
Reverse Engineering
Microsoft Binaries

Alexander Sotirov
asotirov@determina.com

Recon 2006

Overview
In the next one hour, we will cover:

• Setting up a scalable reverse engineering environment
○ getting binaries and symbols
○ building a DLL database

• Common features of Microsoft binaries
○ compiler optimizations
○ data directories
○ exception handling
○ hotpatching

• Improving IDA
○ IDA autoanalysis problems
○ loading debugging symbols
○ improving the analysis with IDA plugins

Why Microsoft Binaries?
Most reverse engineering talks focus on reversing malware, but
Microsoft binaries present a very different challenge:

• Bigger than most malware
• No code obfuscation (with the exception of licensing, DRM

and PatchGuard code)
• Debugging symbols are usually available
• Compiled with the Microsoft Visual C++ compiler
• Most of the code is written in object oriented C++
• Heavy use of COM and RPC

Part I

Setting Up a Scalable Reverse
Engineering Environment

Getting the Binaries
Most Microsoft software, including older versions and service
packs, is available for download from MSDN. We download
these manually.

To download security updates automatically, we used the
information in mssecure.xml, which is automatically downloaded
by MBSA 1.2.1. The XML file contains a list of security bulletins
for Windows, Office, Exchange, SQL Server and other products.
It also provides direct download links to the patch files.

Unfortunately MBSA 1.2.1 was retired at the end of March 2006.
The XML schema used by MBSA 2.0 is different, and our scripts
don't support it yet.

Once you have all old security updates, downloading the new
ones every month can be done manually.

Extracting the Binaries
• CAB and most EXE files can be unpacked with cabextract
• MSI and MSP files are difficult to unpack. Usually they

contain CAB archives that can be extracted, but the files in
them have mangled names. Still working on a solution.

• An administrative installation is our temporary solution for
dealing with Microsoft Office.

• Some IIS files are renamed during the installation. For
example smtpsvc.dll is distributed as smtp_smtpsvc.dll in
IMS.CAB on the Windows 2000 installation CD.

• Recent patches use intra-package delta compression (US
patent application 20050022175). Unpacking them with
cabextract gives you files with names like _sfx_0000._p.
To unpack these patches, you have to run them with the /x
command line option.

DLL Database
We have an internal database of binaries indexed by the name
and SHA1 hash of the file. We store the following file metadata:

• name ntdll.dll
• size 654336 bytes
• modification date May 01, 2003, 3:56:12 PM
• SHA1 hash 9c3102ea1d30c8533dbf5d9da2a47…
• DBG and PDB path Sym/ntdll.pdb/3E7B64D65/ntdll.pdb
• source of the file

○ product Windows XP
○ version SP1
○ security update MS03-007
○ build qfe
○ comment

DLL Database
Current size of our database, including all service packs and
security updates for Windows 2000, XP and 2003:

• 30GB of files
• 7GB of symbols
• 7500 different file names
• 28800 files total

and growing…

DLL Database

Getting Symbols
Microsoft provides symbols for most Windows binaries. They can
be downloaded from their public symbol server by including it in
your symbol path. See the Debugging Tools for Windows help
for more information.

Use symchk.exe to download symbols for a binary and store
them in a local symbol store.

We have scripts that automatically run symchk.exe for all new
files that are added to the binary database.

Most Windows binaries have symbols, with the exception of
some older Windows patches. In this case BinDiff can be used to
compare the binaries and port the function names from another
version that has symbols. Unfortunately symbols are not
available for Office and most versions of Exchange.

Part II

Common Features of Microsoft
Binaries

Common Features of Microsoft
Binaries

• Visual C++ compiler optimizations
○ function chunking
○ function fall-through
○ array reference to the body of a function
○ reuse of stack frame slots
○ sbb comparison optimization
○ shr comparison optimization
○ switch optimization

• Data directories
• Exception handling
• Microsoft hotpatching

Function Chunking
Function chunking is a compiler optimization for improving code
locality. Profiling information is used to move rarely executed
code outside of the main function body. This allows pages with
rarely executed code to be swapped out.

It completely breaks tools that assume that a function is a
contiguous block of code. IDA has supported chunked functions
since version 4.7, but its function detection algorithm still has
problems in some cases.

This optimization leaks profiling information into the binary. We
know that the code in the main function body is executed more
often than the function chunks. For code auditing purposes, we
can focus on the function chunks, since they are more likely to
contain rarely executed and insufficiently tested code.

Function Fall-through
If foo is a wrapper around bar, the compiler can put the two
functions next to each other and let foo fall through to bar.

 void foo(a)
 {
 if (a == 0)
 return;
 else
 bar(a);
 }

foo
…

bar
…

Array Reference to the Body of a
Function

Given the array reference A [eax-1] and the constraint eax >= 1,
the compiler will convert the reference from

dec eax
mov ebx, A[eax*4]

to

mov ebx, B[eax*4]

where B is the address of A-4

If the array is located right after a function, the address of A-4
will be inside the function and might be disassembled as data,
even though the first 4 bytes are never referenced.

