s look at the star jailbreak, developed by
@comex. While the vulnerability has been fixed, we can still use this an example for signature checking.
If we look at the payload using emacs and a hex editor (in this case, 0xED), we can quickly see the
binary payload to trigger the exploit.

((a)) Emacs View of Star Exploit ((b)) Binary View of Star Exploit

Fig. 1: Looking at an Attack Signature

The basic approach can be thought of as a sliding mask where we compare the result of texture
operations. With this in mind, it’s a relatively straightforward task to see if we can detect the binary
signature of the exploit using a shader. The procedure can be outlined as:

1) Bind data, in the form of a payload or raw memory, to scan to texture
2) Bind signatures to masking texture atlas for testing
3) Use a shader to sweep our mask over the payload, using texture operations to signal for a match
4) If a suspicious entry, then inform/act

To test, on iOS for example we can use a method to create a texture from a payload.



DRAFT FOR REVIEW 5

Listing 1: Sample ObjC code to Generate Texture From File

1 // load a signature
2 - (GLuint) loadSignatureFromFile:(NSString*)file
3 {
4 NSString * pathToFile = [[NSBundle mainBundle] pathForResource:file ofType:@"bin"];
5 NSData * contentsOfFile = [[NSData alloc] initWithContentsOfFile:pathToFile];
6 NSUInteger numBytes = [contentsOfFile length];
7

8 NSUInteger pow = [self fitPowerOf2:(4 * numBytes / 3 )] * 2;
9

10 if ( pow > (dimension*dimension) )
11 {
12 NSLog(@"File contents doesn’t fit inside texture...");
13 return 0;
14 }
15

16 unsigned char * data = (unsigned char*) calloc( sizeof(unsigned char) * dimension*←↩
dimension*4, 1 );

17 unsigned char * buffer = (unsigned char*) [contentsOfFile bytes];
18 NSUInteger index = 0;
19

20 for (NSUInteger y = 0; y < dimension; y++ ) {
21 for (NSUInteger x = 0; x < dimension; x++) {
22 int byteIndex = (dimension*4 * y) + x * 4;
23

24 if ( index > numBytes ) goto endloop;
25 memcpy(&data[byteIndex], &buffer[index], 3);
26 data[byteIndex+3] = 0xff;
27 index += 3;
28 }
29 }
30

31 endloop:
32

33 GLuint texName;
34 glGenTextures(1, &texName);
35 glBindTexture(GL_TEXTURE_2D, texName);
36 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
37 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
38 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
39 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, dimension, dimension, 0, GL_RGBA, ←↩

GL_UNSIGNED_BYTE, data);
40

41 return texName;
42 }

Using this method we simply create two textures and perform difference operations to see if we can find
the signature. The shader is extremely simple, simply subtracting the signature texture from the payload.

If we watch the application, while within GDB, (and truncating some of @comex’s payload) we can
see the effect.

Listing 2: Signature Check on Star Exploit

1

2 // relevant part of frag shader
3 // offset is a uniform we control from the CPU, allowing us to "sweep"
4 gl_FragColor = texture2D( Texture, TexCoordOut ) - texture2D( Mask, TexCoordOut + offset←↩

);
5

6 // placing breakpoint immediately after:
7 glReadPixels(0, 0, dimension, dimension, GL_RGBA, GL_UNSIGNED_BYTE, bytes);
8 //
9 // offset (0,0)



DRAFT FOR REVIEW 6

10 (gdb) x/20 bytes
11 0x6f33000: 0xff000000 0xffac420f 0xff002047 0xff000000
12 0x6f33010: 0xff090000 0xff5b1a00 0xff000000 0xff1c002c
13 0x6f33020: 0xff761900 0xff080900 0xff000001 0xff250f00
14 0x6f33030: 0xff000e00 0xff0d0013 0xff432500 0xff00005e
15 0x6f33040: 0xff1d8c1e 0xffc23646 0xffc36bb4 0xffbdc2b5
16

17 // offset(x,0)
18 (gdb) x/20 bytes
19 0x6f33000: 0xff070503 0xff000000 0xff000000 0xff000000
20 0x6f33010: 0xff000000 0xff000000 0xff000000 0xff000000
21 0x6f33020: 0xff000000 0xff000000 0xff000000 0xff000000
22 0x6f33030: 0xff000000 0xff000000 0xff000000 0xff000000
23 0x6f33040: 0xff000000 0xff520000 0xffc36bb4 0xffbdc2b5

We can see that we quickly find a matching ”black” region where the signature fragment matches the
payload across those pixels. At this point the application could decide to dismiss the payload, labeling it
as ”suspicious” or run another malware detection scheme.

A. General Techniques
We can borrow graphical techniques to optimize our simple shader. Using techniques such as a texture

atlas we can check for multiple signatures, not just the one we showed above, within a single texture
fragment. In OpenGL we can even get periodic boundary (or repeating) boundary conditions making our
texture atlas scheme more efficient.

Algorithm 1 Signature Checking Algorithm
1: texture ← payload-to-check
2: Create atlas of various signatures
3: second-texture ← atlas-of-signatures
4: draw-call initiates GPU calculation
5: for each texel do
6: The FOR loop is implicit as shader takes care of this
7: for each atlas region do
8: Frag Operation with i-th atlas region
9: end for

10: end for

An illustration serves best...

IV. MEMORY ANALYSIS

A common tactic for exploitation is a heap spray or some other data corruption. With access to dynamic
memory we can investigate structures and other objects that may be compromised due to a bug, heap spray,
and eventually lead to exploitation due to a NULL dereferencing or similar bug. This strategy is basically
a generalization of a ”guard”, but we also mention that visualization and other runtime information could
be gathered by using the GPU to analyze dynamic memory.

Let’s take a quick look at an example of how we can set up our application to allow GPU integrity
checking.

Listing 3: Simple Memory Object to Manage Dynamic Memory

1

2 class MemoryObject
3 {



DRAFT FOR REVIEW 7

((a)) We start sweeping our masking texture
along the byte sequence

((b)) The mask continues along... ((c)) The mask encounters the signature as tex-
ture operations reveal an indicator

Fig. 2: We sweep a masking texture over our payload or other memory region, performing texture
operations to find our signature

4 unsigned char leading[8];
5 vector<string> objects;
6 // other objects
7 unsigned char trailing[8];
8

9

10 // static methods
11 static void Generator(unsigned char ptr[8]) {
12 static unsigned char start = 0;
13 const unsigned char interval = 0x02;
14 start += interval;
15 for (int i=0; i<8; i++)
16 ptr[i] = start;
17

18 }
19

20 public:
21

22 // constructor
23 MemoryObject(void) { Generator(leading); objects.push_back("Testing"); Generator(←↩

trailing); }
24

25 // destructor
26 ˜MemoryObject(void){
27 memset(leading, ’\0’, 8);
28 memset(trailing,’\0’, 8);
29

30 }
31

32 };

To build our understanding, we start with a look at dynamic memory in a simple example.



DRAFT FOR REVIEW 8

Listing 4: Watching the Heap

1

2 (gdb) list 295
3 290
4 291 // populate the heap..
5 292 - (void) populateHeap
6 293 {
7 294 // current pointer to dynamic memory, here, I’ll actually just use the first ←↩

object I want to track.
8 295 heapPtr = (void*) malloc( 0 );
9 296

10 297 // create a couple of objects following our pointer so that we can track them...
11 298 first = new MemoryObject;
12 299 second = new MemoryObject;
13

14 (gdb) x/20 first
15 0x6d40330: 0x02020202 0x02020202 0x06d40350 0x06d40354
16 0x6d40340: 0x06d40354 0x04040404 0x04040404 0x00000000
17 0x6d40350: 0x06d3fc5c 0x00000000 0x00000000 0x00030000
18 0x6d40360: 0x07b91364 0x07b91364 0x07b91000 0x07b91378
19 0x6d40370: 0x07b91378 0x07b91378 0x07b91378 0x07b91378
20

21

22 (gdb) x/20 second
23 0x6d3fc70: 0x06060606 0x06060606 0x06d40460 0x06d40464
24 0x6d3fc80: 0x06d40464 0x08080808 0x08080808 0x00020000
25 0x6d3fc90: 0x012adb70 0x010012c0 0x01000009 0x00000002
26 0x6d3fca0: 0x00000000 0x00040000 0x012b0b40 0x06d3fcc0
27 0x6d3fcb0: 0x06d3f210 0x00000000 0x00000000 0x00000000

One of the advantages of this approach is that similar to a texture atlas we can map various regions of
memory, they don’t need to be contiguous! For the GPU, we can populate a texture, or several textures,
based on the heap or some other pointers in memory and allow the GPU to look for object signatures,
or pattern searches with differing memory locations that would verify memory integrity, and help protect
against an attack such as a heap spray. For example if we find similar patterns in two differing locations
on the heap this may signal a payload being sprayed.

