
CUTLASS - Encrypted
Communications for

Everyone
Todd MacDermid

CUTLASS Overview

• Started in April, 2004

• Encrypted P2P voice, file, and chat software

• BSD license

• 3 core part-time developers, one full time
in May 2005

Questions I Hope To
Answer

• What is the target audience?

• Why doesn’t existing software work?

• How does it work?

• What have you done so far?

• How can we help?

(This) Talk Rules!

• Questions Whenever

The Dream...

How Much of Your
Traffic do
YOU

Encrypt?

The Problem

The Problem

• Cryptography is not widely used

• Most users are unwilling to sacrifice
convenience for security

• It is dangerous to make encryption for
experts only

What Traffic Types Are
Protected?

• Voice over IP

• File Sharing / File Trading

• Instant Messaging

What Are Existing
Solutions?

• Skype

• WASTE

• TOR

• Jabber

• GnomeMeeting and other Free VoIP

Skype
The Good The Bad

Encrypted, peer-to-peer
voice

UI was a marvel of simplicity,
both in install and use

Licensing terms are onerous

Traffic is dependent on
central authentication server
(CALEA?)

Crypto is questionable and
closed

Only 5-way conference, max.

WASTE
The Good The Bad

Encrypted, peer-to-peer file
transfer

Cross-platform

Code is broadly available

Licensing issues are fuzzy, at
best

No way of removing
someone from a group

Key exchange is painful

Jabber
The Good The Bad

Open source

Strong cryptography available

Cross-platform

Cryptography is optional

Voice support specs are not
specified

GnomeMeeting,
Other Free VoIP
The Good The Bad

Open source

Standards-compliant

Cross-platform

Cryptography? “Use IPSec”

TOR
The Good The Bad

Open source

Strong cryptography

Cross-platform

Anonymity in addition to
cryptography

Anonymity requires latency

Anonymity weak against
attackers that can observe
both endpoints

TCP only, thus unsuitable for
voice

CUTLASS Design
Goals

• Easy enough to use

• Cross-platform

• Secure by default

• Useful with small network effect

• Extendable (both functionality + paranoia)

• Independent of central servers

CUTLASS Anti-Goals

• Not a strong anonymity system

• Not restricted to existing standard
protocols

• Does not require a global namespace

CUTLASS Protocol
Design

• Single protocol for all traffic

• UDP-based, with reliable transport layer

• Anyone has server capabilities

• Peers directly connect, minimal traffic
through server

Protocol Advantages

• Easy NAT punching

• No ephemeral ports if we don’t want
them

• One hole is sufficient

• Traffic analysis cannot key on packet type

Protocol
Disadvantages

• We must reimplement reliable transport

• We won’t have access to kernel timers
when we reimplement reliable transport

CUTLASS
Cryptography

• SSL/TLS - Requires TCP or equivalent

• PGP and S/MIME - Message-based; very
inefficient with many packets

• IPsec - Admit it, IPsec sucks

• SRTP - Too strongly tied to RTP to be
helpful

Cryptographic
Primitives

• RSA-signed Diffie-Hellman exchange

• Ephemeral AES-256 keys in counter mode

• SHA-1 HMAC on each packet

• No replay protection at the crypto layer
(but there will be!)

Key Exchange

----- noncec , H(noncec , RSAs) , RSAc ----->

<----------- nonces , noncec , RSAs -------------

--------------- DHc , SIGc(DHc) --------------->

<--------------- DHs , SIGs(DHs) ---------------

In
iti

at
or

 /
“C

lie
nt

”
R

esponder / “Server”

Cryptographic
Protocol Features

• Confidentiality and integrity

• Perfect forward secrecy

• Server responses are optional based on
client knowledge of server key

• RSA key authentication, with password-
based authentication coming soon

Trust Model

• SSH-style, “Ask on first connect”

• Users primary identification is key
fingerprint

The Five Year Plan

• DTLS - TLS over datagram (IETF draft)

• OpenPGP and SRP authentication for TLS
(IETF drafts)

• DTLS + SRP + OpenPGP = sweet

CUTLASS Packet
Structure

Type CIDNonce

Data (Type Specific) ...

SHA-1 HMAC

1 Byte 1 Byte16 Bytes

20 Bytes

Len

2 Bytes

CUTLASS Packet
Encrypted Portions

Type CIDNonce

Data (Type Specific) ...

SHA-1 HMAC

1 Byte 1 Byte16 Bytes

20 Bytes

Len

2 Bytes

CUTLASS Packet Types

• Key Exchange

• Ping/Pong

• Connection Information Req/Resp

• Audio

• Reliable Transport

CUTLASS Transport
Layer

“Gap”-based requests

0 4500

Request: 0-4500

CUTLASS Transport
Layer

“Gap”-based requests

0 4500

Request: 1000-2000,3000-4500

CUTLASS Transport
Layer

“Gap”-based requests

0 4500

Request: 3500-4000

CUTLASS Transport
Rate-Limiting

• Requests immediately get one response

• Successful request/response pair increases
unsolicited rate by one PPS

• Periodically send unsolicited data according
to rate

• If number of gaps increases, decrease
unsolicited rate

CUTLASS Transport
Stats

• SCP: 45 seconds

• CUTLASS: 53 seconds

• 75% of bandwidth used by SCP

• 25% of bandwidth used by CUTLASS

Copying 34 MB file over 10Mbps local link:

Simultaneous copy bandwidth consumption:

CUTLASS Transport
Layer Advantages

• Unrestricted by window size

• Easy to turn into Bittorrent-style requests

CUTLASS Voice

• Using Speex, with 8 KHz sample rate

• Phone quality, more or less

• Currently supports OSS

• Anyone willing to write other audio
drivers, please join us!

CUTLASS Group
Design

• Groups can require authentication or not

• Groups can be advertised on directories

• Group communication is still point-to-point

• Group members are a consensus reality

CUTLASS Group
Management

• Ops have a copy of private group key

• Ops cannot be revoked

• Ops may designate lower levels of Op that
will not have private key

• These are effectively suggested local
policies

CUTLASS Directory
Servers

• Anyone can be a directory server

• Store registered users/groups, key
fingerprints, and network locations

• Allows searching via strings

• Will NOT store file directories

• Will NOT be initially meshed, but is
certainly a future desire

CUTLASS File Servers

• All files requested by hash, not by name

• File names may be searched by strings

What’s Done?

• Key Exchange

• Text Messages

• File Push/File Serving

• Directory Serving

• Audio

• GTK Client

• Text Client

LibCUTLASS

• CUTLASS is currently divided into
libcutlass and clients

• API docs in tarball

• To use the library, register asynchronous
action handlers

Documentation

• action_handler_guide.txt - list of all actions
and available information

• api.txt - API usage guide

• internals.txt - thread locking policy and
program structure

• protocol.txt - key exchange, cryptography,
transport layer, etc

What’s Left to Do?

• Group management

• Directory Integration

• Windows, Mac OS X, and PocketPC clients

• Connection forwarding

• Gaim plugin

Cutlass Economic
Model

• One full-time developer for 12 months

• Supported by savings, bounties, swag sales,
donations

• From there?

Want to Help?

• Join the mailing list

• cutlass-subscribe@synacklabs.net

• Join in development

• svn co svn://svn.synacklabs.net/cutlass

• Link the site - http://cutlass.info

• Buy some swag

