
Hardening Registration Number Protection Schemes against
Reverse Code Engineering with Multithreaded Petri Nets

Thorsten Schneider

University of Hannover
FG Software Engineering

Welfengarten 1
30167 Hannover, Germany

<info@reverse-engineering.net>

Abstract

This paper proposes a new technique for hardening registration number protections by using
multithreaded Petri nets. Using this technique one is able to prevent reverse code engineering attacks,
which consist of protection scheme analysis and reengineering. We come to the conclusion that using
such a technique leads at minimum to an enormous reverse code engineering and analysis process for
the attacker and that the proposed technique is therefore an amelioration in registration number
protection.

Keywords: Reverse Code Engineering; Multithreaded Petri Nets; Software Protection; Registration
Number Protection Schemes

1. Introduction

Registration number protections require the user to enter a registration number to register a software
application. However, in most cases such a protection can be defeated easily by an in-depth analysis of
the disassembled code or by tracing the applications execution using dynamic disassembly
(debugging) techniques. Even there still is heavy use of simple XOR encryption methods, several
software applications use high optimized cryptographic algorithms to prove the given input for
validity.

However, there are several approaches to deal even with such complicated calculations. Once the
attacker identifies the algorithm routines, one approach is to use self-keygenning techniques, which
produces always a correct serial number by turning the application against itself, which had been
described by Webbit in detail [1]. Another approach is the common used code-ripping method, where
the attacker extracts the relevant code segment and uses the extracted code to build up a keygenning
application. Using self-keygenning or code-ripping, the attacker does not necessarily need to know
exactly, how the algorithm works. The attacker just needs to be aware of initial settings, as register
values.

For this paper we confine to the standard registration number, leaving out hardening methodologies as
anti-disassembly or anti-debugging methods. For these Cerven defines 5 different types of such
protection types [2]. Dealing with our proposal we use the simplest variant, which expects the input of
a serial number and – if the serial number is correct – sets the state of the application to a registred
status.

Against most used algorithms, which are based on sequential calculations, another method is to use
graph based algorithms, which increase the analysis complexity. Breaking such a protection is hard for
the analysing attacker, however by using again code-injection or self-keygenning methods, it is still
possible to break such a protection whithin minutes.

In this paper we introduce a more complex graph based protection, based on Petri nets, which are
dicotyledonous oriented multigraphs [3]. Main advantage of using Petri nets is that the attacker does
not know the state of each node. He can only guess, bruteforce or reconstruct the Petri net, which can
be a very complex task, as we will describe later. One more feature of a Petri net is that it can be
executed parallelised, which again we will use and describe later.

Section 2 gives a short overview of Petri nets. As we confine to the proposed protection scheme, we
reduce this section to a minimum. Section 3 describes on how to use Petri nets for registration
checking processes, in section 4 we give a detailed example. Section 5 refers to the reachability
problem, which is induced by the usage of Petri nets and is an important factor for increasing Petri net
complexity. In section 6 we illustrate how to harden the proposed protection scheme, and finally in
section 7 we give a short discussion of the proposed methods.

2. Petri Nets

This section gives a short introduction to Petri nets. Reader familiar with Petri nets can skip
this section.

Petri nets originate from the early work of Carl Adam Petri [4]. Since then the research on
Petri nets increased considerably . The use of Petri nets lead into a mathematical description
of a system structure that can be then investigated analytically. Petri nets are divided in
classical petri nets, which are directed dipartite graphs, and high level Petri nets [5]. The
classical Petri net allows for the modelling of states, events, conditions, synchonisation,
parallelism, choice, and iteraration.

However, Petri nets describing real processes tend to be complex and extremely large, which
is especially a problem in bioinformatics when modelling pathway processes. Moreover, the
classical Petri net does not allow for the modelling of data and time. To solve these problems,
many extensions have been proposed. Three well-known extensions of the basic Petri net
model are: (1) the extension with color to model data, (2) the extension with time, and (3) the
extension with hierarchy to structure large models. A Petri net extended with color, time, and
hierarchy is called a high-level Petri net [6]. In this paper we will use these extensions to
model specific aspects. However, a formalization of these aspects is beyond the scope of this
paper. For a more elaborate discussion on Petri net extensions and other kinds of high-level
Petri nets, the reader is referred to [6-9]. One of the most interesting problems (“The Five
Chinese Sages Problem”) solved with Petri nets has been given by Dijkstra [10].

