
The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved1

The Dark Side of Winsock

By Jonathan Levin

RECon 2005, Montreal
Http://www.securicy.net/Talks/spi.pdf

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved2

Introduction & Nomenclature
You probably already know this but…

IP communications are implemented using the socket API.

A socket is a transport endpoint, used to send/receive data.

The application reads from/writes to the socket, much as it
would to any other file descriptor

The OS transparently fragments/encapsulates the data.

This talk assumes you’ve seen sockets in action before. Be it in Stevens’
legendary tomes (TCP/IP Illustrated, UNIX Network Programming..) or
elsewhere.

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved3

Introduction & Nomenclature
You probably already know this too, but…

In UNIX, sockets follow the Berkeley (BSD) model closely

Windows adapted the BSD socket API into WinSock:

Winsock 1.x was a close adaptation of the BSD API
Winsock 2.x added new features

- Asynchronous calls & callbacks

- Overlapped I/O

- The layered service provider (LSP) architecture

(more)

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved4

Introduction & Nomenclature
However, not too many people know that…

Winsock’s Layered Service Provider architecture provides
powerful hooking functionality enabling interception,
eavesdropping or rerouting of almost all IP based traffic
in windows platforms.

(more)

This talk will focus on the LSP, presenting it’s useful
(legitimate) applications, and even more useful (but less
legitimate) ones.

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved5

Winsock 2 Architecture
Windows is designed in a scalable, multi-layered
architecture:

The Winsock 2 API provides the main The Winsock 2 API provides the main
entry point for applications. The entry point for applications. The ““bodybody””
is responsible for multiplexing sockets.is responsible for multiplexing sockets.

The Transport Driver Interface (TDI) bridgesThe Transport Driver Interface (TDI) bridges
calls to the levels belowcalls to the levels below

The Network Driver Interface Specification The Network Driver Interface Specification
(NDIS) serves to abstract the hardware, so(NDIS) serves to abstract the hardware, so
Multiple or different interfaces may be usedMultiple or different interfaces may be used
simultaneously.simultaneously.

NetBT

TDI

NDIS

Hardware

W
K
S

S
R
V

Winsock 2
API

NetBT (The NetBIOS over TCP/IP interface) is “reserved”, and is used by
windows’ Workstation and Server services (file and print sharing) to bypass
“traditional” winsock calls (and is out of our scope anyway).

All other (user mode) applications use winsock to communicate over the network.

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved6

NetBT

TDI

NDIS

Hardware

W
K
S

S
R
V

Winsock 2
API

Winsock 2 Architecture

Transport SPI NameSpace SPI

WSock2_32.DLL

Winsock 2 API

Winsock 2 SPI

Base
Prov n

Base
Prov 1 Prov nProv

……

While exporting the API, Winsock itself is a client of the SPI ,
or service provider interface, exported to it by the
miscellaneous service providers installed below it.

Winsock SPI

Providers may be Providers may be
classified as either:classified as either:

--TRANSPORTTRANSPORT
-- NAMESPACE NAMESPACE

The Winsock DLL itself serves as a multiplexer for two types of providers:

- Transport Providers: Protocol stacks, that setup connections, and transfer
data on the network, possibly supplying features such as QoS, error handling,
etc.
Windows 2000 ships with two transports:

rsvpsp.dll – implementing RSVP QoS
mswsock.dll – implementing the Winsock core.

The provider is chosen upon socket creation, by the parameters to the Socket()
(or WSASocket()) call.

- NameSpace Providers: Naming services – suppliers of name resolution
mechanisms (e.g. implementations of getXXXbyYYY functions).
Winsock 2000 supports the TCP/IP, NT DS and NLA namespaces.

There can be more than one provider of any type. Winsock accesses the
providers by their interface, which is the Service Provider Interface, or SPI.

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved7

Winsock 2 Architecture
Export Goods (ws2_32.dll)

Winsock SPI

Winsock provides a potent API for installing custom providers, both namespace and
transport. In ws2spi.h:

int WSPAPI WSCInstallProvider(

IN LPGUID lpProviderId,

IN const WCHAR FAR * lpszProviderDllPath,

IN const LPWSAPROTOCOL_INFOW lpProtocolInfoList,

IN DWORD dwNumberOfEntries,

OUT LPINT lpErrno

);

int WSPAPI WSCDeinstallProvider(

IN LPGUID lpProviderId,

OUT LPINT lpErrno

);

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved8

And the namespace ones:

INT WSPAPI WSCInstallNameSpace (

IN LPWSTR lpszIdentifier,

IN LPWSTR lpszPathName,

IN DWORD dwNameSpace,

IN DWORD dwVersion,

IN LPGUID lpProviderId

);

INT WSPAPI WSCUnInstallNameSpace (

IN LPGUID lpProviderId

);

The different header definitions (int vs. INT, and “Deinstall” vs. “Uninstall”) are
like that in the original ws2spi.h.

