Insiders View: Network Security Devices

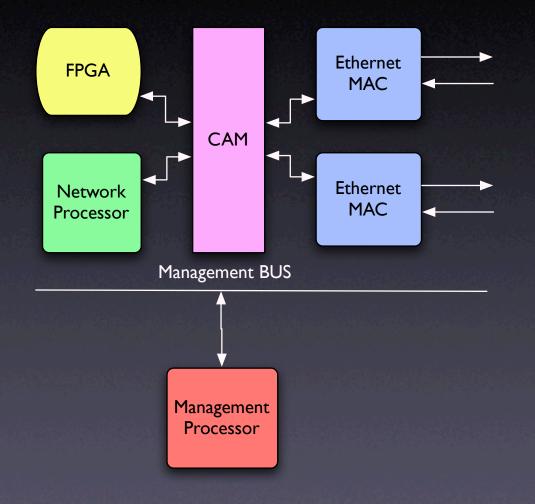
> Dennis Cox CTO @ BreakingPoint Systems

Who am I?

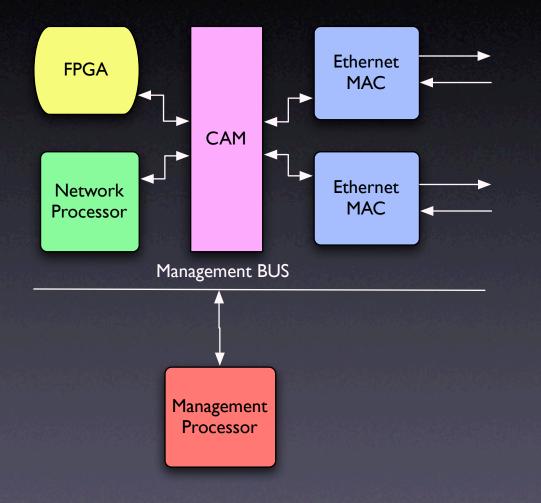
Chief Technology Officer - BreakingPoint Systems
Director of Engineering - TippingPoint
Engineering - Cisco Systems
Operated an ISP

Today's Talk

- Fact vs Fiction of today's security devices
- How to approach testing the validity of claims
- Some simple math
- Example cases

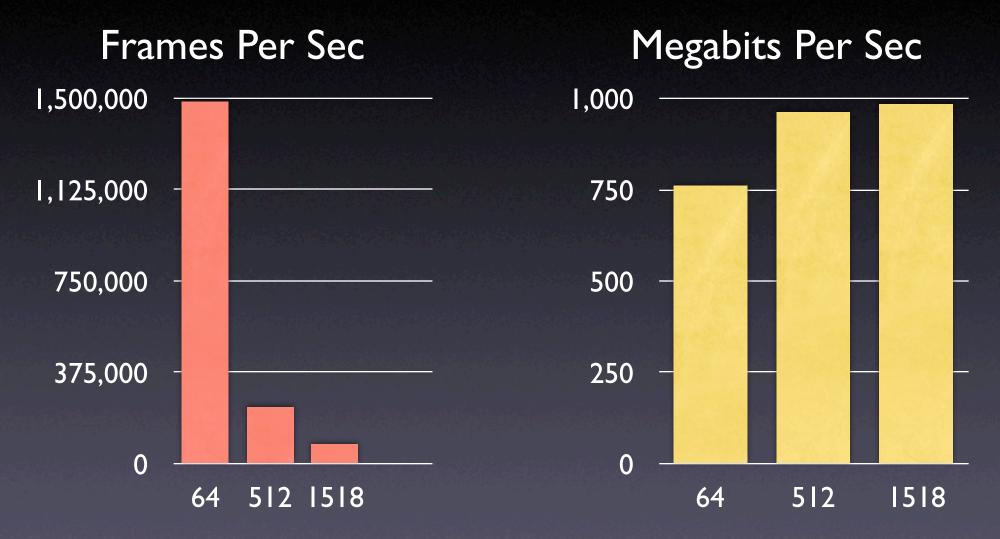

Is it Hardware or Software?

- What type of box is it?
 - Look at the mechanical design?
 - Who's runs the Hardware Team?
 - What silicon is it using?
- How big is the company?
 - Sub Contractor?
 - Check for posts!