3. Concept: Using Petri nets as registration checking routine

Petri nets are an ideal tool for modelling transitions. There are several research areas where
the use of Petri net models comes handy. Examples are given in Bioinformatics (Biochemical
Networks) [11], Software Performance Evaluation [12] or Queuing Nets [13]. As well Petri
nets are used for representations of simple or complex algorithms. Since registration number
routines correspondent to mathematical algorithms, they can be represented by Petri nets.

We use Petri net design for representing such algorithms, to improve software protection tasks
and to harden the analysis mechanisms of the attackers attempt in understanding the
underlying algorithm. By increasing the complexity of the resulting net the analysis becomes
confusing and in the best case impossible. Additional we resort to the Petri net feature of
parallelism, which replaces the common use of sequential algorithms with parallel running

processes. Using such parallelising feature, the attacker needs - for algorithm and code
understanding - to dynamic disassemble (debug) all processes at the same time, which seems
to be nearly impossible. Additional one feature, which comes handy for a registration number
routine, is that the algorithm is not static, but highly dynamic since the different states are not
known to the attacker.

It is not a secret that most protection approaches reduce to hide notorious conditional jumps
from the analysis of a reverse code engineer. In most cases this can be simplified to the
scheme “bad guy / good guy” jump. To prevent manipulation attempts, several techniques as
anti-debugging and anti-disassembly methods have been introduced [2]. However, once an
anti-technique has been defeated, a manipulation of such jumps becomes an easy task. This is
where the use of Petri nets are useful – to obfuscate and to obscure the analysis process for the
attacker.

4. Example: Using Petri nets as registration checking routine

We use a simple Petri net to realize a registration checking routine (see fig. 1). Starting the
Petri net process with an initial marking of places p0,...,p3, all other places are invisible for
any input settings. It is important that place p7 has already a token before starting the net.
Additional we need to add a lower priority setting to transition t2, which results in preferring
transition t1 when both transitions (t1 and t2) are fired. Assuming that the Petri net is solved
only correct, when the last fired transition is t2, one solution of this Petri net is the setting: {p0
= 1, p1 = 0, p2 = 1, p3 = 1}. In other cases, transition t2 will not be executed.

Fig.1: A simple Petri net for realizing a serial checking routine.

All over all, the Petri net given in fig. 1 is very easy to solve. In the given example one can
easily find a correct key within a search space of 24 = 16. Solving such a small Petri net can
be done even by hand or by brute force within a very short time.

One solution to this problem is to increase the net complexity. Since current research is
focussing more on the problem, on how to reduce net complexities, there are no algorithms
described yet on how to automate the complexity increasing process. We use a simple

copying and linking approach to increase the complexity of the Petri net (see fig. 1) to receive
a harder to understand and to attack Petri net (see fig. 2).

Fig. 2: Copying and linking the Petri net to increase the net complexity.

Even copying and linking seems to be an easy and appropriate option, some problems arise
with increasing the net complexity. Since we are linking a new net to each place one can mark
during initial marking, some places loose their marking characteristics. This means in short,
that they can not be marked by initial marking in the future. Fortunatly there are new places
available for marking after copying and linking the net. If one links the new net to place p0,
one has to take care about the functionality and reachability problem as well [14]. We will
focus on the reachability problem in section 5. Using the example in fig. 2, the transition t2
remains final reachable and the new places {p8,...,p11} are available for an initial marking. In
fig. 2 it is abviously that transition t6 plays the role of transition t2 from the original net. If
transition t2 is executed, t6 will be executed as well. Using the initial marking { p1 = 0, p2 = 1,
p3 = 1, p8 = 1, p9 = 0, p10 = 1, p11 = 1} we should be able to get the same result as for the
Petri net in fig. 1.

Using such an improvement, the key length grows up to 7 bits, which increases the search
space for brute forcing to 128 keys. Using a similar linking for p1, p2 and p3, one is able to
increase again the search space for bruteforce attacks to 16 bit, leading into 216 keys.