While this may seem somewhat contrived to some readers, this is not an uncommon way to represent
contiguous memory. LLVM (Low Level Virtual Machine) has a MemoryObject, which is used within
memory transactions - here we take a simplistic representation and tie this into our cyber analysis. What
this allows us to do is offload tracking dynamic memory objects during execution, with only minimal
interaction to track changes.

A. Texture Atlas
In the above discussion we brought up the concept of an atlas, which is familiar to those in the graphics

world where one image has several pieces that will be used in a game or other application, so for example
a single image file may have a character in various poses to allow a single image to contain the ”running”
or other actions the character might have. Similar to a texture atlas we can mark various regions of
memory (within limits) and store them to a texture. We can mark region boundaries with a byte signature,
such as a single color channel, and within the region we store our more used functions, data or other
models and references.

B. Heap Visualization



DRAFT FOR REVIEW 9

Fig. 3: Sample Screenshot of Memory as
a Texture

Returning to our example, in listing 4, the first and subse-
quent objects we create, have a leading and trailing signature
we can find these using a fragment shader (discussed and
shown later), we can at some point move these objects into
a texture to watch them.

For example in the object,

1 (gdb) x/20 first
2 0x6d40330←↩

: 0x02020202 0x02020202 0x06d40350 0x06d40354
3 0x6d40340←↩

: 0x06d40354 0x04040404 0x04040404 0x00000000
4 0x6d40350←↩

: 0x06d3fc5c 0x00000000 0x00000000 0x00030000
5 0x6d40360←↩

: 0x07b91364 0x07b91364 0x07b91000 0x07b91378
6 0x6d40370←↩

: 0x07b91378 0x07b91378 0x07b91378 0x07b91378

If we have a passthrough shader, then we can read back
the pixel data and investigate the bytes after the draw call. A
brief code snippet shows just how simple this can be.

Listing 5: GL code to read in our GPU results

1 // capture the data for analysis...
2 memset(bytes,’\0’,dimension*dimension*4+1);

3 glReadPixels←↩
(0, 0, 256, 256, GL_RGBA, GL_UNSIGNED_BYTE, bytes);

Listing 6: Simple GDB Capture of GPU results

1 (gdb) x/10 bytes
2 0xb7fb000←↩

: 0xff020202 0xff020202 0xff204000 0xff06de5b
3 0xb7fb010←↩

: 0xffde5b24 0xff5b2406 0xff0406de 0xff040404
4 0xb7fb020: 0xff040404 0xff000000

We have a signature beginning at 0x6d40330, followed
by the start and end of the vector¡string¿ iterators (start,
and finish), and then finally we have our trailing signature
marking the boundary of the object of interest. To use this in
practice, we can add a destructor that alters these signatures
and so mark the texture as having invalidated the object. With
this in mind, if we test the texture for a valid object being
manipulated then we can see that the manipulation will likely
result in an invalid object being used, and a possible target
for a heap spray.

Listing 7: Sample Shader that can test for a simple byte signature



DRAFT FOR REVIEW 10

1 varying lowp vec4 DestinationColor;
2

3 varying lowp vec2 TexCoordOut;
4 uniform sampler2D Texture;
5 uniform sampler2D Mask;
6 uniform lowp vec2 offset;
7

8 // assume we have our signature in four bytes or less...
9 bool isValidSignature( lowp vec4 pixel )

10 {
11 lowp float norm;
12 norm = dot(pixel.rgb , pixel.rgb );
13 if ( norm > 0.0 )
14 {
15 // for now we just see if the all RGB channels match, this means
16 if ( pixel.r == pixel.g && pixel.g == pixel.b )
17 return true;
18 }
19 return false;
20 }
21

22 // basic shader to operate
23 // on multiple texture operations..
24 void main(void) {
25

26 if ( isValidSignature( texture2D(Texture,TexCoordOut) ) )
27 {
28 gl_FragColor = vec4( 1, 0, 0, 1 );
29 }
30 else
31 {
32 gl_FragColor = vec4( 0, 0, 0, 1 ) * texture2D( Texture, TexCoordOut);
33 }
34

35 }

With this very simple shader we can see immediate results, as the leading and trailing signatures become
red pixels, marked for analysis!

Listing 8: Simple Shader Identifies Signature as Red

1 (gdb) x/100 bytes
2 0x6f99000: 0xff0000ff 0xff0000ff 0xff000000 0xff000000
3 0x6f99010: 0xff000000 0xff000000 0xff000000 0xff0000ff
4 0x6f99020: 0xff0000ff 0xff000000 0xff000000 0xff000000

So in this case, we know we can use a vectorized algorithm to find multiple signatures, markers or
other interesting features within the region-of-interest.

V. DYNAMIC DISASSEMBLY

This is fairly straightforward in that we make the assumption that, simply put, if we better understand
a payload, dataset, and other objects that may be executed than we can use higher level algorithms such
as artificial intelligence and a variety of other techniques.

Inspired by the paper by [3], we decided that mobile systems might be a better target than the original
idea applied to x86. This is because x86 has variable length instruction codes where as ARM (if we
disregard Thumb for the moment) has a fixed instruction length.

A. Why This Works Even Better for Mobile
The approach we’ve taken works particularly well for mobile or ARM, because with our alpha, green,

blue and red channels available in the texture, we have 4 bytes, or 32 bits. Well of course ARM instructions



DRAFT FOR REVIEW 11

are 32 bit! Thumb is 16 and so for any instruction we can operate on both ARM and Thumb instruction
inside a pixel of the fragment shader. This is in contrast to x86, with variable length instructions, which
seriously challenges vectorization attempts of the algorithms on a GPU or other SIMD processor as we
might have to deal with data loss. In other words, the convenience of an ARM instruction fitting into a
texel is a very happy convenience and not something to take for granted with other instruction sets.

B. Implementation
To generate a table that we can include in our project we can build a variety of ARM codes, especially

relevant to iOS/Android and then dump the text section to an instruction file which we can process for
statistical relationships.

Listing 9: Script to grab ARM opcodes from Executables

1 #!/bin/bash
2

3 # test to make sure the instructions directory is here..
4 if [ ! -d "instruction-contents" ]; then
5 echo "[+] Creating instruction contents directory"
6 mkdir "instruction-contents"
7 fi
8

9

10 # otool -t simple | cut -d " " -f 2-4
11 for i in ‘ls‘
12 do
13 type=‘file $i‘
14 needle=’executable arm’
15 if [[ "$type" == *"$needle"* ]]; then
16 echo "Found arm executable -> $type"
17 # parse out the file name we’ll write to...
18 fileprefix=‘echo $type | cut -d’:’ -f 1‘
19 filename="${fileprefix}.instr"
20 ‘otool -t $fileprefix | cut -d " " -f 2-5 > "instruction-contents/${filename}"‘
21 fi
22 done

With the instructions in a simple text file, we can create a Trie and a generic controller to find the
opcodes, as well as the order of these instructions and create probabilistic tables of what likely instruction
sequences should be. With our known opcodes we can construct a matrix to identify incoming operations.
One item of interest is that we don’t have to have this for the entire platform. For example if we were going
to employ dynamic disassembly for a browser, we would want probability tables that are representative
of what we should expect, so generate tables from WebKit source for example. If we started encountering
lower probability sequences we might suspect that we have foreign code. With this in mind, let’s explain
the algorithm in a bit more detail.