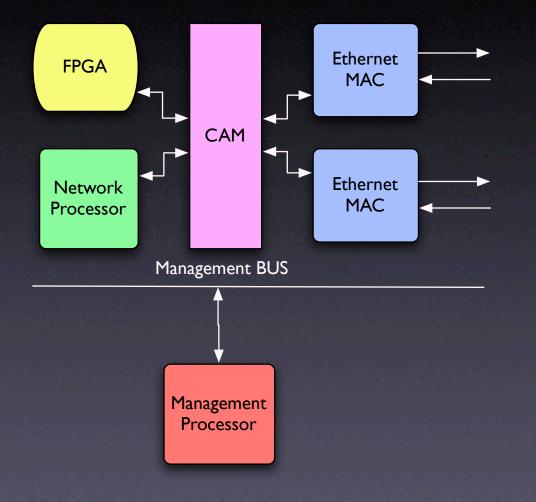

Hardware Security Devices

Not only does God play dice, but... he sometimes throws them where they cannot be seen - Stephen Hawking

OurVirtual Device

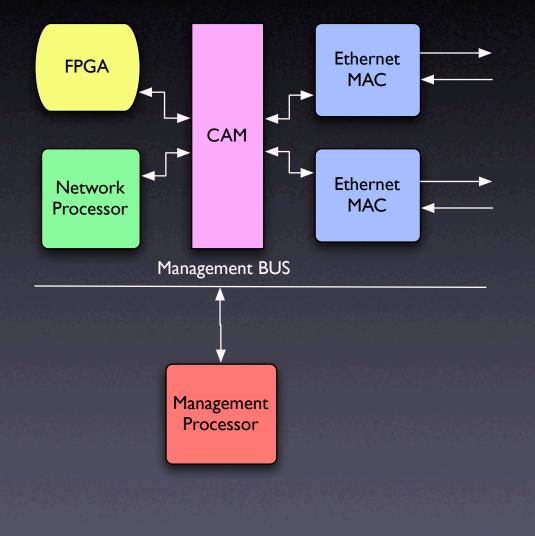


Ethernet MAC

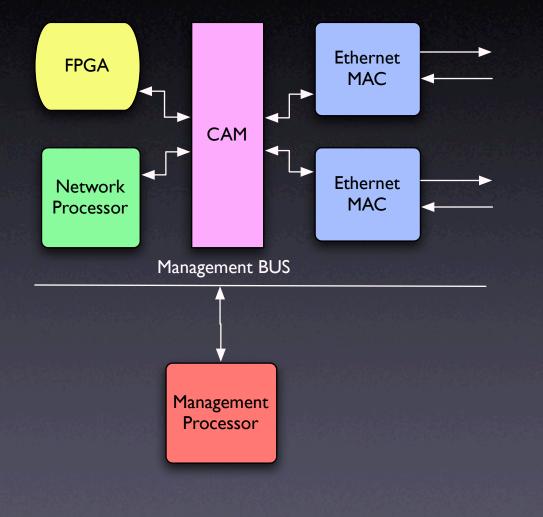


- Who is the vendor?
- What are the specs?
- What revision is the chip? (A0 is sweet, sweet love)
- ESIC will get you true love
- Everybody uses the same driver - audit the driver code

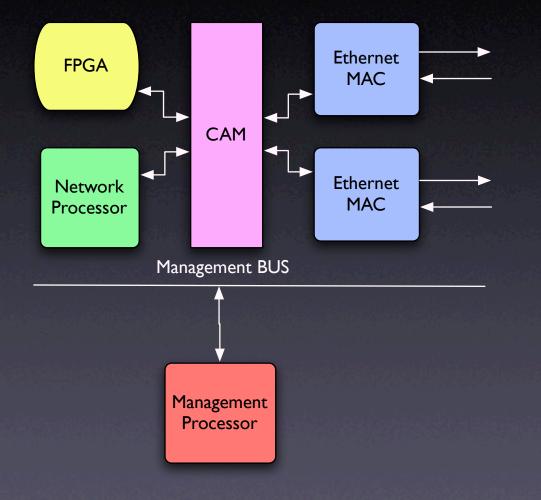
Ethernet Frames



Content Addressable Memory


- Same Questions
- Semi Programmable
- Super Fast, Little Flexibility
- Cisco Switches are CAM Based - accessible via SNMP
- Overflow the CAM

Field Programmable Gate Array


- Questions don't apply
- Very Programmable
- It's a Processor (custom)
- Some Security Guy ->
 Some Software Engineer ->
 Some Requirements
 Documents -> Some
 Design Engineer
- Attack State Machine and Parsing Engine
- Abnormal QA cycle

Network Processors

- Questions don't apply
- Programmability is based on the Vendor
- It's a fix field pattern parser
- State, State and more State
- Much stronger on bugs
- Really bad on memory
- Use it's abuse of memory to your advantage

Management Processor

- Just your average, ordinary chip
- If you cause the management interface to be busy, do packets slow down?
- Really bad on memory
- Use it's abuse of memory to your advantage

Exception Processing

- Exception processing or "SlowPath"
 - Most complex devices have one
 - The more complex the request, the better chance it goes there
 - If you can get to the Management Processor via Exception you can root the box or denial of service the box
- Tip: If a device supports encryption, exception handling is constant. You can DDoS with a few Kbytes of traffic.