Unfortunatly, one can not just link to the place p1, because of the reachability problem for
transition t2, we need its empty state. If one links the Petri net for p1 similar to other places,
then the empty state is reachable from the linked net by 15 (16 - 1) different combinations. To
solve this problem, one can use a modified linked segment (see fig. 3). Here, for the
unreachability of t11 by initial marking, one has to put the tokens to the places {p16 = 1, p17 =
1, p18 = 0, p19 = 1}. Additional, transition t11 receives lowest priority.

Fig. 3: Linked Petri net as variant.

5. Difficulty of the Reachability Problem

Dealing with complexity increasing manipulations of Petri nets, as described in the section before, one
must be aware about the reachability problem, to keep the Petri net solvable at all and to keep its
original functionality. The reachability problem – a reduced variant of the liveness problem – is
defined by Handorean by the following question [5]:

“Given a marked Petri net, m0 beeing the initial marking and a marking m’ – is
m’ reachable from m0 ?”

As far as problems of subsets and equalities for ensemble reachabilities of Petri nets are undecidable
then maybe the reachability problem is undecidable too. To solve this problem several approaches are
introduced by Mayr [15] and Sivaraman [14]. Other algorithms had been shown by Jancar [16] to be
definitive wrong for solving such problems. One basic solution technique is to build a finite
representation for the reachability set of a Petri net.

"As we can see, with reachability tree we can solve problems of safety,
preservation and coverage. Regrettably, in common case we can't use it for
solveing problems of B reachability and activity [...]" [17].

Handorean [5] describes in a showcase how to build the reachability tree of a Petri net which also
allows to build the entire state-space (see fig. 4) and how to make the representation finite:

1. define Ω number of tokens in a place then it is “too big” (plays the role of infinite)
2. when a new marking is equal to another marking on the path from the root node, we add it as a

terminal node
3. a new marking x is grater than a marking y on the path from root, the components of y which

are strictly greater than the corresponding components are replaced by Ω (if x>y then
whatever is reachable from y is reachable from x too)

This results into the following definitions:

1. If the Petri net is k-bounded (max k tokens in a place), the reachable state-space is finite.
2. If the Petri net is conservative and let k being the number of tokens in the net, the reachable

state space is finite (there is a finite number of ways we can partition k tokens among n
places).

3. If Ω is anywhere in the reachability tree, the reachability set is not finite (and therefore cannot
be bounded or conservative)

4. If the reachability problem is solvable (possibly at a high cost) then the liveness problem is
solvable.

Fig. 4: Building the reachability tree of a Petri net (Image Source [5])

6. Saying “Foo on You!“ to the attacker

After building a working Petri net one is able to use this for registration number checking routines.
However, the weakness of such a protection is obvious. So far, the handling of the Petri net is
sequential. It is an easy task for the attacker to trace the protection scheme and to rebuild the Petri net
for further investigation. One way to increase the analysis complexity is to parallelise the Petri net by
using multithreading technology. Assumed, that each place or transition receives one thread, and
assumed as well that we use absolute parallelism for the Petri net; the attacker needs to debug and
trace all threads (transitions) simultaneously. This is nearly impossible, but writing a special tool for
handling such a problem might still be possible – considering an enormous investment of time for
developing such a tool.

Next, one is able to add hundreds of fictitous transitions with very low priority levels. This results in a
very large and complex Petri net (see fig. 4 and 5), which can end in a tunnel of horror for the attacker.
We agree that such hardening is inefficient for memory resources and performance. However, reverse
code engineering such a protection scheme becomes a pain at all.

Fig. 4: A more complex Petri net example. This net is harder to understand.

Fig. 5: A more complex 3-dimensional Petri net example showing places (red) and arcs (blue). It is obvious that
the understanding of such a network gets confusing.