We want to find the maximal probability of an opcode given the incoming instruction, or in matrix
form, we have:


Opstr 0 0 0
0 Opadd 0 0
0 0 Opmov 0
0 0 0 Opldr

×


inst1 inst2 inst3 inst4
inst1 inst2 inst3 inst4
inst1 inst2 inst3 inst4
inst1 inst2 inst3 inst4

 =


p1,str p2,str p3,str p4,str
p1,add p2,add p3,add p4,add
p1,mov p2,mov p3,mov p4,mov

p1,ldr p2,ldr p3,ldr p4,ldr





DRAFT FOR REVIEW 12

To find our best match, or if perhaps our table is incomplete, we can take the maximal value for each
row, which corresponds to the best matching operation, and if this value is above some threshold we
declare that we ”know” the opcode. If not, we declare we have an unknown operation.

To look at the instruction in a contextual sense, we look at patterns within subregions. First we can
construct a transition matrix (details to follow) and use this to guess our unknown instructions, or we could
look holistically at a ”best fit” instruction giving known operations prior to and following an unknown.

The former case is fairly straightforward in that we walk our currently constructed sequence and when
we reach a given unknown we multiply the against the the transition matrix to obtain the most probable
instruction path. The best way to make use of resources in this fashion is to populate a matrix of transitions,
each row corresponding to a state entering transition, and then multiply this matrix against the transition
matrix.


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

×


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

 =


p31 p32 p33 p34
p21 p22 p23 p24
p41 p42 p43 p44
p11 p12 p13 p14



In the latter case, we use the powers of the transition matrix in reverse.

State Transition

S · P = S
′

p

S · P 2 = S
′′

p

But if we are only missing a single operation we know the outcome and hence some properties of S
′′

p

This means we can look forwards or backwards

S · P = S
′′

p · P−1

This means that we can calculate the most likely path to our now known state, and deduce a reasonable
approximation for our prior operation. Any component of S

′′
p that doesn’t include a path to our known

operation can be eliminated, and then we take the maximal probability remaining as our accepted conclu-
sion. Each column then represents either a known instruction or an equally weighted unknown. We can
then create a transition matrix, which contains our probabilities of the next instruction given the previous.
We can then find our successive probability of a sequence by collapsing the matrix product, in essence
giving us a ”best match” over instruction paths.

Let’s test this using a simple source and then using Python we’ll remove various opcodes and let our
diassasembler predict the correct instruction.



DRAFT FOR REVIEW 13

Listing 10: Sample Disassembly

1 $ python simulate_dynamic_dissembly.py
2 Read 44 instructions from the file sim.instructions
3 replacing 0x3c
4 with 0x00
5

6 replacing 0xaf
7 with 0xaf
8

9 replacing 0x00
10 with 0x00
11

12 replacing 0x28
13 with 0x28
14

15 replacing 0x58
16 with 0x58
17

18 replacing 0x08
19 with 0x08
20

21 replacing 0x00
22 with 0x00
23

24 * * * 1 Errors in 8 unknown operations * * *

And the Python code to exercise our disassembler for testing and enhancements is straightforward.

Listing 11: Python Script to Exercise Disassembler

1 #!usr/env python
2

3 import subprocess, random, simplejson
4 # to install simplejson: pip install simplejson
5

6 # First we read in our instruction file that we want to use
7 filename = ’sim.instructions’
8 instructions = open(filename).readlines()
9 print "Read ",len(instructions)," instructions from the file ",filename

10

11 # now let’s get rid of ˜8 instructions (roughly 20% from our given file)
12 n = 8
13 random.seed(24) # for reproducability, if needed
14 samples = list(instructions)
15 for xx in xrange(0,n):
16 index = random.randint(0,len(instructions)-1)
17 samples[index] = ’xxx’
18

19 # Now we have a few unknown ops, let’s use our C-code to on-the-fly generate
20 # disassembly using probability tables
21 last_instruction = False
22 application = ’./optimization’
23 args = ’’
24 digraph = ’simple.digraph’
25 recreated = []
26 index = 0
27 for instr in samples:
28 if ( instr == ’xxx’ ):
29 # call out...
30 try:
31 prob_instruction = subprocess.check_output([application,last_instruction,←↩

digraph])
32 instr = prob_instruction
33 print "replacing %s with %s " % (instructions[index],instr)



DRAFT FOR REVIEW 14

34 except:
35 print "Error in our C-code, time to debug..."
36 # append...
37 recreated.append(instr)
38 last_instruction = instr
39 index+=1
40

41 # Now we test our disassembly to see how much we got right...
42 errors = 0
43 for i in xrange(0,len(instructions)):
44 if recreated[i] != instructions[i]:
45 errors+=1
46

47 print "* * * ",errors," Errors in ",n," unknown operations * * *"

Listing 12: Main for creating disassembly tables

1 #include <iostream>
2 #include <algorithm>
3 #include <fstream>
4 #include <unistd.h>
5 #include <getopt.h>
6 #include "trie.h"
7 #include "util.h"
8 #include "controller.h"
9 #include "matrix.h"

10

11

12 using std::fstream;
13 using std::cout;
14 using std::endl;
15 using std::string;
16

17 int main( int argc, char *argv[] )
18 {
19

20 /*
21 * Argument error check
22 */
23 if ( argc< 2 )
24 {
25 cout << "Usage: " << argv[0] << " <infile> [additional file or file patterns]" << ←↩

endl;
26 exit(0);
27 }
28

29 /*
30 * Parse argument
31 */
32 int option_index, c;
33 bool dump_opcode = false;
34 bool combine_files = false;
35 bool gen_digraph = false;
36 string outFileName = "temp.txt";
37 string treeName = "";
38 bool dump_all = false;
39

40 static struct option options[] = {
41 {"opcodes",0,0,0},
42 {"outfile",1,0,0},
43 {"combine",0,0,0},
44 {"digraph",0,0,0},
45 {"all",1,0,0},
46 {NULL,0,NULL,0},



DRAFT FOR REVIEW 15

47 };
48

49 while( (c = getopt_long( argc, argv, "a:cgo:x", options, &option_index) ) != -1 )
50 {
51 switch ( c )
52 {
53 case ’a’:
54 cout << "Dumping all instructions.." << endl;
55 dump_all = true;
56 treeName = optarg;
57 break;
58 case ’x’:
59 cout << "opcode output..." << endl;
60 dump_opcode = true;
61 break;
62 case ’o’:
63 cout << "outfile named..." << endl;
64 outFileName = optarg;
65 break;
66 case ’c’:
67 cout << "combine files..." << endl;
68 combine_files = true;
69 break;
70 case ’g’:
71 cout << "generating digraph..." << endl;
72 gen_digraph = true;
73 break;
74 default:
75 cout << "unknown " << c << endl;
76 break;
77

78 }
79

80 }
81

82

83 vector<string> files_to_process = parse_args( argc, argv );
84

85 Controller * jobController = new Controller;
86 Trie * tree;
87

88 for (auto fstring = files_to_process.begin();
89 fstring != files_to_process.end(); ++fstring)
90 {
91 if (!jobController->ProcessFile( (*fstring) ) )
92 cout << "Error processing file " << (*fstring) << endl;
93 else {
94 cout << "Processed file " << (*fstring) << endl;
95 tree = jobController->TreeForFile( (*fstring) );
96 cout << "Processed " << tree->NumberOfInstructions() << " instructions" << endl;
97 cout << "Processed " << tree->NumberOfUniqueInstructions() << " unique instructions" ←↩

<< endl;
98 }
99

100 }
101

102

103 /*
104 * look across our tries
105 */
106 size_t ninstructions = jobController->NumberOfUniqueInstructionAcrossTrees( );
107 cout << "Batch: " << ninstructions << " unique instructions" << endl;
108 cout << "Writing to file: " << outFileName << endl;
109

110 if ( dump_all )



DRAFT FOR REVIEW 16

111 {
112 if ( dump_opcode ) jobController->WriteOpcodes();
113 jobController->ListAllInstructionsToFile( treeName, outFileName );
114 }
115 else if ( dump_opcode && !gen_digraph )
116 {
117 jobController->WriteOpcodes();
118 cout << "Dumping opcodes - mode: " << jobController->Mode() << endl;
119 jobController->ListInstructionsToFile( outFileName );
120 }
121 else if ( gen_digraph )
122 {
123 cout << "Writing DiGraph..." << endl;
124 if ( !jobController->WriteDiGraphToFile( outFileName ) )
125 cout << "Unable to write digraph to " << outFileName << endl;
126 else
127 cout << "Written..." << endl;
128 }
129 else
130 {
131 jobController->ListInstructionsToFile( outFileName );
132 }
133 cout << "\n";
134

135 /*
136 * Cleanup
137 */
138

139 delete jobController;
140

141 return 0;
142 }

Using this code-set we can create a table of transitional probabilities.

