
Recent Shellcode Developments

spoonm

ReCon, 2005

Part I

Introduction

Who am I?

I spoonm

I Metasploit developer since 2003

I University student

I Independent security researcher

What is this talk about?

I Recent shellcode research

I Older but lesser known tricks

I New tricks and techniques

Overview of shellcode structure

[payload]
I The payload does stuff

Part II

Shellcode

Making a connection

I Connect back to attacker (reverse)

I Connect to victim (bind)

I Reuse existing connection (find)

I Findsock only worth talking about

getpeername findsock

I Made popular by LSD

I Embed connection source port in shellcode

I Call getpeername in a loop

I Found the socket when matching source port

I Pros

I Simple idea and implementation

I Works well when it works

I Cons

I Doesn’t work through a proxy

I Doesn’t work through a NAT

I You need to embed source port

getpeername findsock

I Made popular by LSD

I Embed connection source port in shellcode

I Call getpeername in a loop

I Found the socket when matching source port

I Pros

I Simple idea and implementation

I Works well when it works

I Cons

I Doesn’t work through a proxy

I Doesn’t work through a NAT

I You need to embed source port

getpeername findsock

I Made popular by LSD

I Embed connection source port in shellcode

I Call getpeername in a loop

I Found the socket when matching source port

I Pros

I Simple idea and implementation

I Works well when it works

I Cons

I Doesn’t work through a proxy

I Doesn’t work through a NAT

I You need to embed source port

Find tag findsock

I Metasploit moved to using this

I Embed tag in shellcode

I Call recv in a loop

I Use MSG_DONTWAIT on linux

I Found the socket when you find the tag

I Pros

I Will work through a proxy or NAT

I Still fairly simple and small

I Cons

I Data may be left on some sockets

I Can be timing sensitive

I More complicated on windows (ioctlsocket, etc)

Find tag findsock

I Metasploit moved to using this

I Embed tag in shellcode

I Call recv in a loop

I Use MSG_DONTWAIT on linux

I Found the socket when you find the tag

I Pros

I Will work through a proxy or NAT

I Still fairly simple and small

I Cons

I Data may be left on some sockets

I Can be timing sensitive

I More complicated on windows (ioctlsocket, etc)

Find tag findsock

I Metasploit moved to using this

I Embed tag in shellcode

I Call recv in a loop

I Use MSG_DONTWAIT on linux

I Found the socket when you find the tag

I Pros

I Will work through a proxy or NAT

I Still fairly simple and small

I Cons

I Data may be left on some sockets

I Can be timing sensitive

I More complicated on windows (ioctlsocket, etc)

Part III

Building a Nop Sled

Nop sleds, what and why?

I Often (especially on unix) we don’t know exactly were our
payload is

I Nop sleds makes the target we are trying to hit bigger

I The bigger the nop sled, the better the brute force

Improved shellcode structure

[nop sled][payload]

I The nop sled slides into the payload

I The payload does stuff

Improved shellcode structure

[nop sled][payload]
I The nop sled slides into the payload

I The payload does stuff

Multibyte Nop Sled Concept

I Optyx released multibyte nop generator at Interz0ne 1

I Generates instructions 1 to 6 bytes long, and uses 0x66 prefix

I Aligned to 1 byte, land anywhere, end up at the final target

I Builds the sled from back to front

I Prepends to the sled 1 byte at a time

I Generates a random byte and checks against tables

I Is the instruction length too long?

I Is it a valid instruction?

I Does it have any bad bytes?

I Does it modify restricted registers?

Multibyte Nop Sled Concept

I Optyx released multibyte nop generator at Interz0ne 1

I Generates instructions 1 to 6 bytes long, and uses 0x66 prefix

I Aligned to 1 byte, land anywhere, end up at the final target

I Builds the sled from back to front

I Prepends to the sled 1 byte at a time

I Generates a random byte and checks against tables

I Is the instruction length too long?

I Is it a valid instruction?

I Does it have any bad bytes?

I Does it modify restricted registers?

Multibyte Nop Sled Concept

I Optyx released multibyte nop generator at Interz0ne 1

I Generates instructions 1 to 6 bytes long, and uses 0x66 prefix

I Aligned to 1 byte, land anywhere, end up at the final target

I Builds the sled from back to front

I Prepends to the sled 1 byte at a time

I Generates a random byte and checks against tables

I Is the instruction length too long?

