
Protecting binaries

Andrew Griffiths
andrewg@felinemenace.org

Introduction

● This presentation is meant to be useful for people
of all skill levels. Hopefully everyone will get
something out of this presentation.

● This talk focuses on strategies, and mindsets, not
products.

● Technical details will mainly refer to Linux
unless otherwise specified, although the concepts
are portable to other operating systems.

Defence in depth

● Determining the threat model / what problems
you're trying to solve

– Casual copying

– Determining who leaked a copy

– Determined crackers

● Determining what measures will be suitable to
avoid problems, and be feasible to implement

– Code obfuscation

– Watermarking

– Licensing types

Defence in depth (cont)

● Defence requires you to think like an attacker,
and how to best defend them from offence.

● Offensive measures?

– Chang Yusaid: "Knowing the enemy enables you to
take the offensive, knowing yourself enables you to
stand on the defensive." He adds: "Attack is the secret
of defense; defense is the planning of an attack."

● As opposed to just displaying a message when
something has gone bad, wouldn't it be better to
mislead an attacker and waste some of their
time/resources?

Defence in depth (cont)

● Standard
implementations

– Can usually be
analysed separately

– Lends itself to
individual pieces being
analysed, without
impacting the rest of
the binary.

● Idealistic defence in
depth for binaries

– When pieces are
removed, it impacts the
correct operation of other
parts of the binary.

– Layers are tightly
integrated so that
everything must be
considered at once.

– Assumes layers will be
broken.

●

Watermarking

● Why watermark?

– Watermarking does not prevent against fraud.

● Fragile vs Robust watermarks
● Visible vs Invisible watermarks
● Watermarking values

– Counter

– Code constructs / code ordering

– Data initialisation values

● Tamperproofing?

Obfuscation

● Source code
● Assembly level

– Junk code?
● Not unlike what viruses have contained (f.e Junkcomp)
● Not really applicable in this case. (Preventing signatures /
on access detection)

– Various aspects to obfuscation
● Code layout
● Data obfuscation
● Control obfuscation
● Preventative

Obfuscation (cont)

● Potency

– How hard is it to analyse by a human

● Resiliency

– Protection against:
● Attackers effort to write the un-obfuscator
● The program attempting to un-obfuscater

● Cost

– What impact does implementing the measures
involve?

Obfuscation (cont)

● Control flow obfuscation

– Opaque conditionals
● Used to mislead attackers, increase their workload,
decrease what can be done automatically

● Control flow
– Absolutely trivial example: xor eax, eax ; jnz 0xaddy
– Usually a lot more involved.

– “rewriting” instruction context
● Determine context of the registers

– If they're important to that section of code you're analysing
– The relationship to other pieces of nearby code

Obfuscation (cont)

● Insert new instructions that modify the unimportant
registers / memory locations

– Usually there is just mov's, shifts, add / sub etc.
– If you add a section in memory and load/store from it, the analysis
tools now have to do a lot more work in order to remove those
constructs, if its possible at all (depending on how its
implemented). This is because the program now looks a lot more
like a proper program behaviour.

● Usually done before the program is compiled completely
(ie, operates on object files).

● Makes analysis by humans harder

– Loops

● Data obfuscation

– Converting static data to functions

Obfuscation (cont)

– Inserting more cross-references

– Inserting new functions into object orientated classes

– Adding new data to structures, loading / storing to it.

– Convert variables to classes, and have functions
which do the various operators on it, such as
multiplication, addition.

● Code layout obfuscation

– Basic blocks
● Re-ordering of instructions
● Independent obfuscation

– Blocks need to converge in the end

Obfuscation (cont)

● Register usage
example

● mov eax, 1

● mov ebx, 2

● add eax, ebx

●

● mov eax, 1 and mov ebx, 2
would be the first basic block.

● add eax, ebx would be the
second basic block.

– Code flow reduction
● Switch tables

– Disadvantages to
obfuscation

● Performance impact
● Time to implement

License scheme implementation

● Effort needed to implement
● If they are not meant to have certain pieces of
code, don't compile it in. If they aren't meant to
have some data, don't include it in the
distribution.

● Combine the license aspect with the program
aspect, so that attempting to break the license
implementation has flow on effects to the correct
operation with the program.

– Use license information for logic and data choices.

License schemes (cont)

● Small checksums can be used to ensure people
have not mistyped a license code without giving
anything away about the correctness of the key.

● In general, do not sanity-check the license data,
just use it for it's respective operations.

● Think like an attacker, find your weak spots, and
patch them.

Virtual Machines

● What are they?

– Java, .NET assembly (CLR)

– Either:
● Completely byte code driven
● Or translates to CPU for native execution (JIT)

● Increases analysis time, as they have to fully
understand what the VM is doing.

– A lot of custom development may need to be done,
depending what you want to implement.

● Disadvantages

Virtual Machines

– Only needs to be analysed once, so it loses its
effectiveness.

● Can be improved limitedly by randomising what bytes map
to what instructions, how the instruction is made up, and
how parameters are accessed.

● The VM instructions to be executed could configure the
VM, making it a bit harder to analyse.

“Bastardising” the file format

● Generally aims to:

– Cause an analysis application to behave unexpectedly,
while the Operating system loads it fine

– be exploited / caused to crash

– generate incorrect output

● Standard arms race

– Only effective for a while.

– Can be useful against tools widely used but not
currently actively supported by their author (Ollydbg
v1 for example)

“Bastardising” the file format

● Disadvantages

– Portability
● Different OS releases (Win 98 vs Win NT)
● Emulator programs, such as WINE.

– Sometimes its useful to debug your own programs

– SomeAV's make pick up on the changes

Summary

● Use multiple layers of protections that rely on
each other

● Don't check values for consistency / correctness,
just use them straight away

● Learn to attack your own implementation, in
order to identify weaknesses

– Perhaps keep an eye out on various reverse
engineering forums / cracking forums.

– Realise when and where to focus your efforts.

● Have fun in the process :)

Summary (cont)

● Given enough time, skill and resources, pretty
much everything can be broken.

Questions?

Thanks for attending

If you have any feedback, please contact me.

andrewg@felinemenace.org

Thanks to all the FM and PTP people.

Bonus slide
(don't worry if you don't get these)

● gcc dmeiswrong.c -o dmeiswrong

● 13:21 < nemo> buf = malloc(size * 12);

● </3

● http://church.felinemenace.org

● rm -rf diary.of.pike

● It's ok, $ACTIVITY isn't for everyone.

● IPv6-compatible Poodles

● Melting fish

● “This is your warning shot.”

● Sometimes you hurt me.

● In internet it's everytime

● Deaths of civilisations.