C. In Practice
Dynamic disassembly is clearly best with floating point precision and other numerical routines available

to the system. For example if floating point precision isn’t available, in libraries such as Renderscript,
Accelerate or in an optimized C++ library such as Eigen, then we have to be careful for signed/unsigned
overflow operations and how to round our decimal representations to a byte, for example we could round
0.50 to 0x7f as an unsigned byte that can be used a fractional number. An example of how to perform
generic matrix multiplication on the GPU follows.

Listing 13: Simple Shader for Square Matrix Multiplication

1 void main( ) {
2 // we invert, row <-> column
3 lowp vec2 transpose = TexCoordOut.ts;
4 lowp vec2 original = TexCoordOut.st;
5 // multiply the components of the two textures..
6 gl_FragColor = texture2D( matrix_one, original ) * texture2D( matrix_two, transpose );
7 }

With the above shader, if the diagonals RGB were 0xff and 0x7f, then the resultant fragment would
have 0x7f along it’s diagonals as well. It’s simply 0.5 ·1.0 = 0.5. Keep in mind that we could perform the
calculations on separate channels, giving us a separate range [0, 1] for each of the four channels within
RGBA.

VI. ENCRYPTION

Especially within mobile applications, live memory manipulation and capture has been done. On iOS,
cycript can be used to inspect the objective-c runtime. In that case, we could use the GPU to vectorize



DRAFT FOR REVIEW 17

our encryption process, as well as dynamically loading a new encryption scheme by updating the shader
(OTA for example). A basic algorithm is outlined as:

Algorithm 2 Encryption
1: INPUT: Uniforms as keys, etc; Shaders as encryption methods
2: Bind data to be encrypted to texture
3: Link frag shader as a ”block” encryption call
4: Draw call, renders encrypted data to off screen texture
5: if insufficient rounds then
6: use newly rendered texture as input to above
7: repeat
8: end if
9: if want to change block method then

10: link new frag shader
11: repeat using new shader program
12: end if
13: End

Employing encryption can help hide sensitive information from malware, or if signed we could follow
where the encrypted payload moves throughout the operating system, performing a taint analysis with the
encrypted data to minimize exposure.



DRAFT FOR REVIEW 18

VII. DEVICE AND PLATFORM INFORMATION

TABLE I: Device Characteristics

Characteristic iOS (iPhone 4S) ASUS Transformer Prime
Max. Number of Textures 8 16
Max. texture size 4096 2048
Version OpenGL ES 2.0 IMGSGX543-63.24 OpenGL ES 2.0 14.01002
Vendor Imagination Technologies NVIDIA Corporation
Renderer PowerVR SGX 543 NVIDIA Tegra 3

Extensions

GL OES depth texture GL OES depth24
GL OES element index uint
GL OES fbo render mipmap
GL OES mapbuffer GL

OES packed depth stencil
GL OES rgb8 rgba8
GL OES standard derivatives
GL OES texture float
GL OES texture half float
GL OES texture half float linear
GL OES vertex array object
GL EXT blend minmax
GL EXT color buffer half float
GL EXT debug label
GL EXT debug marker
GL EXT discard framebuffer
GL EXT occlusion query boolean
GL EXT read format bgra
GL EXT separate shader objects
GL EXT shader texture lod
GL EXT shadow samplers
GL EXT texture filter anisotropic
GL EXT texture rg
GL APPLE framebuffer multisample
GL APPLE rgb 422
GL APPLE texture format BGRA8888
GL APPLE texture max level
GL IMG read format
GL IMG texture compression pvrtc

GL NV platform binary
GL OES rgb8 rgba8
GL OES EGL sync
GL OES fbo render mipmap
GL NV depth nonlinear
GL NV draw path
GL NV texture npot 2D mipmap
GL OES EGL image
GL OES EGL image external
GL OES vertex half float
GL OES mapbuffer
GL NV draw buffers
GL NV multiview draw buffers
GL EXT Cg shader
GL EXT packed float
GL OES texture half float
GL OES texture float
GL EXT texture array
GL OES compressed ETC1 RGB8 texture
GL EXT texture compression latc
GL NV texture compression latc
GL EXT texture compression dxt1
GL EXT texture compression s3tc
GL NV texture compression s3tc
GL EXT texture filter anisotropic
GL NV get tex image
GL NV read buffer
GL NV shader framebuffer fetch
GL NV fbo color attachments
GL EXT bgra
GL EXT texture format BGRA8888
GL EXT unpack subimage
GL NV pack subimage
GL NV texture compression s3tc update
GL NV read depth GL NV read stencil
GL EXT robustness
GL OES standard derivatives
GL NV EGL stream consumer external
GL NV coverage sample
GL EXT occlusion query boolean

As the reader can see from the demonstration, our example iOS code only uses a small texture as we
want to create a demonstration application that allows for visualization of our intent and actions. However,
in practice we have more resources at our disposal, as we can augment our 256 square texture to a 4096
(x162) square texture as well as rendering off screen. In addition, one has to be careful with background
interference. In our sample application we limit this by setting the alpha channel to 0xff (1.0f) and only
using the RGB (Red/Green/Blue) channels for cyber tasks. This isn’t a significant hurdle but something
to be aware of.

VIII. OPTIMIZATIONS AND OTHER TRICKS

One advantage of the GPU environment is that many of the tricks that we might like, such as repeating
boundaries (often necessary in numerical environments such as PDE’s) are available via simple API



DRAFT FOR REVIEW 19

calls. As we sweep our mask through the region-of-interest we can use the repeating background as a
performance gain, meaning that we only need to sweep half-way through the region in some cases (it
depends on sizing, etc).

There are other graphical techniques that might allow us to ”zoom in” and out of various regions of
interest. For example, if we take a block of memory to be executed, and let’s assume for the moment that
this is sufficiently large that we would need a compression method or perhaps mipmap leveling (or both!)
to store as much as possible. If we focus on approximate disassembly, which is our basis for the idea, then
if we choose a compression method which leaves enough of the high frequency instructions or opcodes
then we can use our probabilistic detection schemes on the compressed data. The losses, or inaccuracies,
1 would be independent, due to the nature of the design (because it’s probabilistic!). As we said, if we
thought we wanted to ”zoom in” on a specific region, then we could do a vertex transformation to bring
that mipmap level into view. Each region-of-interest could then be checked for signatures, investigated
for instructions, etc.

IX. HARDWARE INTEGRATION

How vectorized processors are being used in every day applications is of great interest and the state
of the art is currently Android’s Renderscript. Renderscript uses LLVM to compile C99 code into LLVM
bitcode (a .bc file) as well as Java reflection classes. These are all packaged as part of the apk and then
the device itself will compile the bitcode into machine code as well as cache it for later use. As part of
the OS, libbcc is the on-device compiler that will generate code for the GPU or DSP processor as well
as integration glue for the Dalvik JVM [4].