I Is it a valid instruction?

I Does it have any bad bytes?

I Does it modify restricted registers?

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

Backwardz

bb b0 bf 2c b6 27 67 2F 4A 1b f9 -- shellcode
| | | | | | | | | | | ... stc
| | | | | | | | | |____^ . sbb edi,ecx
| | | | | | | | | dec edx
| | | | | | | | das
| | | | | | |____^ a16 das
| | | | | | daa
| | | | |____^ mov dh, 0x27
| | | |____^ sub al, 0xb6
| | |_____________^ mov edi, 0x6727b62c
| |____^ mov al, 0xbf
|_____________^ mov ebx, 0xb62cbfb0

OptyNop2 Implementation

I Generate random byte and check against tables

I Inefficent, hard to get even distributions

I Generate random byte and check against disassembler

I Need a good disassembler

I Same problems as tables

I Precompiled state transition tables

I Previous byte: 0x90 -> {0x04, 1, EAX} ... # add al,0x90

I Fairly language independent, C version 100 lines

I Very fast, simple, deterministic

I Allows for different scoring systems, recursion...

I Can’t support multibyte opcodes, escape groups, etc

I Tables are pretty large, about 124k

OptyNop2 Implementation

I Generate random byte and check against tables

I Inefficent, hard to get even distributions

I Generate random byte and check against disassembler

I Need a good disassembler

I Same problems as tables

I Precompiled state transition tables

I Previous byte: 0x90 -> {0x04, 1, EAX} ... # add al,0x90

I Fairly language independent, C version 100 lines

I Very fast, simple, deterministic

I Allows for different scoring systems, recursion...

I Can’t support multibyte opcodes, escape groups, etc

I Tables are pretty large, about 124k

OptyNop2 Implementation

I Generate random byte and check against tables

I Inefficent, hard to get even distributions

I Generate random byte and check against disassembler

I Need a good disassembler

I Same problems as tables

I Precompiled state transition tables

I Previous byte: 0x90 -> {0x04, 1, EAX} ... # add al,0x90

I Fairly language independent, C version 100 lines

I Very fast, simple, deterministic

I Allows for different scoring systems, recursion...

I Can’t support multibyte opcodes, escape groups, etc

I Tables are pretty large, about 124k

OptyNop2 Implementation

I Generate random byte and check against tables

I Inefficent, hard to get even distributions

I Generate random byte and check against disassembler

I Need a good disassembler

I Same problems as tables

I Precompiled state transition tables

I Previous byte: 0x90 -> {0x04, 1, EAX} ... # add al,0x90

I Fairly language independent, C version 100 lines

I Very fast, simple, deterministic

I Allows for different scoring systems, recursion...

I Can’t support multibyte opcodes, escape groups, etc

I Tables are pretty large, about 124k

OptyNop2 Implementation

I Generate random byte and check against tables

I Inefficent, hard to get even distributions

I Generate random byte and check against disassembler

I Need a good disassembler

I Same problems as tables

I Precompiled state transition tables

I Previous byte: 0x90 -> {0x04, 1, EAX} ... # add al,0x90

I Fairly language independent, C version 100 lines

I Very fast, simple, deterministic

I Allows for different scoring systems, recursion...

I Can’t support multibyte opcodes, escape groups, etc

I Tables are pretty large, about 124k

OptyNop2 Output

$./waka 1000 4 5 | ndisasm -u - | head -700 | tail -20
000003B6 05419F40D4 add eax,0xd4409f41
000003BB 711C jno 0x3d9
000003BD 9B wait
000003BE 2C98 sub al,0x98
000003C0 37 aaa
000003C1 24A8 and al,0xa8
000003C3 27 daa
000003C4 E00D loopne 0x3d3
000003C6 6692 xchg ax,dx
000003C8 2F das
000003C9 49 dec ecx
000003CA B34A mov bl,0x4a
000003CC F5 cmc
000003CD BA4B257715 mov edx,0x1577254b
000003D2 700C jo 0x3e0
000003D4 C0D6B0 rcl dh,0xb0
000003D7 A9FD469342 test eax,0x429346fd
000003DC 67BBB191B23D a16 mov ebx,0x3db291b1
000003E2 1D9938FCB6 sbb eax,0xb6fc3899
000003E7 43 inc ebx