7. Discussion

Obviously standard methods of breaking this protection scheme do not work here. Unlike for
consecutive protection schemes, an attacking reverse code engineer never can guess which transition is
decisive, since upon wrong initial marking the decisive transition is not accessible. On the other hand,
the attacker may try to execute all transitions - if he finds all places in any way. In our given example
the attacker needs to try only 20 transitions instead of 216 possible keys - he just has to put tokens in all
places. It has not to be forgotten that our decisive transition has lowest priority - all tokens from input
places disappear faster then one can check them. The attacker could somehow find the transition with
the lowest priority - for this we can enter thousand fictitious transitions with low priority levels and
similar. However, we agree that this might be inefficient for memory resources and performance.

Dynamic Disassembly (Debugging) such an application becomes complicated since the attacker needs
to debug all threads (transitions) simultaneously, which is nearly impossible. Additional, if one
somehow uses protection code (anti-disassembly or anti-debugging) in different places of the
application, one is able to protect from statically attacks as well.

Even it is possible to solve the reachability problem, solving large Petri nets might be time consuming
and inefficient to solve. This is one advantage for the suggested protection technique. One solution in
preventing even high computation on such nets might be using unsolvable problems like given 2 Petri
nets with M1 and M2, where a possible question could be if R(M1) is a subset of R(M2) or R(M1) is
equal R(M2). An arising problem might be, that one gets an unsolvable net which even prevents to
work correct.

One additional attacking method could be in writing a specialised tool, which watches each transition
and rebuilds the Petri net.

8. Conclusions and Future Work

In conclusion the main goal of any protection scheme is hiding some information from other people.
There is no protection which reaches its main goal. However, the proposed technique is a fine grained
method to increase the complexity of protection in a significant way. Further investigations should
focus on enhancing the algorithm and its implementation and to run several attacks on the protection
scheme. As well intensive research is necessary on how to increase Petri net complexities regarding to
reachability problems.

Acknowledgement

The author thank Robert Airapetyan for his prior concept in the field of software protection and Petri
nets.

Thorsten Schneider received his diploma in medical informatics from the University of Heidelberg in 2002, and
the Doctor rerum medicarum with Magna cum laude from the Free University of Berlin (Charité
Universitätsmedizin Campus Benjamin Franklin) in 2004. He was scientific assistant at the bioinformatics
faculty at the University of Bielefeld from 2003 to 2004 and is currently scientific assistant for software
engineering at the University of Hannover. He is a member of the Center for Space Medicine Berlin (ZWMB).
His current research interests include reverse code engineering, experimental and empirical software
engineering and time series analysis. He is working on his postdoctoral thesis in the field of reverse code
engineering, watermarking, obfuscation, decompilation and software protection. He maintains and
administrates several reverse code engineering websites, including the Reverse Code Engineering Portal
(Anticrack) (http://www.reverse-engineering.net), the Reverse Engineering Academy (http://www.reverser-
course.de) and the crackmes website system (http://www.crackmes.de).

References

1. Webbit K: Keygen Injection. CodeBreakers-Journal 2004, 1(2).
2. Cerven P: Crackproof Your Software: No Starch Press; 2002.
3. Peterson JL: Petri Net Theory and the Modelling of Systems: Prentice Hall PTR; 1981.
4. Petri CA: Kommunikation mit Automaten. PhD. Bonn: University of Bonn, Germany;

1962.
5. Handorean R: Petrinets - Notes. Available at

http://userfscecwustledu/~cs576/Notes/Petrinets.pdf 2003.
6. Jensen K: Colored Petri Nets. Basic Concepts, Analysis Methods and Practical use.

EATCS Monographs on Theoretical Computer Science 1996.
7. Murata T: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE

1989, 77(4):541-580.
8. Van der Aalst WMP: Putting Petri Nets to Work in Industry. Computers in Industry 1994,

25(1):45-54.
9. Van Hee KM: Information System Engineering: A Formal Approach: Cambridge

University Press; 1994.
10. Dijkstra EW: Co-Operating Sequential Processes. Programming Languages 1968:43-112.
11. Popova-Zeugmann L, Heiner M, Koch I: Modelling and Analysis of Biochemical Networks

with Time Petri Nets. In: Workshop Concurrency, Specification & Programming'2004: Sept.
24 - 26 2004; Caputh: Informatik-Berichte der HUB Nr. 170; 2004: 136-143.