Fig. 4: Flow diagram of online JIT

For best results the ideal placement would be allow for ”on-the-fly” alteration of the bitcode (this would
necissitate a recache of the newly compiled machine code for ICS as this a feature to save on-load time)

1For example, using a DCT, Direct Cosine Transform, generally causes a loss of high frequency or background information. This is not
what our scheme would want as the background information, or opcodes give context to our guess as to what opcodes would be between



DRAFT FOR REVIEW 20

and then update the application, or system. From the operating system this should not be a problem and
would allow Android to fully utilize the other processors for cyber tasks however this also means that
code insertion could be that much easier for malicious tasks.

The call to libbcc and the related tasks are handled with the on device renderscript framework.
Renderscript contains a runtime, which helps to bind variables to reflected Java classes from generated
shaders or other GPU programs. The runtime has a related driver code which is linked to the libbcc code,
this bridge allows for compilation, propogation of metadata and other information to pass between the
JVM and GPU code. The actual device code is generated from within an ExecutionEngine, the details can
be found within, frameworks/compile/libbcc/lib/ExecutionEngine/ see the files bcc.pp and Compiler.cpp
for instance. It’s of note that this is a heavily stripped down compiler as compared to many LLVM backend
systems. The engine links the bitcode to system libraries as well as extract the necessary information to
create vectorized code for the GPU/DSP. The process can be summarized in Figure 4, which is a slide
from Liao Shih-wei’s presentation at Linux Foundation: Collab-Summit[4], and outlines the interplay of
bitcode and reflected Java for interplay.

libslang

clang llvm

libbcc

Fig. 5: Relationships between LLVM and Renderscript Core Libs

llvm-rs-cc is a driver on top of libslang and is run on the host and performs many aggressive opti-
mizations. As a result, libbcc on the device can be lightweight and focus on machine-dependent code
generation for the input bitcode. It would be of interest to investigate the security of this lightweight
compiler with obvious privilages. The architecture of libslang and libbcc is depicted in figure 5.

The renderscript runtime functions as you might expect in that it creates and binds vertex and frag
programs to the GPU from the bitcode. The runtime is bound to the libbcc code, being able to extract
meta data from the bcc (BitCode Compiler) as needed as well as creating generic GPU materials. For
example, we see the following snippet within the runtime creating a vertex shader.

Listing 14: Code Fragment from rsdProgram.cpp within frameworks/base/libs/rs/driver

1

2 bool rsdProgramVertexInit(const Context *rsc, const ProgramVertex *pv,
3 const char* shader, uint32_t shaderLen) {
4 RsdShader *drv = new RsdShader(pv, GL_VERTEX_SHADER, shader, shaderLen);
5 pv->mHal.drv = drv;
6

7 return drv->createShader();
8 }

These frameworks are non-existant in other parts of mobile platforms and there’s reason to believe that
like the desktop, capabilities and runtime access will be expanded for more general capabilities. Here
again we can see the potential of a graphics based capability: a dynamic architecture capable of altering
itself on the device; fast, powerful processing capabilities; with an increasingly broad set of capabilities.

X. STRATEGIES

While each of these techniques adds some level of protection, if we want to truly gain substantially
from GPU malware assistance, it’s more likely to employ a combination of ideas. Let’s explore some of



DRAFT FOR REVIEW 21

this here.
As we know we can detect signatures, inspect memory and other relevant objects directly on the GPU,

as well as take advantage of the GPU and other SIMD processors for analysis tasks such as dynamic
disassembly. From these tasks we can start to form a strategy. For example, if we don’t want to consume
too much power, we could use the GPU/NEON processors while tethered (as power is not concern there
and security is) to disassemble incoming instructions. When the browser is about to relinquish control to
a Flash application or PDF viewer, then a burst of activity could be used to both perform some signature
matching as well as set up memory tracking. Similarly if a password or other scheme is needed, it could
be encrypted using the GPU.

Most significantly, these checks can be done by outside processing power, and dynamically. As shader
can be compiled at runtime, and a new shader could be introduced simply be over-writing to an existing
file and recompiling (which is typically done by simply restarting the parent process) this allows for a
very flexible strategy that could be updated Over-The-Air (OTA).

XI. GPU ASSISTED MALWARE

It’s noteworthy that this same defensive strategy could be employed by an attacker for offensive
capabilities. As we’ve proven that we do pattern searching, even if somewhat basic, along with dynamic
disassembly then we can imagine constructing ROP gadgets for exploitation using similar techniques.
While this is worrisome, the essence of the work is to increase the defensive surface and we’ve done this.
Attackers will continue to be creative and come up with new exploitation methods and to play our part
in the game we augment the resources at our disposal.

XII. SUMMARY

This research shows that the GPU, as well as other processors, could be used for cyber tasks that could
make attacks more difficult. While we have shown a series of algorithms and code that demonstrate how
to do this, this is likely just a starting point. GPU and other SIMD processors will only get more powerful
as mobile devices continue to evolve and in particular the demand for compelling user interfaces and
high-end graphics. This means that while this paper might be state-of-the-art today, it will likely serve as
an entry point for future research for tomorrow.

XIII. FUTURE RESEARCH

This project was inspired by the work others have shown in hacking embedded chips in cars, appliances
and other electronics. The conversation sprung up in terms of what could be utilized to exploit or aid the
CPU; naturally the GPU was and is the first option, but others are likely potential resources as well.

XIV. CONCLUSION

A. Next Phase
The project will now move into an implementation phase, developing the ideas suggested in the minimal

algorithm discussion and using OpenCL on the desktop as a method to prototype vectorized kernels and
both integrate with and generate proper data sets.

XV. ACKNOWLEDGMENT

The author is thankful to the following contributors: Alan Stone, Rob Dingwell and Seth Landsman
of the MITRE Corporation. In addition the author wishes to thank Zachary Carlson of Lycos, Ayal Spitz
of PatientKeeper, George Gal and Dan Rosenberg of Virtual Security Research and Thomas Cannon and
Andrew Hoog of viaForensics for comments and thoughts as well as support regarding this project. We
certainly want to thank DARPA for its support and interest in the research.



DRAFT FOR REVIEW 22

REFERENCES

[1] Apple, Apple Guidelines for OpenGL ES https://developer.apple.com/library/ios/#documentation/3DDrawing/Conceptual/OpenGLES
ProgrammingGuide/BestPracticesforShaders/BestPracticesforShaders.html#//apple ref/doc/uid/TP40008793-CH7-SW3

[2] G. Vasiliadis, M. Polychronakis, and S. Ioannidis GPU-Assisted Malware http://dcs.ics.forth.gr/Activities/papers/gpumalware.malware10.pdf
[3] Shah, Abhishek, Approximate Diassembly using Dynamic Programming, 2010, Master’s Projects. Paper 8. http://scholarworks.sjsu.edu/

etd projects/8
[4] Shih-wei Liao, Linux Foundation: Collab-Summit, April 7th, 2011 https://events.linuxfoundation.org/slides/2011/lfcs/lfcs2011 llvm liao.

pdf

https://developer.apple.com/library/ios/#documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/BestPracticesforShaders/BestPracticesforShaders.html#//apple_ref/doc/uid/TP40008793-CH7-SW3
https://developer.apple.com/library/ios/#documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/BestPracticesforShaders/BestPracticesforShaders.html#//apple_ref/doc/uid/TP40008793-CH7-SW3
http://scholarworks.sjsu.edu/etd_projects/8
http://scholarworks.sjsu.edu/etd_projects/8
https://events.linuxfoundation.org/slides/2011/lfcs/lfcs2011_llvm_liao.pdf
https://events.linuxfoundation.org/slides/2011/lfcs/lfcs2011_llvm_liao.pdf


DRAFT FOR REVIEW 23

APPENDIX A
EXAMPLE CODE

APPENDIX B
PROJECT TEMPLATES

A. iOS
Apple’s iOS is fairly straightforward to set up for GPU experimentation. The simplest form simply

incorporates the OpenGLES framework.