ADMmutate Distribution - 1

total: 6000
uniq: 52

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
20 00 00 00 00 00 00 00 6e 00 00 00 00 00 00 00 76
30 00 00 00 00 00 00 00 87 00 00 00 00 00 00 00 6a
40 6b 72 6a 68 74 66 77 6f 6d 74 6c 77 70 74 58 72
50 6a 67 71 70 7b 74 76 7c 70 7c 6b 78 00 6e 56 64
60 71 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90 00 89 6c 78 00 74 72 df 7a 79 00 56 82 00 76 77
a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
f0 00 00 00 00 00 7c 00 00 71 7f 00 00 69 00 00 00

ADMmutate Distribution - 2

total: 6000
uniq: 52

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
20 00 00 00 00 00 00 00 64 00 00 00 00 00 00 00 6f
30 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 74
40 7f 6b 6f 7b 79 72 75 73 76 58 6f 7a 6c 78 7a 7e
50 71 6d 65 75 7f 72 7b 72 71 77 6d 64 00 71 7c 64
60 73 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
90 00 6b 79 87 00 74 74 e8 6b 68 00 76 5b 00 6d 72
a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
f0 00 00 00 00 00 75 00 00 57 6b 00 00 6f 00 00 00

OptyNop2 Distribution - 1

total: 6000
uniq: 141

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 00 12 12 12 39 39 00 00 12 11 11 11 39 39 00 00
10 12 12 12 11 39 39 00 00 12 12 12 12 39 39 00 00
20 12 11 12 12 39 39 00 39 12 12 11 12 39 39 00 39
30 11 11 12 12 39 39 00 39 11 11 12 11 39 39 00 39
40 39 39 39 3a 00 00 39 39 39 39 39 39 00 00 39 3a
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 39 39 00 12 00 11 00 00 00 00
70 3a 39 39 39 39 39 39 39 39 39 39 39 3a 39 39 39
80 12 12 00 12 12 11 11 12 12 12 00 00 00 00 00 00
90 39 39 39 3a 00 00 39 39 39 39 00 39 00 00 00 39
a0 00 00 00 00 00 00 00 00 3a 39 00 00 00 00 00 00
b0 3a 39 39 39 39 3a 39 39 39 39 39 39 00 00 3a 39
c0 12 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0 12 12 12 11 39 39 39 00 00 00 00 00 00 00 00 00
e0 39 39 39 39 00 00 00 00 00 00 00 39 00 00 00 00
f0 00 00 00 00 00 39 11 11 3a 39 00 00 39 39 11 11

OptyNop2 Distribution - 2

total: 6000
uniq: 141

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 00 12 11 11 39 3a 00 00 11 12 12 12 39 39 00 00
10 11 11 11 11 39 39 00 00 11 12 11 11 39 39 00 00
20 12 12 12 12 39 3a 00 3a 12 11 12 12 39 39 00 39
30 11 12 12 11 39 3a 00 3a 12 12 12 12 39 39 00 39
40 39 3a 3a 39 00 00 39 39 39 39 39 3a 00 00 39 39
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 00 00 00 00 00 00 39 39 00 12 00 11 00 00 00 00
70 39 39 39 39 3a 39 39 39 39 39 39 39 39 3a 39 39
80 11 12 00 12 11 12 11 12 12 12 00 00 00 00 00 00
90 39 39 39 3a 00 00 39 3a 3a 3a 00 39 00 00 00 39
a0 00 00 00 00 00 00 00 00 39 39 00 00 00 00 00 00
b0 39 39 39 39 39 39 39 39 39 3a 39 39 00 00 39 39
c0 11 11 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0 12 12 11 11 39 39 3a 00 00 00 00 00 00 00 00 00
e0 3a 39 39 39 00 00 00 00 00 00 00 39 00 00 00 00
f0 00 00 00 00 00 39 11 12 39 39 00 00 39 39 10 10