BUS

- Multiple BUSes sometimes
- If they are interconnected doesn't matter still weakest link the chain
- Some buses can't handle interleaved packets
- Could you force interleaving of packets?
- Buses use wimpy identifiers can you modify that identifier?
- A bus has two elements: Max Performance, Max # of Frames
 - Max Frame Size + Max Frames = Max Performance

Bus Math

Bus and Frequency	Peak 32 bit Transfer Rate	Peak 64 bit Transfer Rate	Reality
33-MHz PCI	133 MB/sec	266 MB/sec	972 Mb/s
66-MHz PCI	266 MB/sec	532 MB/sec	N/A
100-MHz PCI-X	N/A	800 MB/sec	2 Gb/s
I 33-MHz PCI-X	N/A	I GB/sec	N/A
AGP8X	2.1 GB/sec	N/A	

 $\ensuremath{^*}\xspace$ Parts of the data are from Dell and Intel's website

Software Security Devices

A man's got to know his limitations. Dirty Harry

Connection Math

- 70 percent of traffic is TCP (location matters)
- Average TCP packet size ~ 512 bytes
 - (99% < 70 bytes and > 1400)
- I Gigabit at 512 bytes equals 244k connections
 - (1,000,000,000 / 8) / 512 = 244k
 - TCP setup requires 3 packets under 70 bytes (generally) which means...
 - Gigabit Ethernet wires can have 1.4 million connections per second happening at any moment in time

* The stats change per about every 9 -12 months. These stats are from November 2004. Source: More sites that I can list (Cable Companies, Telcos, Major Universities and Corporations)

Software Interrupt Stats

- A super high end Ethernet Card
 - (Intel Pro/1000 Server)
- Receive 680,000 pps
- Transmit 840,000 pps
- The above can only handle half-duplex, let alone full-duplex
- Conclusion: Hardware Systems don't suffer this fate (depending on the hardware system)

Software Performance

• If your using a "Dude it's a Dell"...

• Your at 761M divided by 2 roughly

• ... 380 Megabits per second

Software Boxes

We already know - limited by BUS

• We already know - limited by Interrupts

• What else do we need to know?

Software Optimizations

- Buffers are the key
- Having too many buffers causes latency due to slow access of the buffers
- Buffers are generally not malloc'd
 - Too Slow
- Buffers are set to max packet size
 - If the device supports jumbo frames that's 9k size...

Buffers Continued

- Fragmentation and TCP Reassembly take up buffers (64k IP + ???? TCP)
 - Generally an additional pool of memory
- Attacks over time based on # of buffers or worse yet they drop when buffers are full!
- Regular Expressions or Protocol Decoders
 - They take up buffers!

Finding the kill spot

• Something's cost more than others

• What costs the Box the most?

• Latency is the easiest way...

• The secret is the ...

Example - ISS

- First Questions:
 - What type of box is it?
 - Look at the mechanical design?
 - Who's runs the Hardware Team?
- Answers:
 - GI000 has Two Gigabit Ethernet Ports *
 - Repackaged "Dell" Server with a logo on it
 - Nobody runs hardware they don't have a team **

^{*} Information can be found at http://documents.iss.net/literature/proventia/ProventiaGSeries_Datasheet.pdf

Example - ISS

- They use a PCI Bus on that Dell Platform
 - Bus limited to 528 Mbits/s full duplex (472 due to overhead)
- Using Software so Interrupts come into play
 - 368 Mbits/s full duplex (64 byte packets)
- Using Two Ethernet Controllers
 - Double the Interrupt fun! 184 Mbits/s
- Requires at least double buffering
 - Ethernet I to PC to Ethernet 2
- A Dell Server costs \$3k (US) max
 - ISS charges \$36k (US) for the product

Example - ISS

• Second Questions:

- What is the rated max concurrent sessions?
- How does it handle buffers?
- Answers:
 - Rated 1,000,000 Concurrent Sessions
 - TCP Reassembly and Flow Reassembly supported
 - Jumbo Frames Supported

Example ISS

- (Flow Reassembly + TCP Reassembly + Max Packet Size) * Max Sessions
- (64k + 9k + 9k) = 82k * 1,000,000
- 82,000,000,000 = 82 Gigabytes of memory
 - Max addressable memory 4 Gigabytes
- I,000,000 sessions concurrent can be overflowed on a single Ethernet Wire