Listing 15: Render Method for iOS project

1 - (void)render:(CADisplayLink*)displayLink
2 {
3 glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
4 glEnable(GL_BLEND);
5

6 glClearColor(0, 104.0/255.0, 55.0/255.0, 1.0);
7 glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
8 glEnable(GL_DEPTH_TEST);
9

10 float top = 320.0f;
11 float bottom = 0.0f;
12 float left = 0.0f;
13 float right = 320.0f;
14 float aspect = 1.0f; //(float) self.frame.size.width / (float) self.frame.size.height;
15 float projection[16] = {
16 2.0/(right-left), 0.0f, 0.0f, 0.0f,
17 0.0f, 2.0f/((top-bottom)*aspect), 0.0f, 0.0f,
18 0.0f, 0.0f, -2.0f/1000.0f, -3.0f,
19 0.0, 0.0, 0.0, 1.0f
20 };
21 float modelview[16] = {
22 1.0f, 0.0f, 0.0f, 0.0f,
23 0.0f, 1.0f, 0.0f, 0.0f,
24 0.0f, 0.0f, 1.0f, 0.0f,
25 0.0f, 0.0f, 0.0f, 1.0f
26 };
27

28 GetGLError();
29

30

31 glUniformMatrix4fv(_projectionUniform, 1, GL_FALSE,
32 projection);
33 glUniformMatrix4fv(_modelViewUniform, 1, GL_FALSE,
34 modelview);
35

36 GetGLError();
37

38 glViewport(0, 0, self.frame.size.width, self.frame.size.width);
39 glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
40 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
41

42 GetGLError();
43

44 glVertexAttribPointer(_positionSlot, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), 0);
45 glVertexAttribPointer(_colorSlot, 4, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)(←↩

sizeof(float)*2) );
46 glVertexAttribPointer(_texSlot, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex),
47 (GLvoid*)(sizeof(float)*6) );
48

49 GetGLError();
50



DRAFT FOR REVIEW 24

51 glActiveTexture(GL_TEXTURE0);
52 glBindTexture(GL_TEXTURE_2D, texture);
53 glUniform1i(sampler, 0);
54

55 GetGLError();
56

57

58 glDrawElements(GL_TRIANGLES, 6,
59 GL_UNSIGNED_BYTE, 0);
60

61

62 // capture the data for analysis...
63

64 glReadPixels(0, 0, 320, 480, GL_RGBA, GL_UNSIGNED_BYTE, bytes);
65

66 // analyze our results
67 [self analyzePixelData:bytes];
68

69 [_context presentRenderbuffer:GL_RENDERBUFFER];
70

71 }

The key points, for experimentation is to setup a frame area, which could be offscreen but in this case
is not, which can be easily scanned (via glReadPixels. Once this area is setup we can send various objects,
in form of texture and vertex data to the GPU via draw calls while reading results.

Sample code will illustrate the finer details but before the reader does this, it’s important to contrast
this with a simple example using the Accelerate framework. This framework is used to vectorize various
mathematical calculations, leveraging the GPU as well as the NEON processor.

Listing 16: Sample disassembly using the Accelerate framework

1 #include <stdio.h>
2 #include <string.h>
3 #include <math.h>
4 #include <stdlib.h>
5 #include <Accelerate/Accelerate.h>
6

7 typedef struct {
8 char **opcodes;
9 unsigned int numberOpcodes;

10 float * elements;
11 unsigned int numberElements;
12 } matrix;
13

14 matrix *read_matrix_from_file( const char * filename );
15 void print_matrix( FILE * file, matrix * m );
16 int destroy_matrix( matrix * m );
17 void populate_vector( float * vector, int nels, char ** opcodes, char * code );
18 void print_vector(float * result, int nels);
19 void print_result(float * result, int nels, char **opcodes );
20 char *choose_opcode( float * result, int nels, char **opcodes );
21

22 int main( int argc, char * argv[] )
23 {
24

25 /*
26 * BLAS documentation
27 * https://developer.apple.com/library/ios/#DOCUMENTATION/Accelerate/Reference/BLAS_Ref/←↩

Reference/reference.html
28 */
29

30 /*
31 * Here’s a really good source...



DRAFT FOR REVIEW 25

32 * http://www.prism.gatech.edu/˜ndantam3/cblas-doc/doc/html/cblas_8h.html
33 */
34

35 /*
36 * doc’s for LAPACK functions can be found at:
37 * http://www.netlib.org/lapack/lug/node147.html#22228
38 */
39 int solve_for_instruction = 0;
40 char * matrixfile = NULL;
41 matrix * m; // = read_matrix_from_file( "matrix.txt" );
42 // print_matrix( stdout, m );
43 // destroy_matrix( m );
44

45

46 if ( argc == 3 ) {
47 solve_for_instruction = 1;
48 matrixfile = argv[2];
49 } else if ( argc == 1 ) {
50 matrixfile = NULL;
51 } else {
52 printf("Usage %s [previous opcode] [matrix file]\n",argv[0]);
53 exit(1);
54 }
55

56 __CLPK_integer info;
57 float alpha = 1.0f;
58 float beta = 1.0f;
59

60 if ( solve_for_instruction )
61 {
62 m = read_matrix_from_file( matrixfile );
63

64 __CLPK_integer mn = (__CLPK_integer) m->numberOpcodes;
65 float * vec, * result;
66 vec = (float*) malloc( sizeof(float) * m->numberOpcodes );
67 result=(float*)malloc( sizeof(float) * m->numberOpcodes );
68

69 // populate the vector...
70 populate_vector( vec, m->numberOpcodes, m->opcodes, argv[1] );
71

72 cblas_sgemv( CblasColMajor, CblasNoTrans, mn, mn, alpha, m->elements,
73 mn, vec, 1, beta, result, 1 );
74

75 char * chosen_opcode = choose_opcode( result, m->numberOpcodes, m->opcodes );
76 printf("%s\n",chosen_opcode);
77 // print_vector( result, m->numberOpcodes );
78

79 free( vec );
80 free( result );
81 destroy_matrix( m );
82 return 0;
83 }
84

85 matrix * a = read_matrix_from_file( "matrix.txt" );
86 __CLPK_integer dim = (__CLPK_integer) a->numberOpcodes;
87 float * testA = a->elements;
88

89 __CLPK_integer n = 3;
90

91 float A[9] = { 2.0f, 0.0f, 0.0f, // first column
92 0.0f, -1.0f, 0.0f, // second column
93 0.0f, 0.0f, 2.0f };
94

95 __CLPK_integer ipiv[3];
96



DRAFT FOR REVIEW 26

97 sgetrf_(&n, &n, A, &n, ipiv, &info);
98 printf(" dim = %d, n = %d\n",dim,n);
99 if ( info != 0 ) {

100 printf("sgetrf failed with error code %d\n",(int)info);
101 return 0;
102 }
103

104 __CLPK_integer inc = 1;
105

106 float c[3] = {1.0f, 1.0f, 1.0f };
107 float b[3] = {2.0f, -3.0f, 4.0f };
108

109 char transpose = ’N’;
110 __CLPK_integer nrhs = 1;
111

112 sgetrs_(&transpose, &n, &nrhs, A, &n, ipiv, b, &n, &info);
113 printf(" n = %d\n",n);
114 if ( info != 0 ) {
115 printf("sgetrs failed with error code %d\n",(int)info);
116 return 0;
117 }
118

119 printf("b = [ %f %f %f ]\n",b[0],b[1],b[2]);
120 printf("c = [ %f %f %f ]\n",c[0],c[1],c[2]);
121 printf("\n");
122

123 printf(" testA * b \n");
124 cblas_sgemv( CblasColMajor, CblasTrans, n, n, alpha, testA, n, b, 1, beta, c, 1);
125 printf("x = [ %f %f %f ]\n",c[0],c[1],c[2]);
126

127 printf(" b \n");
128 printf("x = [ %f %f %f ]\n",b[0],b[1],b[2]);
129

130 printf(" scaling b by 1.5 \n");
131 cblas_sscal( n, 1.5f, b, 1 );
132 printf("x = [ %f %f %f ]\n",b[0],b[1],b[2]);
133

134 printf(" A * b \n");
135 cblas_sgemv( CblasColMajor, CblasNoTrans, n, n, alpha, A, n, b, 1, beta, c, 1 );
136 printf("x = [ %f %f %f ]\n",c[0],c[1],c[2]);
137 destroy_matrix( a );
138 return 0;
139 }
140

141

142 matrix *read_matrix_from_file( const char * filename )
143 {
144 FILE * fhandle = fopen( filename, "r" );
145 if ( fhandle == NULL )
146 return NULL;
147

148 matrix * pmtrx = (matrix*) malloc( sizeof(matrix) );
149 float num;
150

151 // read in the first line, containing the opcodes...
152 unsigned int commas = 0, linelength = 0;
153 int c;
154

155 while ( (c = fgetc(fhandle)) != EOF ) {
156 linelength++;
157 if ( c == ’,’ ) commas++;
158 if ( c == ’\n’) break;
159 }
160

161 // rewind the file...