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved9

Winsock 2 Providers
sporder.exe

The sporder DLL and EXE,
from the platform SDK,
enable enumeration of the
various providers.

Winsock SPI

The above is a screen shot of the “SPOrder.EXE”, provided as part of the
platform SDK. This small utility displays the service providers registered under
winsock. Note both classes – “Service Providers” (i.e. Transport Service
Providers) and “Name Resolution” (Namespace Service Providers).

Note each provider structure is quite detailed. The one shown here is for the
AF_INET (0x02) address family protocol # 0x06 – better known as TCP.

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved10

Sporder.dll

SPOrder.dll is a small DLL with insidious capabilities – it allows the reordering of service
providers, by exporting two functions: WSCWriteNameSpaceOrder, and
WSCWriteProviderOrder. And, as one can deduce by the names – these rewrite the order of the
layered service providers – namespace and transport, respectively. A further look at the import
table sheds some light as to how that’s done – using the familiar ADVAPI32.DLL registry
functions.

One needn’t look hard to understand how to use these functions - These functions are part of the
Platform SDK, and are defined in sporder.h:

int
WSPAPI
WSCWriteProviderOrder (

IN LPDWORD lpwdCatalogEntryId,
IN DWORD dwNumberOfEntries
);

int
WSPAPI
WSCWriteNameSpaceOrder (

IN LPGUID lpProviderId,
IN DWORD dwNumberOfEntries
);

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved11

Winsock 2 Providers
Transport providers may be enhanced by LAYERING
additional providers, and chaining them.

The base service provider
still handles the actual
implementation (i.e. sending
data, etc.) but layered SPs
may be used for QoS,
encryption, security, etc.

So long as all providers in
a chain support SPI , any
number of providers
may be chained.

Transport SPI NameSpace SPI

WSock2_32.DLL

Winsock 2 API

Winsock 2 SPI

LSPBase
Prov 1 Prov nProv

……
Base

Prov 1

SPI

Winsock SPI

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved12

Winsock 2 Providers
Enumerating providers

Winsock SPI

int WSPAPI WSCEnumProtocols (
IN LPINT lpiProtocols,
OUT LPWSAPROTOCOL_INFOW lpProtocolBuffer,
IN OUT LPDWORD lpdwBufferLength,
OUT LPINT lpErrno

);

Usage: Retrieve information about available transport protocols.

Parameters:

lpiProtocols – NULL term. Array of iProtocols to enum, or NULL.
lpProtocolBuffer – buffer of WSAPROTOCOL_INFOW structs
lpdwBufferLength – in/out parameter specifying sizeof..
lpErrNo – Out parameter, holding error code, if any.

Returns: Number of enumerated protocols.

ws2spi.h

The following example demonstrates enumeration of the layered service
providers, and the WSAPROTOCOL_INFOW structs. Essentially, this is a CLI
version of sporder.exe from the platform SDK.

Note: it gets the job done. It’s not an example of pretty or “right” coding.

/**
* Winsock 2 API Protocol Enumerator - By JL@HisOwn.com
* (Standards disclaimers apply)
*/

#ifndef WIN32_LEAN_AND_MEAN

#define WIN32_LEAN_AND_MEAN

#endif

#define WINSOCK_API_LINKAGE

#include <winsock2.h>

#include <ws2spi.h>

#include <wtypes.h>

#include <assert.h>

#include <winnt.h>

#include <stdlib.h>

#include <stdio.h>

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved13

char *ExpandServiceFlags(DWORD serviceFlags)
{

/* A little utility function to make sense of all those bit flags */
/* The following code leaks. Yeah, I know.. Go find Buffer 0v3rfl0w$:-) */

char *serviceFlagsText = (char *) malloc (2048);
memset (serviceFlagsText, '\0', 2048);
char *strip_comma;
/* Hey - it's only for printing and demo purposes.. */
if (serviceFlags & XP1_CONNECTIONLESS)
{
strcat (serviceFlagsText, "Connectionless, ");

}
if (serviceFlags & XP1_GUARANTEED_ORDER)
{
strcat (serviceFlagsText, "Guaranteed Order, ");

}
if (serviceFlags & XP1_GUARANTEED_DELIVERY)
{
strcat (serviceFlagsText, "Message Oriented, ");

}
if (serviceFlags & XP1_MESSAGE_ORIENTED)
{
strcat (serviceFlagsText, "Message Oriented, ");

}
if (serviceFlags & XP1_CONNECT_DATA)
{
strcat (serviceFlagsText, "Connect Data, ");

}
if (serviceFlags & XP1_DISCONNECT_DATA)
{
strcat (serviceFlagsText, "Disconnect Data, ");