ADMmutate and optyx-mutate Gzip’d

ADMmutate

$ time ./nops 1000000| gzip -v >/dev/null
27.3%

real 0m0.241s

optyx’s interz0ne mutate

$ time ./driver nop 1000000 | gzip -v >/dev/null
29.7%

real 0m0.467s

OptyNop2 Gzip’d

C version, save ESP and EBP

$ time ./waka 1000000 4 5 | gzip -v >/dev/null
12.2%

real 0m11.900s

save just ESP

$ time ./waka 1000000 4 | gzip -v >/dev/null
11.7%

real 0m11.277s

save nothing (good way to crash process)

$ time ./waka 1000000 | gzip -v >/dev/null
8.3%

real 0m12.404s

Conclusion

I Benefits

I Handles restricted bytes and registers

I More versatile sled generation (nop stuffing, etc)

I Implementation and theory are simple

I Possible Improvements

I Support processor flags (nop stuffing)

I Support 2-byte opcodes and escape groups

I Improved byte scoring systems and look-ahead

I Output according to a given byte distribution

I Reduce the table sizes, memory usage

Conclusion

I Benefits

I Handles restricted bytes and registers

I More versatile sled generation (nop stuffing, etc)

I Implementation and theory are simple

I Possible Improvements

I Support processor flags (nop stuffing)

I Support 2-byte opcodes and escape groups

I Improved byte scoring systems and look-ahead

I Output according to a given byte distribution

I Reduce the table sizes, memory usage

Part IV

Encoders

Encoder, what and why?

I We need to avoid bad characters

I Now we don’t need to worry about this in the payload

I Encodes the payload to a different set of characters

I Common methods: byte/word/dword xor, add, etc

I Prepends a decoder before the decoded data

I Decoder loops and decodes the payload

Encoder, what and why?

I We need to avoid bad characters

I Now we don’t need to worry about this in the payload

I Encodes the payload to a different set of characters

I Common methods: byte/word/dword xor, add, etc

I Prepends a decoder before the decoded data

I Decoder loops and decodes the payload

Improved shellcode structure

[nop sled][encoder (payload)]
I The nop sled slides into the decoder

I The decoder decodes the payload

I The payload does stuff

The simplest, call, 6 bytes

00000000 E800000000 call 0x5
00000005 58 pop eax

I Call pushes EIP of the pop instruction on the stack

I pop puts it in a register

The simplest, call, 6 bytes

00000000 E800000000 call 0x5
00000005 58 pop eax

I Call pushes EIP of the pop instruction on the stack

I pop puts it in a register

jmp / call, 8 bytes

I You often need to avoid having 0x00

00000000 EB02 jmp short 0x4
00000002 58 pop eax
00000003 90 nop
00000004 E8F9FFFFFF call 0x2

I Jmp to a call instruction

I The call is now backwards (negative)

jmp / call, 8 bytes

I You often need to avoid having 0x00

00000000 EB02 jmp short 0x4
00000002 58 pop eax
00000003 90 nop
00000004 E8F9FFFFFF call 0x2

I Jmp to a call instruction

I The call is now backwards (negative)

jmp / call, 8 bytes

I You often need to avoid having 0x00

00000000 EB02 jmp short 0x4
00000002 58 pop eax
00000003 90 nop
00000004 E8F9FFFFFF call 0x2

I Jmp to a call instruction

I The call is now backwards (negative)