ISS - Knowing that

- It most likely can't hit I Gigabit per second since it would get killed on small packets
- It can't handle I Million connections
 - Can't address that much memory
 - Too many buffer copies
 - No memory for anything else!
 - Even if they could they need to handle more (1.48M)
- Homework: Narrow done which area of memory is the smallest - send partial attack thru that area of memory - fill it up then send the rest of the attack

Juniper Inspection

• Never saw one before up close

- Got it on eBay IDP-50 (new!)
- IUPC [Pentinum 4 2.8 Ghz] [ATI RAGE]
- Linux Kernel 2.4.3 I
- Using Intel e1000 cards [w/ Silicom Bypass]

Juniper Inspection.2

- IDP 10, 50, 100, 200, 500, 600C/600F, 1000, 1100C, 1100CF ... same box?
- e1000 cards set to 4096 descriptors
- Went from 3.1 to latest release (drivers changed multiple times)
- They are secure enough in their manhood root

Juniper Inspection.3

- Requires management server loaded it on the box itself
- scio and sctop are your friends
 - /usr/idp/device/...
 - scio IO control (set/get all sorts of cmds)
 - sctop Monitor everything
- [/usr/idp/device/bin] attach and watch
- Box was too loud what can I do about that?

Virtualize

000

Juniper IDP

ISOLINUX 1.72 2002-04-23 Copyright (C) 1994-2002 H. Peter Anvin Welcome to MINDI-LINUX v0.81_20021219, a cousin of Mondo Rescue

Creation date: Wed Sep 14 12:35:10 PDT 2005 Image version: 3.1r3 These disks were generated on the following system:-

Kernel 2.4.30-4P3idpSMP on an i686

To restore your disk to factory defaults, type 'RESTORE' <enter>. CAUTION: THIS WILL ERASE YOUR WHOLE DISK !!! boot: Loading vmlinuz..... Loading initrd.img..... Ready. Uncompressing NetScreen IDP kernel... Ok, booting the kernel.

False Positives

- Mythical to me
- Two out of the box
 - IP: Microsoft IGMPv3 DOS (uh?)
 - SSH: PuTTY SSH2 MSG_DEBUG Overflow (dropped!!!)

Juniper Sig Dive

- The signature constructs [context + regex]
- IGMP
 - Packet with IP Options
- SSH
 - Client to Server using SSH looking for \(SSH.2 \0.PUTTY\].*

Juniper Thoughts

- Now I'm curious if it's all regex...
- RECURSION let's see how to handles it
- [dig dig dig dig dig dig dig]
- hmmm what's this?

./scio counter get flow

OOO Terminal -	- ssh — bash — 64x20	
<pre>[root@juniper-idp bin]# ./sc</pre>	io counter get flow	3
Name	Value	
<pre>sc_flow_fast_path</pre>	6	
<pre>sc_flow_slow_path</pre>	336	
<pre>sc_flow_icmp_error</pre>	0	
<pre>sc_flow_session_failed</pre>	0	
<pre>sc_flow_packet_log</pre>	319	
<pre>sc_flow_busy_packet</pre>	0	
<pre>sc_flow_out_of_order</pre>	0	
<pre>sc_flow_device_fifo_size</pre>	0	
<pre>sc_flow_device_fifo_overflow</pre>	0	
<pre>sc_flow_policy_cache_hit</pre>	16	
<pre>sc_flow_policy_cache_miss</pre>	369	
<pre>sc_flow_hash_collision_max</pre>	3	
<pre>sc_flow_hash_collision</pre>	1	
<pre>sc_flow_ha_flip</pre>	0	
<pre>sc_flow_bad_udp_csum</pre>	0	0
<pre>sc_flow_gate_add</pre>	0	U
<pre>sc_flow_gate_found</pre>	0	1
[root@juniper-idp bin]#		1