}
if (serviceFlags & XP1_SUPPORT_BROADCAST)
{
strcat (serviceFlagsText, "Broadcast Supported, ");

}
if (serviceFlags & XP1_EXPEDITED_DATA)
{
strcat (serviceFlagsText, "Urgent Data, ");

}
if (serviceFlags & XP1_QOS_SUPPORTED)
{
strcat (serviceFlagsText, "QoS supported, ");

}
/*
* While we're quick and dirty, let's get as dirty as possible..
*/
strip_comma = strrchr(serviceFlagsText,',');

if (strip_comma)
*strip_comma = '\0';

return (serviceFlagsText);
}

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved14

void PrintProtocolInfo (LPWSAPROTOCOL_INFOW prot)
{

wprintf (L"Protocol Name: %s\n",prot->szProtocol); /* #%^@$! UNICODE...*/
printf ("\tServiceFlags1: %d (%s)\n",

prot->dwServiceFlags1,
ExpandServiceFlags(prot->dwServiceFlags1));

printf ("\tProvider Flags: %d\n",prot->dwProviderFlags);
printf ("\tNetwork Byte Order: %s\n",
(prot->iNetworkByteOrder == BIGENDIAN) ? "Big Endian" : "Little Endian");
printf ("\tVersion: %d\n", prot->iVersion);
printf ("\tAddress Family: %d\n", prot->iAddressFamily);
printf ("\tSocket Type: ");
switch (prot->iSocketType)
{
case SOCK_STREAM:

printf ("STREAM\n");
break;

case SOCK_DGRAM:
printf ("DGRAM\n");
break;

case SOCK_RAW:
printf ("RAW\n");
break;

default:
printf (" Some other type\n");

}
printf ("\tProtocol: ");

switch (prot->iProtocol)
{
case IPPROTO_TCP:

printf ("TCP/IP\n");
break;

case IPPROTO_UDP:
printf ("UDP/IP\n");
break;

default:
printf ("some other protocol\n");

}
}

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved15

And finally, the main:

int _cdecl main(int argc, char** argv)
{

LPWSAPROTOCOL_INFOW bufProtocolInfo = NULL;
DWORD dwSize = 0;
INT dwError;
INT iNumProt;

/*
* Enum Protocols - First, obtain size required
*/

printf("Sample program to enumerate Protocols\n");
WSCEnumProtocols(NULL, // lpiProtocols

bufProtocolInfo, // lpProtocolBuffer
& dwSize, // lpdwBufferLength
& dwError); // lpErrno

bufProtocolInfo = (LPWSAPROTOCOL_INFOW) malloc(dwSize);

if (!bufProtocolInfo){
fprintf (stderr,"SHOOT! Can't MALLOC!!\n");
exit(1);

}

/* Now, Enum */
iNumProt = WSCEnumProtocols(

NULL, // lpiProtocols
bufProtocolInfo, // lpProtocolBuffer
&dwSize, // lpdwBufferLength
&dwError);

if (SOCKET_ERROR == iNumProt)
{

fprintf(stderr,"Darn! Can't Enum!!\n");
exit(1);

}

printf("%d Protocols detected:\n", iNumProt);
for (int i=0;

i < iNumProt;
i++)

{
PrintProtocolInfo(&bufProtocolInfo[i]);
printf ("-------\n");

}

printf("Done");
return(0);

}

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved16

Winsock 2 Providers
So you want to build your own LSP?

int WSPStartup (IN WORD wVersionRequested,
OUT LPWSPDATAW lpWSPData,
IN LPWSAPROTOCOL_INFOW lpProtocolInfo,
IN WSPUPCALLTABLE UpcallTable,
OUT LPWSPPROC_TABLE lpProcTable);

Initialize layered service providerUsage:

Parameters:
wVersionRequested – q.v. WSAStartup.
lpWSPData – layered service provider data, you should populate
lpProtocolInfo – protocol details. Useful if hooking multiple protocols
UpcallTable – dispatch table for winsock calls
lpProcTable - our implemented calls.

Returns: No error, hopefully..

Winsock SPI

Start by implementing WSPStartup()

Implementing a Layered Service Provider isn’t as hard as it might seem. Basically, all it takes is to
adhere to a set API, and manipulate some function pointers. Winsock Layered service providers
are implemented as standard DLLs, exporting the WSPStartup() function:

The WSPStartup() is expected to:

- Set the Version info:

(i.e. lpWSPData->wVersion = MAKEWORD(2,2);
lpWSPData->wHighVersion = MAKEWORD(2,2);
wcscpy(lpWSPData->szProtocol, L”My Name”);)

- Save the UpCallTable: for future use

- Populate the lpProcTable to the addresses of the local WSP functions

(e.g. - lpProcTable->lpWSPAccept = WSPAccept;
lpProcTable->lpWSPConnect = WSPConnect;
lpProcTable->lpWSPSend = WSPSend; …)

- Return NO_ERROR

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved17

Winsock 2 Providers
API->SPI Mapping

Most Winsock2 API functions are mapped to corresponding
SPI functions, with the simple rule of WSA* WSP*.