FPU Get EIP, 7 bytes

I Sometimes you want to avoid 0xff

I Noir’s Get EIP

00000000 D9EE fldz
00000002 D97424F4 fnstenv [esp-0xc]
00000006 58 pop eax

I fnsetenv will get EIP of last fpu instruction

I It allows for much more permutations

I Also smaller than jmp/call

FPU Get EIP, 7 bytes

I Sometimes you want to avoid 0xff

I Noir’s Get EIP

00000000 D9EE fldz
00000002 D97424F4 fnstenv [esp-0xc]
00000006 58 pop eax

I fnsetenv will get EIP of last fpu instruction

I It allows for much more permutations

I Also smaller than jmp/call

FPU Get EIP, 7 bytes

I Sometimes you want to avoid 0xff

I Noir’s Get EIP

00000000 D9EE fldz
00000002 D97424F4 fnstenv [esp-0xc]
00000006 58 pop eax

I fnsetenv will get EIP of last fpu instruction

I It allows for much more permutations

I Also smaller than jmp/call

Call $+4, 7 bytes

I The coolest of them all

I Gera & CoreST

00000000 E8FFFFFFFF call 0x4
00000005 C3 ret
00000006 58 pop eax

00000004 FFC3 inc ebx
00000006 58 pop eax

I Call is relative to the end of it’s instruction

I Call jmps into itself, decodes an 0xff instruction

I can inc, dec, or push reg

Call $+4, 7 bytes

I The coolest of them all

I Gera & CoreST

00000000 E8FFFFFFFF call 0x4
00000005 C3 ret
00000006 58 pop eax

00000004 FFC3 inc ebx
00000006 58 pop eax

I Call is relative to the end of it’s instruction

I Call jmps into itself, decodes an 0xff instruction

I can inc, dec, or push reg

Call $+4, 7 bytes

I The coolest of them all

I Gera & CoreST

00000000 E8FFFFFFFF call 0x4
00000005 C3 ret
00000006 58 pop eax

00000004 FFC3 inc ebx
00000006 58 pop eax

I Call is relative to the end of it’s instruction

I Call jmps into itself, decodes an 0xff instruction

I can inc, dec, or push reg

SEH, bigger

I People really want a alpha numeric get eip

I Well, so far, only found a way for windows

I Link in exception handler, cause exception

I Get EIP from the CONTEXT record

SEH, bigger

I People really want a alpha numeric get eip

I Well, so far, only found a way for windows

I Link in exception handler, cause exception

I Get EIP from the CONTEXT record

CLET

I Generates permutations of decoder stubs

I Inserts reversing instructions, nop equivalents

I All decoders are C code to generate themselves

I Pros:

I Well thought out - analyzed attacks against NIDS

I Mathematica files output, mathy backing

I Specturm analysis - push sled to byte distribution

I Cons:

I Complicated system, really hard to build upon

I Decoder generation isn’t that great

I Making compromises for size/robustness

CLET

I Generates permutations of decoder stubs

I Inserts reversing instructions, nop equivalents

I All decoders are C code to generate themselves

I Pros:

I Well thought out - analyzed attacks against NIDS

I Mathematica files output, mathy backing

I Specturm analysis - push sled to byte distribution

I Cons:

I Complicated system, really hard to build upon

I Decoder generation isn’t that great

I Making compromises for size/robustness

CLET

I Generates permutations of decoder stubs

I Inserts reversing instructions, nop equivalents

I All decoders are C code to generate themselves

I Pros:

I Well thought out - analyzed attacks against NIDS

I Mathematica files output, mathy backing

I Specturm analysis - push sled to byte distribution

I Cons:

I Complicated system, really hard to build upon

I Decoder generation isn’t that great

I Making compromises for size/robustness

Metasploit Pex::Poly

I "Conservative Polymorphism"

I Uses the inherit variability in shellcode

I Pros:

I Polymorphizing code is pretty easy

I No size or functionality compromises

I Bad character and register avoidence

I Cons:

I Less thought out, NIDS attacks not deeply analyzed

I Hard to push to arbitrary byte distribution

I Less "polymorphism", more restrictions

Metasploit Pex::Poly

I "Conservative Polymorphism"

I Uses the inherit variability in shellcode

I Pros:

I Polymorphizing code is pretty easy

I No size or functionality compromises

I Bad character and register avoidence

I Cons:

I Less thought out, NIDS attacks not deeply analyzed

I Hard to push to arbitrary byte distribution

I Less "polymorphism", more restrictions

Metasploit Pex::Poly

I "Conservative Polymorphism"

I Uses the inherit variability in shellcode

I Pros:

I Polymorphizing code is pretty easy

I No size or functionality compromises

I Bad character and register avoidence

I Cons:

I Less thought out, NIDS attacks not deeply analyzed

I Hard to push to arbitrary byte distribution

I Less "polymorphism", more restrictions

Implementation - Pex::Poly

I "Blocks" are dependency graph nodes

I "Blocks" consist of 0 or more possibilities

I Register pool assignment (mov reg1, reg2)

I Gained robustness as a nice effect

I Current implementation

I Current system is a bit ugly

I Hard without writing a real assembler

I Want it to be fairly fast

I Pex::Poly has 3 phases

I Dependency iteration and block selection

I Instruction offset calculations

I Instruction register assignment

Implementation - Pex::Poly

I "Blocks" are dependency graph nodes

I "Blocks" consist of 0 or more possibilities

I Register pool assignment (mov reg1, reg2)