Reuse of Stack Frame Slots
In non-optimized code, there is a one-to-one correspondence
between local variables and the stack slots where they are
stored. In optimized code, the stack slots are reused if there are
multiple variables with non-overlapping live ranges.

For example:

int foo(Object* obj)
{

int a = obj->bar();
return a;

}

The live ranges of obj and a don't overlap, so they can be stored
in same slot on the stack. The argument slot for obj is used for
storing both variables.

arg_0

return addr

saved ebp

used for both obj and a

SBB Comparison Optimization
The SBB instruction adds the second operand and the carry flag,
and subtracts the result from the first operand.

• sbb eax, ebx

eax = eax - (ebx + CF)

• sbb eax, eax

eax = eax - (eax + CF)
eax = - CF

SBB Comparison Optimization
The SBB instruction can be used to avoid branching in an if
statement.

in assembly:
cmp ebx, ecx

sbb eax, eax

inc eax

in C:

if (ebx >= ecx)
eax = 1;

else
eax = 0;

CF = 0
eax = 0
eax = 1

CF = 1
eax = -1
eax = 0

ebx >= ecxebx < ecx

SHR Comparison Optimization
in assembly:

shr ecx, 10h
test cx, cx
jnz foo

in C:

if (ecx > 65535)
goto foo;

I've seen this in multiple files, but it is not clear if this is a
compiler optimization or if the programmer just used a division
operator:

if (ecx / 65535 == 0)
goto foo;

Switch Optimization
Non-optimized code :

switch (arg_0)
{

case 1: ...
case 2: ...
case 3: ...
case 8001: ...
case 8002: ...

}

00401030 cmp [ebp+arg_0], 1

00401034 jz short case_1

00401036 cmp [ebp+arg_0], 2

0040103A jz short case_2

0040103C cmp [ebp+arg_0], 3

00401040 jz short case_3

Switch Optimization
Optimized code:

767AFDA1 _GetResDesSize@4 proc near

767AFDA1

767AFDA1 arg_0 = dword ptr 4

767AFDA1

767AFDA1 mov eax, [esp+arg_0]

767AFDA5 mov ecx, 8001h

767AFDAA cmp eax, ecx

767AFDAC ja short greater_than_8001

767AFDAE jz short case_8001

767AFDB0 dec eax

767AFDB1 jz short case_1 ; after 1 dec

767AFDB3 dec eax

767AFDB4 jz short case_2 ; after 2 decs

767AFDB6 dec eax

767AFDB7 jz short case_3 ; after 3 decs

Data Directories
The PE header contains a list of IMAGE_DATA_DIRECTORY
entries, each specifying a starting address and the size of the
data. The data directories contain the DLL imports and exports,
debugging information, delayed loading information and more.

Some of the data directories are located in their own PE
sections, but most of the time the data directories are in the .text
or .data sections. IDA will often try to disassemble the contents
of a data directory as code or data. This might lead to a
confusing disassembly.

Exception Handling
This is better than anything I could have said about it:

Reversing Microsoft Visual C++ Part I: Exception Handling
by Igor Skochinsky:

http://www.openrce.org/articles/full_view/21

Microsoft Hotpatching
The Microsoft hotpatching implementation is described in US
patent application 20040107416. It is currently supported only on
Windows 2003 SP1, but we'll probably see more of it in Vista.

The hotpatches are generated by an automated tool that
compares the original and patched binaries. The functions that
have changed are included in a file with a .hp.dll extension.
When the hotpatch DLL is loaded in a running process, the first
instruction of the vulnerable function is replaced with a jump to
the hotpatch.

The /hotpatch compiler option ensures that the first instruction of
every function is a mov edi, edi instruction that can be safely
overwritten by the hotpatch. Older versions of Windows are not
compiled with this option and cannot be hotpatched.

Part III

Improving IDA

Improving IDA
• IDA autoanalysis

○ Overview of the autoanalysis algorithm
○ Problems with the disassembly

• Loading debugging symbols
○ IDA PDB plugin
○ Determina PDB plugin

Autoanalysis Algorithm
The autoanalysis algorithm is not documented very well, but it
can be roughly described as follows:

1. Load the file in the database and create segments
2. Add the entry point and all exports to the analysis queue
3. Find all typical code sequences and mark them as code.