12. Becker M, Twele L, Szczerbicka H: Software Performance Evaluation with Generalized
Stochastic Petri Nets. Performance Evaluation, Special Issue on Performance Validation of
Software Systems 2002.

13. Becker M, Szczerbicka H: Combined Modeling with Generalized Stochastic Petri Nets
including Queuing Nets. In: 14th UK Computer and Telecommunications Performance,
Engineering Workshop: 1998; 1998: 48-62.

14. Sivaraman E: An Approach for Solving the General Petri Net Reachability Problem -
Duality Theory and Applications. Available at:
http://wwwokstateedu/cocim/members/eswar/duality.pdf 2004.

15. Mayr EW: An algorithm for the general Petri net reachability problem. In: 13th Annual
ACM Symposium on Theory of Computing: May 11-13 1981; Milwaukee, Wisconsin, USA:
ACM; 1981: 238-256.

16. Jancar P: Bouzinae's algorithm for the Petri net reachability problem is incorrect. Petri
Nets Newsletter 2000:1-6.

17. Peterson JL: Petri Net Theory and The Modeling of Systems.: Prentice Hall PTR; 1981.

Attachment

The following source code has been provided by Robert Airapetyan, Polytechnical University of
Odessa.

; ***
.586p
.model flat,stdcall
option casemap:none
include \masm32\include\windows.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc
includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib
; ***
 .data
key db 00h
P db 0,0,0,0,0,0,0,1,0,0
box_title db "Congratulations!",0
box_mes db "You've crack this easy one...
 But what you say if there was 1000 threads?",0
box_title2 db "Shit...",0
box_mes2 db "Invalid key",0
; ***
 .data?
ThreadId dd ?
; ***
 .code
 CT MACRO StartAddress
 push ThreadId
 push EBX
 push EBX
 push StartAddress
 push EBX
 push EBX
 call CreateThread
 ENDM
_start:
 xor EBX,EBX
 call byte2bit
 CT _T6
 ;invoke SetThreadPriority, EAX, THREAD_PRIORITY_ABOVE_NORMAL
 CT _T2
 CT _T3
 CT _T1
 CT _T4
 CT _T5
 ;invoke SetThreadPriority, EAX, THREAD_PRIORITY_LOWEST

 CT _T7
 jmp $
_T3:
 mov AL,P[4]
 add AL,P[5]
 dec AL
 dec AL
 jnz _T3
 mov P[6],1
 mov P[4],AL
 mov P[5],AL
 jmp _T3

_T1:
 mov AL,P[3]
 dec AL
 jnz _T1
 mov P[3],AL ; 0
 mov P[4],1
 jmp _T1
_T4:
 mov AL,P[0]
 dec AL
 jnz _T4
 mov P[8],1
 mov P[9],1
 mov P[0],AL
 jmp _T4
_T5:
 mov ECX,0FFFFFFh
 loop $; delay
 mov AL,P[8]
 add AL,P[9]
 add AL,P[7]
 add AL,P[6]
 sub AL,4
 jnz _T5

 invoke MessageBox, 40h, addr box_mes, addr box_title, EBX
 jmp _fin
_T2:
 mov AL,P[2]
 dec AL
 jnz _T2
 mov P[5],1
 mov P[2],AL
 jmp _T2

_T6:
 mov AL,P[6]
 add AL,P[1]
 add AL,P[7]
 sub AL,3
 jnz _T6
 mov P[3],1
 mov P[2],1
 mov P[1],1
 mov P[7],AL
 jmp _T6
_T7:
 mov ECX,0FFFFFFFh
 loop $
_patch:
 invoke MessageBox, 40h, addr box_mes2, addr box_title2, EBX
_fin:
 Invoke ExitProcess, EBX
byte2bit:
 mov AL, byte ptr [key]
 push EAX
 shr AL, 3
 mov P[3],AL
 pop EAX
 push EAX
 shr AL, 2
 and AL,1
 mov P[2],AL

 pop EAX
 push EAX
 shr AL, 1
 and AL,1
 mov P[1],AL
 pop EAX
 and AL,1
 mov P[0],AL
 ret
 end _start