DRAFT FOR REVIEW 27

162 rewind(fhandle);
163 pmtrx->numberOpcodes = commas+1;
164 pmtrx->numberElements= pmtrx->numberOpcodes * pmtrx->numberOpcodes;
165 pmtrx->opcodes = (char**) malloc( sizeof(char*) * pmtrx->numberOpcodes );
166 pmtrx->elements= (float*) malloc( sizeof(float) * pmtrx->numberElements );
167

168 char * cptr, * line = (char*) malloc( sizeof(char) * linelength );
169 fgets( line, linelength, fhandle );
170

171 // read in our opcdoes...
172 cptr = strtok( line, "," );
173 c = 0;
174 while ( cptr != NULL )
175 {
176 pmtrx->opcodes[c++] = strdup( cptr );
177 cptr = strtok(NULL,",");
178 }
179

180 free( line );
181

182 c = 0;
183 while ( fscanf(fhandle," %f ",&num) )
184 {
185 pmtrx->elements[c++] = num;
186 if ( c == pmtrx->numberElements )
187 break;
188 }
189

190 fclose(fhandle);
191 // done...
192

193 return pmtrx;
194

195 }
196

197 void print_matrix( FILE * file, matrix * m )
198 {
199 int i,j;
200 int num = (int) sqrtf( m->numberElements );
201 for (i=0; i<m->numberOpcodes; i++)
202 fprintf(file," %8s ", m->opcodes[i] );
203 fprintf(file,"\n");
204

205 for (i=0; i<num; i++)
206 {
207 for (j=0; j<num; j++)
208 fprintf(file," %8f ",m->elements[i*num+j]);
209 fprintf(file,"\n");
210 }
211 }
212

213 int destroy_matrix( matrix * m )
214 {
215 int i;
216 for (i=0; i<m->numberOpcodes; i++)
217 free( m->opcodes[i] );
218

219 free( m->elements );
220 free( m->opcodes );
221

222 m->numberOpcodes = 0;
223 m->numberElements= 0;
224

225 m = NULL;
226



DRAFT FOR REVIEW 28

227 return 0;
228 }
229

230 void populate_vector( float * vector,
231 int nels,
232 char ** opcodes,
233 char * code )
234 {
235 int i;
236 for (i=0; i<nels; i++) {
237 if ( strncmp(opcodes[i],code,4) == 0 )
238 vector[i] = 1.0f;
239 else
240 vector[i] = 0.0f;
241 }
242 // end of function
243 }
244

245

246 void print_vector(float * result, int nels)
247 {
248 int i;
249 for (i=0; i<nels; i++)
250 printf(" %8f ",result[i]);
251 }
252

253 void print_result(float * result, int nels, char **opcodes )
254 {
255 int i;
256 // print out json result, can import into python easily...
257 printf("{");
258 for ( i=0; i<nels; i++ )
259 {
260 if ( result[i] > 0.0f )
261 printf("’%s’:%f,",opcodes[i],result[i]);
262 }
263 printf("}");
264 }
265

266

267 char *choose_opcode( float * result, int nels, char **opcodes )
268 {
269 // get a rand num [0,1]
270 float num = ( (float) rand() / (float) RAND_MAX );
271 float sum = 0.0f;
272 int i;
273 for (i=0; i<nels; i++)
274 {
275 sum += result[i];
276 if ( num < sum )
277 return opcodes[i];
278 }
279 return NULL;
280 }

Note the use of the BLAS routines, for matrix calculations. The cblas routines allow hardware accel-
eration, allowing us to leverage SIMD processors.

B. Android

Listing 17: Simple NDK usage for rendering

1 #include <stdio.h>



DRAFT FOR REVIEW 29

2 #include <stdlib.h>
3 #include <math.h>
4

5 #include <jni.h>
6 #include <android/log.h>
7 #include <GLES2/gl2.h>
8 #include <GLES2/gl2ext.h>
9

10 #include <sys/types.h>
11 #include <android/asset_manager.h>
12 #include <android/asset_manager_jni.h>
13 #include <assert.h>
14

15 #define LOG_TAG "libglsl2"
16 #define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)
17 #define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)
18

19

20 static void printGLString( const char *name, GLenum s )
21 {
22 const char *v = (const char*) glGetString(s);
23 LOGI("GL %s = %s\n",name,v);
24 }
25

26 static void checkGlError( const char * op )
27 {
28 GLint error;
29 for (error = glGetError(); error; error = glGetError() ) {
30 LOGI("after %s() glError (0x%x)\n", op, error );
31 }
32 }
33

34 int screenWidth;
35 int screenHeight;
36

37 int analyzeFrameBuffer( unsigned char * data )
38 {
39 int i,j;
40 FILE * tmpfile = fopen("/sdcard/tmp/results.txt","w");
41 if ( tmpfile == NULL )
42 return 1;
43

44 for (i=0; i<screenHeight; i++)
45 {
46 for (j=0; j<screenWidth; j++)
47 {
48 fprintf(tmpfile," %c ",data[i*screenWidth+j]);
49 }
50 fprintf(tmpfile,"\n");
51 }
52 LOGI("WROTE GPU buffer to file");
53 fclose( tmpfile );
54

55 return 0;
56 }
57

58 GLuint loadShader(GLenum shaderType, const char* pSource) {
59 GLuint shader = glCreateShader(shaderType);
60 if ( shader ) {
61 glShaderSource(shader, 1, &pSource, NULL);
62 glCompileShader( shader );
63 GLint compiled = 0;
64 glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
65 if ( !compiled ) {
66 GLint infoLen = 0;



DRAFT FOR REVIEW 30

67 glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);
68 if ( infoLen ) {
69 char * buf = (char*) malloc( infoLen );
70 if ( buf ) {
71 glGetShaderInfoLog(shader,infoLen,NULL,buf);
72 LOGE("Could not compile shader %d:\n%s\n",shaderType,buf);
73 free(buf);
74 }
75 glDeleteShader(shader);
76 shader = 0;
77 }
78 }
79 }
80 return shader;
81 }
82

83 GLuint createProgram( const char * pVertexSource, const char * pFragmentSource )
84 {
85 GLuint vertexShader = loadShader( GL_VERTEX_SHADER, pVertexSource );
86 if ( !vertexShader ) {
87 return 0;
88 }
89

90 GLuint pixelShader = loadShader( GL_FRAGMENT_SHADER, pFragmentSource );
91 if ( !pixelShader ) {
92 return 0;
93 }
94

95 GLuint program = glCreateProgram();
96 if ( program ) {
97 glAttachShader(program, vertexShader);
98 checkGlError("glAttachShader");
99 glAttachShader(program, pixelShader );

100 checkGlError("glAttachShader");
101 glLinkProgram(program);
102 GLint linkStatus = GL_FALSE;
103 glGetProgramiv(program, GL_LINK_STATUS, &linkStatus);
104 if ( linkStatus != GL_TRUE ) {
105 GLint bufLength = 0;
106 glGetProgramiv(program, GL_INFO_LOG_LENGTH, &bufLength);
107 if ( bufLength ) {
108 char * buf = (char*) malloc( bufLength );
109 if ( buf ) {
110 glGetProgramInfoLog(program, bufLength, NULL, buf);
111 LOGE("Could not ink program:\n%s\n",buf);
112 free(buf);
113 }
114 }
115 glDeleteProgram(program);
116 program = 0;
117 }
118 }
119 return program;
120