I scio const list

[0...ffffffff] sc_debug_features $= 0 \times 10$ $= 0 \times 0$ sc_debug_qmodules [0...ffffffff] sc_debua_services $= 0 \times 0$ [0...ffffffff] [0...ffffffff] $= 0 \times 0$ sc_debug_services2 sc_debug_level $= 0 \times 1$ [0...3] sc_debug_detail $= 0 \times 0$ [0...1] sc_malloc_debug $= 0 \times 0$ [0...1] sc_malloc_debug_size $= 0 \times 200$ 0...fc17] sc_log_cache_size $= 0 \times 3200$ [1...ffff] sc_log_chunk_size $= 0 \times 4000$ 400...4000] [1...f4240] sc_log_chunk_timeout $= 0 \times 186a0$ sc_pktlog_cache_size $= 0 \times 100000$ 400...ffffffff] 400...ffffffff] sc_pktlog_chunk_size = 0x1f82esc_pktlog_chunk_timeout $= 0 \times 186a0$ [1...f4240] sc_sam_cache_size $= 0 \times 80$ [1...ffff] sc_flow_hash_table_size $= 0 \times 186a0$ 400...f4240] sc_memory_limit_percent $= 0 \times 3 c$ a...5a] sc_tsig_hash_table_size $= 0 \times 10000$ 100...100000] sc_policy_lookup_cache $= 0 \times 1$ 0...1] sc_enable_packet_pool $= 0 \times 1$ [0...1] sc_enable_all_amodules 0...17 $= 0 \times 1$ sc_enable_ha_lb $= 0 \times 0$ [0...1] sc_ha_lb_sniff $= 0 \times 0$ 0...1] = 0x1c23sc_mqt_svr_ui_port [1...fc17] sc_ha_heartbeat_port $= 0 \times 1581$ [1...fc17] sc_enable_bypass_unit $= 0 \times 0$ [0...1] [0...1] sc_enable_layer2_bypass $= 0 \times 0$ $= 0 \times 0$ sc_enable_udp_csum [0...1] [0...ffffffff] sc_dump_szblocks $= 0 \times 0$ $= 0 \times 0$ [0...ffffffff] sc_dump_szblocks_times sc_log_enable_thresholding $= 0 \times 1$ [0...1] sc_log_threshold_use_dst $= 0 \times 0$ [0...1] sc_log_first_n $= 0 \times 1$ [1...80] sc_log_threshold_count $= 0 \times 4000$ 100...10000] sc_log_threshold_timeout = 0xa [1...3c] sc_dfa_run_merged $= 0 \times 1$ [0...1] sc_pcre_recursion_limit = 0x71...20] $= 0 \times 0$ sc_ids_process_ignore_s2c [0...1] sc_log_implicit_pkt_drop $= 0 \times 0$ [0...1] sc_reass_ha_sync $= 0 \times 0$ [0...1]

How did it handle strikes?

Backdoors [0 out of 4]
Network Worms [3 out of 6]
Exploits [21 out of 155]
Recon [5 out of 78]
Hostile [33 out of 37]
Denial of Service [1 out of 20]

Example - Juniper

- Juniper Filter
 - HTTP (".*/cvsweb\.cgi/.*;.*")
- Running on a 1.5 GHZ G4 using PCRE v6.4
- Standard run (after initial) (100 bytes)
 - Match: 66 usecs || 15,151 PPS
 - Miss: 4 usecs || 250,000 PPS

Example - Juniper 2

Increase Data to 1500 bytes
Match: 179 usecs || 5,586 pps
Miss: 191 usecs || 5,235 pps
Multiple Packets (15k)
Miss: 1452 usecs* || 688 pps

Build your own 200/600

- Buy one Super Microboard
- Install two XEON 2.8 CPU's
- Install 2 Gigabytes of memory
- Install Silicom Ethernet cards (e1000)
- ./scio const -s s0:reass set sc_tcp_max_flow_mem_kb 0x4000 [insert]
- ./scio const -s s0:reass set
 sc_tcp_max_packet_mem_kb 0x100000 [insert]

Example - TopLayer

- "Leader of Intrusion Prevention"
- 4.4 Gbs raw firewall throughput
- 2.0 Gbs rated firewall throughput
- 50k new sessions per second
- 50k sessions tear-down per second
- I million Concurrent Sessions
- I.5 million SYN Flood DOS Protection Rate

Math, Math, Math

• 50,000 is the max session setup

- 50,000 Connections * 64 Bytes
- Can only achieve 3.2 Mbits per second of new traffic (being conservative)
- Real world testing shows that a TopLayer box can handle 2.5 Mbits of traffic before being DDoS itself
- Math proved it out! Now checkout a Netscreen box!

Device Discovery

- Most inline devices modify packets
- Some change TTL's
- Others reorder TCP Packets
- Did you know some devices even set unique values in packets that come there way?
 - Can you figure out what device does what?
 - Example: TopLayer sets TTL to 255 and TCP Options are changed to MSS=1460

Remember!

- Somewhere on every device the box trusts the packet in some way
- Find that location and you'll get your exploit
- ISS, Netscreen and Toplayer are just examples - no offense to those poor bastards
- Every box has it's Breaking Point

Dennis Cox dcox@bpointsys.com