Once a WSA* function is called, Winsock 2 will call the
corresponding WSP function, from the provider chain, in
order.

ALL functionality can be hijacked – getpeerbyname,
setsockopt.. AddresstoString, etc.

Call Upcall table function to enable passthrough.

Winsock SPI

Functions NOT implemented in the SPI:

Event Handling Functions:
WSACreateEvent,
WSACloseEvent,
WSASetEvent,
WSAResetEvent
WSAWaitForMultipleEvents

Naming Services functions:
GetXXXByYYY and their WSAAsync counterparts.
ntohs, ntohl, htonl, htons
inet_XtoY, inet_addr, ...

As well as:
WSAEnumProtocols – Enumerating service providers
WSAIsBlocking,
WSASetBlockingHook,
WSAUnhookBlockingHook

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved18

Winsock 2 Providers
Installing Providers

Finally, call our old friend, WSCInstallProvider():

int WSPAPI WSCInstallProvider(
IN LPGUID lpProviderId,
IN const WCHAR FAR * lpszProviderDllPath,
IN const LPWSAPROTOCOL_INFOW lpProtocolInfoList,
IN DWORD dwNumberOfEntries,
OUT LPINT lpErrno
);

Winsock SPI

ws2spi.h

Reorder using WSCWriteProviderOrder()

Finally, when your service provider is done, install it by an external .exe, like so:
INT InstallProvider(OUT PDWORD CatalogId)
{

WSAPROTOCOL_INFOW proto_info;
int rc, errno;

GUID someGUID = { 0x10241975, 0x0000, 0x0000, 0x0000, 0x1234567890 };

/* populate PROTOCOL_INFO */
memset(&proto_info , ‘\0’, sizeof(proto_info)); /* Tabula Rasa */
proto_info.dwProviderFlags = PFL_HIDDEN; /* :-) */
proto_info.ProviderId = someGUID;
proto_info.ProtocolChain.ChainLen = LAYERED_PROTOCOL;
proto_info.iAddressFamily = AF_INET;
proto_info.iSocketType = SOCK_STREAM;
proto_info.iProtocol = IPPROTO_TCP;
proto_info.iMaxSockAddr = proto_info.iMinSockAddr = 16;
proto_info.iNetworkByteOrder = BIGENDIAN;
proto_info.iSecurityScheme=SECURITY_PROTOCOL_NONE; /* Security? THIS?! HA! */
wcscpy(proto_info.szProtocol, L”Incognito”);
rc = WSCInstallProvider(&LayeredProviderGuid,

L“trojan.dll", // lpszProviderDllPath
&proto_info, // lpProtocolInfoList
1, // dwNumberOfEntries (1 too many..)
&errno); // lpErrno

/* Pass this back to our caller – for reordering.. */
*CatalogId = proto_info.dwCatalogEntryId;
return(rc);

}

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved19

Winsock 2 SPI
Demo

The demo shown is a nearly unmodified version of the
INTC/MSFT source code provided in the platform SDK.

Winsock SPI

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved20

Winsock 2 SPI
The Security Issue

No matter how you code your application – if you use
Winsock, you’re subject to socket hijacking.

Winsock SPI

Lessons to be learned:

Whether you use server or client sockets, an attacker can
intercept your calls and redirect your connections to
where ever he (or she) pleases.

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved21

Winsock 2 SPI
Good Vs. Bad

Possible (lawful goody-goody) uses include:

Winsock SPI

- Implement a user-mode application layer firewall
(rather than work at TDI/NDIS, be socket-aware)

- transparently add encryption to applications
(but then, there’s IPSec)

- Support new protocols
(IPv9, anyone? (RFC1606) (for future use: RFC 1149?))

- Enforce QoS
(s/Q/D)

- Patch content on the fly (q.v. Google Desktop)
(A double edged sword)

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved22

Winsock 2 SPI
Let’s just stick with the BAD

But the MUCH better (chaotic evil) uses include:

Winsock SPI

- Obtain connection statistics, URLs, etc.
(for spyware, statistical purposes, or whatever)

- Eavesdropping (non SSL) connections
(all socket based communication (inc. raw))

- Rerouting connections (i.e. socket hijacking)

The Dark Side has never been so tempting before..

- Patch content on the fly (q.v. Google Desktop)
(for obvious uses)

The Dark Side of Winsock - Lecture Notes

(C) 2005 Jonathan Levin, All Rights Reserved23

The End…

(or perhaps, the beginning?)

Questions/Comments Welcome:
SPI@Securicy.net