121 }
122

123 GLuint gProgram;
124 GLuint gvPositionHandle;
125

126 char *readShader( const char *filename )
127 {
128

129 }
130

131 char * gVertexShader;



DRAFT FOR REVIEW 31

132 char * gFragmentShader;
133

134 int setupGraphics(int w, int h) {
135

136 printGLString("Version", GL_VERSION);
137 printGLString("Vendor",GL_VENDOR);
138 printGLString("Renderer",GL_RENDERER);
139 printGLString("Extensions",GL_EXTENSIONS);
140

141 screenWidth = w;
142 screenHeight= h;
143

144 LOGI("setupGraphics(%d,%d)",w,h);
145 gProgram = createProgram( gVertexShader, gFragmentShader );
146 if ( !gProgram ) {
147 LOGE("Could not create program.");
148 return 0;
149 }
150

151 gvPositionHandle = glGetAttribLocation(gProgram, "vPosition");
152 checkGlError("glGetAttribLocation");
153 LOGI("glGetAttribLocation(\"vPosition\") = %d\n",gvPositionHandle);
154

155 glViewport(0, 0, w, h );
156 checkGlError("glViewport");
157 return 1;
158

159 }
160

161 const GLfloat gVertices[] = {0.0f, 0.5f, -0.5f, -0.5f, 0.5f, -0.5f };
162

163 void renderFrame( ) {
164

165 unsigned char * bufferdata;
166

167 glClearColor(0,0,0,1.0f);
168 checkGlError("glClearColor");
169 glClear( GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT );
170 checkGlError("glColor");
171

172 glUseProgram(gProgram);
173 checkGlError("gluseProgram");
174

175 glVertexAttribPointer( gvPositionHandle, 2, GL_FLOAT, GL_FALSE, 0, gVertices );
176 checkGlError("glVertexAttribPointer");
177 glEnableVertexAttribArray(gvPositionHandle);
178 checkGlError("glEnableVertexAttribArray");
179 glDrawArrays( GL_TRIANGLES, 0, 3 );
180 checkGlError("glDrawArrays");
181

182 LOGI("Called draw functions");
183 LOGI("Screen width,height are %d,%d",screenWidth,screenHeight);
184 // post draw call, we call read pixels to obtain our result
185 // note that we need depth of 4...
186 bufferdata = (unsigned char*) malloc( sizeof(unsigned char) * screenWidth * screenHeight←↩

* 4 );
187 glReadPixels( 0, 0, screenWidth, screenHeight, GL_RGBA, GL_UNSIGNED_BYTE, bufferdata );
188

189 LOGI("Read Pixels");
190

191 // pass this buffer data for analysis...
192 analyzeFrameBuffer( bufferdata );
193 LOGI("Analyzed...");
194

195 // clean up



DRAFT FOR REVIEW 32

196 free( bufferdata );
197

198 }
199

200 /*
201 JNIEXPORT void JNICALL Java_com_gototheboard_glsl2_NativeGLLib_init(JNIEnv * env, ←↩

jobject obj,
202 jint width, jint height);
203 JNIEXPORT void JNICALL Java_com_gototheboard_glsl2_NativeGLLib_step(JNIEnv * env, ←↩

jobject obj );
204 JNIEXPORT void JNICALL Java_com_gototheboard_glsl2_NativeGLLib_setupShaders(JNIEnv * env←↩

,
205 jstring vshader,
206 jstring fshader);
207 */
208

209 JNIEXPORT void JNICALL Java_com_gototheboard_nativegl_NativeGLLib_init(JNIEnv * env, ←↩
jobject obj,

210 jint width, jint height)
211 {
212 LOGI("Setting up native graphics code.");
213 setupGraphics( width, height );
214 LOGI("Finished setting up native graphics code.");
215 }
216

217 JNIEXPORT void JNICALL Java_com_gototheboard_nativegl_NativeGLLib_step(JNIEnv * env, ←↩
jobject obj )

218 {
219 LOGI("Step...\n");
220 renderFrame( );
221 }
222

223 JNIEXPORT void JNICALL Java_com_gototheboard_nativegl_NativeGLLib_setupShaders(JNIEnv * ←↩
env, jobject obj,

224 jobject assetManager,
225 jstring vshader,
226 jstring fshader)
227 {
228 int vid, fid;
229 off_t start, length;
230

231 LOGI("Starting to read shaders...");
232

233 const jbyte * utf_vshader = (*env)->GetStringUTFChars( env, vshader, NULL );
234 const jbyte * utf_fshader = (*env)->GetStringUTFChars( env, fshader, NULL );
235

236 LOGI("Created UTF strings..");
237

238 // create an asset manager
239 AAssetManager * mgr = AAssetManager_fromJava(env, assetManager);
240 assert(NULL != mgr );
241 if ( mgr == NULL )
242 LOGI("Unable to create asset manager");
243 else
244 LOGI("Created asset manager");
245

246 // read in vertex fragment
247 LOGI("Going to read %s",(char*)utf_vshader);
248 LOGI("Going to read %s",(char*)utf_fshader);
249 AAsset * vertex_asset = AAssetManager_open( mgr, (const char*) utf_vshader, ←↩

AASSET_MODE_UNKNOWN );
250 AAsset * frag_asset = AAssetManager_open( mgr, (const char*) utf_fshader, ←↩

AASSET_MODE_UNKNOWN );
251 LOGI("Created asset objects");
252 if ( vertex_asset == NULL )



DRAFT FOR REVIEW 33

253 LOGI("Vertex asset could not be opened.");
254 if ( frag_asset == NULL )
255 LOGI("Frag asset could not be opened.");
256

257 // release the Java string and UTF
258 (*env)->ReleaseStringUTFChars( env, vshader, utf_vshader );
259 (*env)->ReleaseStringUTFChars( env, fshader, utf_fshader );
260 LOGI("Released UTF8 strings");
261

262 // get file descriptor -- failing here with the vid = -1
263 vid = AAsset_openFileDescriptor(vertex_asset, &start, &length );
264 LOGI("vid = %d",vid);
265 assert( 0 <= vid );
266 gVertexShader = (char*) malloc( sizeof(char) * length + 1 );
267 memset(gVertexShader,’\0’,length+1);
268 AAsset_read( vertex_asset, gVertexShader, length );
269 AAsset_close(vertex_asset);
270 LOGI("Read in vertex shader:\n %s\n",gVertexShader);
271

272 fid = AAsset_openFileDescriptor( frag_asset, &start, &length );
273 assert( 0 <= fid );
274 gFragmentShader = (char*) malloc( sizeof(char) * length + 1 );
275 memset(gFragmentShader,’\0’,length+1);
276 AAsset_read( frag_asset, gFragmentShader, length );
277 AAsset_close(frag_asset);
278 LOGI("Read in frag shader:\n %s\n",gFragmentShader);
279

280 }

To use the eigen library, a similar effort to leverage the NEON processor, we must include the C++
libraries, which is fairly trivial but does require an Application.mk file

Listing 18: To Move into Vectorized C++ for the NEON Processor

1 APP_STL:=stlport_static

Along with the inclusion of the Eigen header files (Eigen is enirely made up of header files) allows us
to better leverage vectorized calculations.


	Introduction
	Overview of Algorithms
	Signature Checks
	Memory Analysis
	Dynamic Disassembly
	Encryption

	Signature Checking
	General Techniques

	Memory Analysis
	Texture Atlas
	Heap Visualization

	Dynamic Disassembly
	Why This Works Even Better for Mobile
	Implementation
	In Practice

	Encryption
	Device and Platform Information
	Optimizations and Other Tricks
	Hardware Integration
	Strategies
	GPU Assisted Malware
	Summary
	Future Research
	Conclusion
	Next Phase

	Acknowledgment
	References
	Appendix A: Example Code
	Appendix B: Project Templates
	iOS
	Android