I Gained robustness as a nice effect

I Current implementation

I Current system is a bit ugly

I Hard without writing a real assembler

I Want it to be fairly fast

I Pex::Poly has 3 phases

I Dependency iteration and block selection

I Instruction offset calculations

I Instruction register assignment

Implementation - Pex::Poly

I "Blocks" are dependency graph nodes

I "Blocks" consist of 0 or more possibilities

I Register pool assignment (mov reg1, reg2)

I Gained robustness as a nice effect

I Current implementation

I Current system is a bit ugly

I Hard without writing a real assembler

I Want it to be fairly fast

I Pex::Poly has 3 phases

I Dependency iteration and block selection

I Instruction offset calculations

I Instruction register assignment

Shikata Ga Nai

I It’s too much work to polyize every payload

I Created one decent "polymorphic" encoder

I Noir’s FPU geteip technique

I Approximately 1.3 million permutations

I Additive feedback xor, encodes it’s own end

I 27 bytes for the stub, 4 key, 4 encoded

Shikata Ga Nai

I It’s too much work to polyize every payload

I Created one decent "polymorphic" encoder

I Noir’s FPU geteip technique

I Approximately 1.3 million permutations

I Additive feedback xor, encodes it’s own end

I 27 bytes for the stub, 4 key, 4 encoded

Shikata dependency iteration

Shikata dependency iteration

Shikata dependency iteration

Shikata dependency iteration

Shikata dependency iteration

Shikata dependency iteration

Shikata dependency iteration

Shikata dependency iteration

Shikata dependency iteration

Example output

00000000 BB6E887A69 mov ebx,0x697a886e
00000005 DDC4 ffree st4
00000007 D97424F4 fnstenv [esp-0xc]
0000000B 58 pop eax
0000000C 29C9 sub ecx,ecx
0000000E B101 mov cl,0x1
00000010 83E8FC sub eax,byte -0x4
00000013 31580E xor [eax+0xe],ebx
00000016 03580E add ebx,[eax+0xe]
00000019 E2F5 loop 0x10

Example output

00000000 DBC1 fcmovnb st1
00000002 31C9 xor ecx,ecx
00000004 B101 mov cl,0x1
00000006 D97424F4 fnstenv [esp-0xc]
0000000A 5B pop ebx
0000000B BAC8E2C8F8 mov edx,0xf8c8e2c8
00000010 83C304 add ebx,byte +0x4
00000013 315313 xor [ebx+0x13],edx
00000016 035313 add edx,[ebx+0x13]
00000019 E2F5 loop 0x10

Example output

00000000 BB7B833BB9 mov ebx,0xb93b837b
00000005 DAC0 fcmovb st0
00000007 D97424F4 fnstenv [esp-0xc]
0000000B 2BC9 sub ecx,ecx
0000000D 5E pop esi
0000000E B101 mov cl,0x1
00000010 315E12 xor [esi+0x12],ebx
00000013 83C604 add esi,byte +0x4
00000016 03 db 0x03
00000017 25 db 0x25
00000018 8D db 0x8D
00000019 D9 db 0xD9
0000001A 4C dec esp

Part V

Egg Hunters

Egg Hunting, what and why?

I Sometimes we have very small size constraints

I But we can often put data somewhere else

I We somehow put our code in memory (tagged)

I We execute the egg hunter as our shellcode

I An egg hunter searches for and executes more code

I We need to validate a memory region before we search it

Egg Hunting, what and why?

I Sometimes we have very small size constraints

I But we can often put data somewhere else

I We somehow put our code in memory (tagged)

I We execute the egg hunter as our shellcode

I An egg hunter searches for and executes more code

I We need to validate a memory region before we search it

Egg Hunting, what and why?