Add their addresses to the analysis queue
4. Get an address from the queue and disassemble the code

at that address, adding all code references to the queue
5. If the queue is not empty, go to 4
6. Make a final analysis pass, converting all unexplored bytes

in the text section to code or data

For more details, see this post by Ilfak Guilfanov:
http://www.hexblog.com/2006/04/improving_ida_analysis.html

http://www.hexblog.com/2006/04/improving_ida_analysis.html

Autoanalysis Problems
There are a number of situations where the autoanalysis
heuristics lead to incorrect disassembly. Some of these problems
create serious difficulties for automatic analysis tools like BinDiff.
The two main problem areas are:

• Data disassembled as code
• Function detection and function chunking problems

Autoanalysis Problems
Code outside a function is an indication of incorrectly
disassembled data or a function detection problem:

should be
a string

should be
a function

Data Disassembled as Code
771B7650 ; const CHAR _vszSyncMode

771B7650 _vszSyncMode:

771B7650 push ebx

771B7651 jns short near ptr loc_771B76BF+2

771B7653 arpl [ebp+6Fh], cx

771B7656

771B7656 loc_771B7656:

771B7656 db 64h, 65h

771B7656 xor eax, 48000000h

771B765D imul esi, [ebx+74h], 2E79726Fh

771B7664 dec ecx

771B7665 inc ebp

Instead of:

771B7650 ; const CHAR _vszSyncMode

771B7650 _vszSyncMode db 'SyncMode5',0

Data Disassembled as Code
Solution:

• disable "Make final analysis pass"

The final analysis pass runs after the initial autoanalysis is
complete and converts all unexplored bytes in the text segment
to data or code. It is often too aggressive and disassembles data
as code. Disabling the option ensures that only real code is
disassembled, but might leave some functions unexplored. If it is
disabled, only the first element in a vtable is analyzed, leaving
the rest of the member functions unexplored.

Data Disassembled as Code
Solution:

• use symbol names to distinguish code from data
• create data items before functions

Public debugging symbols don't include type information, but it is
often possible to determine if a symbol is a function or data from
its name. For example, GUID variables that are used to refer to
COM objects often start with the same prefix. This allows us to
define them as data in the IDA database.

Creating data items before functions establishes the boundaries
of the functions. IDA will not undefine a data item if it falls within
the body of a function, even if there are erroneous code
references to it.

Function Chunking Problems
• If foo is a wrapper around bar, the compiler can put the two

functions next to each other and let foo fall through to bar.

If function foo is analyzed first,
it will include the code of bar.
Even if there are calls to bar
later, IDA will not create a
function there.

• Function chunks inside another function

If function foo is analyzed
first, it will include the bar
chunk. If bar is analyzed first,
foo will be split in two chunks
around the bar chunk.

foo
…

bar
…

foo
…

…

bar
…

Function Chunking Problems
Solution:

• create the functions in reverse order, starting at the bottom of
the file and going up

This is a very simple solution with an amazing effect on the
accuracy of function chunking. IDA can deal with functions that
fall-through or include code from other functions, as long as the
other functions are created first. Since code usually flows
downwards, we just need to create the functions at the bottom of
the file before those on top.

Improving the Analysis
The best way to improve the analysis is to give IDA more
information. We have focused on improving the PDB plugin that
is used to load public debugging symbols from Microsoft.

IDA PDB Plugin
• Source code included in the IDA SDK
• Uses the DbgHelp API
• Supports DBG and PDB symbols through dbghelp.dll
• Algorithm:

○ create a name in the database
○ if the symbol name is `string', create a C or UNICODE string
○ if the demangled name is not of type MANGLED_DATA, create

a function at that address

Determina PDB Plugin
• Uses FPO records to detect functions and symbol names to

determine data types
• Does not create functions for demangled names of an

unknown type
○ reduces the instances of data disassembled as code

• Special handling for imports, floats, doubles and GUIDs
• Better string type detection (ASCII vs. UNICODE strings)
• Creates vtables as arrays of function pointers
• Applies symbols in multiple passes, and creates functions

starting at the bottom of the file and going up
○ significantly improves function chunking

• Much better GUI

Determina PDB Plugin

Available under a BSD license from:
http://www.determina.com/security.research/

Version 0.4 released today!

http://www.determina.com/security.research/

Symbol Types
Public debugging symbols are stripped and don't include type
information. We have to rely on the symbol names and the
availability of FPO records to determine their types. The
following types are recognized:

• import __imp__FunctionName
• float __real@3fc00000
• double __real@0000000000000000
• string `string'
• guid starts with a prefix like _IID_, _SID_, __GUID_
• vtable contains `vtable' in the name
• function has an FPO record, or the demangler returns

MANGLED_CODE
• data the demangler returns MANGLED_DATA
• unknown everything else

Applying the Symbols
When the user clicks OK, the symbols are applied in 4 passes:

Pass 1: If a symbol location already has a name, change it to the
symbol name. This pass makes sure that there are no
duplicate names during the second pass.

Pass 2: Set the names of all symbols in the database. Having all
names in the database before the next pass is
necessary to avoid the creation of data items that don't
fit in the space before the next symbol.

Pass 3: Iterate through all data symbols and create data items.
The data is left undefined if there's not enough space for
a data item of the right type (4 bytes for floats, 8 bytes
for doubles, 16 bytes for GUIDs)

Pass 4: Iterate through all function symbols in reverse order and
create functions.

Determina PDB Plugin Demo

Questions?

asotirov@determina.com