I Sometimes we have very small size constraints

I But we can often put data somewhere else

I We somehow put our code in memory (tagged)

I We execute the egg hunter as our shellcode

I An egg hunter searches for and executes more code

I We need to validate a memory region before we search it

Improved shellcode structure

[nop sled][egg hunter] - [encoder (payload)]
I The nop sled slides into the decoder

I The decoder decodes the payload

I The payload does stuff

Syscall Based Egghunting

I Linux

I Linux is pretty easy

I Use access() call to validate memory, search

I Windows

I This is a harder

I Try to use the Native API (syscalls)

I Windows system calls are not meant to be static

I Parse and build tables of all windows syscalls

I Find a static system call, or collection that will work

I NtAccessCheckAndAuditAlarm works

I Need special privileges for to work normally

I It validates the pointer before it validates rights

Syscall Based Egghunting

I Linux

I Linux is pretty easy

I Use access() call to validate memory, search

I Windows

I This is a harder

I Try to use the Native API (syscalls)

I Windows system calls are not meant to be static

I Parse and build tables of all windows syscalls

I Find a static system call, or collection that will work

I NtAccessCheckAndAuditAlarm works

I Need special privileges for to work normally

I It validates the pointer before it validates rights

Syscall Based Egghunting

I Linux

I Linux is pretty easy

I Use access() call to validate memory, search

I Windows

I This is a harder

I Try to use the Native API (syscalls)

I Windows system calls are not meant to be static

I Parse and build tables of all windows syscalls

I Find a static system call, or collection that will work

I NtAccessCheckAndAuditAlarm works

I Need special privileges for to work normally

I It validates the pointer before it validates rights

Windows egghunt example

// Skape’s syscall egghunter

// Address to check in edx
push 0x2 // Push NtAccessCheckAndAuditAlarm
pop eax // Pop into eax
int 0x2e // Perform the syscall
cmp al, 0x05 // Did we get 0xc0000005 (ACCESS_VIOLATION) ?

Part VI

Staging

Staging, what and why?

I We often have size constraints

I Staging abstracts the connection mechanism from the payload

I A stager establishes a connection to the attacker

I The stager reads in more code from the connection

I The stager executes the stage passing the connection

Staging, what and why?

I We often have size constraints

I Staging abstracts the connection mechanism from the payload

I A stager establishes a connection to the attacker

I The stager reads in more code from the connection

I The stager executes the stage passing the connection

Improved shellcode structure

[nop sled][encoder (stager)] - [stage]
I The nop sled slides into the decoder

I The decoder decodes the payload

I The payload does stuff

Size issues

I Linux

I Pretty easy, just use syscalls, etc

I Windows

I As you saw, it would be hard to use syscalls

I We need to use the Windows APIs (ws2_32.dll...)

I But function resolving takes a ton of code!

I What in the world can we do!?

Size issues

I Linux

I Pretty easy, just use syscalls, etc

I Windows

I As you saw, it would be hard to use syscalls

I We need to use the Windows APIs (ws2_32.dll...)

I But function resolving takes a ton of code!

I What in the world can we do!?

Size issues

I Linux

I Pretty easy, just use syscalls, etc

I Windows

I As you saw, it would be hard to use syscalls

I We need to use the Windows APIs (ws2_32.dll...)

I But function resolving takes a ton of code!

I What in the world can we do!?

ws2_32.dll static ordinals

I ws2_32.dll is one of the few libraries with static ordinals

I However, not all functions have static ordinals

I Cannot call WSASocket() for example, must use socket()

I This means we need a pipe based shell stage :(

I Find ws2_32.dll base

I Resolve our functions by static ordinals

I 93 byte reverse connect shellcodez y0!

ws2_32.dll static ordinals

I ws2_32.dll is one of the few libraries with static ordinals

I However, not all functions have static ordinals

I Cannot call WSASocket() for example, must use socket()

I This means we need a pipe based shell stage :(

I Find ws2_32.dll base

I Resolve our functions by static ordinals

I 93 byte reverse connect shellcodez y0!

ws2_32.dll static ordinals

I ws2_32.dll is one of the few libraries with static ordinals

I However, not all functions have static ordinals

I Cannot call WSASocket() for example, must use socket()

I This means we need a pipe based shell stage :(

I Find ws2_32.dll base

I Resolve our functions by static ordinals

I 93 byte reverse connect shellcodez y0!

Part VII

Questions?

	Introduction
	Shellcode
	Building a Nop Sled
	Introduction
	Tekneek
	Implementation
	Analysis
	Conclusion

	Encoders
	Get EIP
	Conservative "Polymorphism"
	CLET
	Pex::Poly
	Shikata Ga Nai

	Egg Hunters
	Staging
	Questions?

