Fitbit Firmware Hacking

ReCon 0xE

Jiska Classen & Daniel Wegemer

jclassen@seemoo.de dwegemer@seemoo.de

Technische Universität Darmstadt Secure Mobile Networking Lab - SEEMOO Department of Computer Science

> **DFG** Deutsche Forschungsgemeinschaft

SEMC

Earn up to \$1,500 for Healthy Behavior with Fitbit's New Healthcare Integration

f y 8 0 in

Motivation

y Intelligence levices can be hacked, research

Communication

Communication Paradigm

Activity Record Synchronization

Authenticated Live Mode

Accessing the Fitbit Hardware

Goals:

- 1. Access/Modify local storage
- 2. Get encryption keys

Fitbit Flex Hardware & Software

Hardware Access

Testing points to connect to debugger:

- TP8 SWDIO
- TP9 SWCLK
- TP10 NRST
- GND (from battery)

Goals:

- Dump firmware
- Modify stored data

Memory Layout

Flash

• Firmware code

EEPROM

- Information that should survive empty battery SRAM
- Firmware variables

Fitbit Flex Hardware is Cheap!

Some Fitbits were harmed during our experiments...

Flash Contents

Re-Enabling GDB Access (1)

Debugger Access

- Debugging is only enabled **during reset**
- Firmware initialization **disables GPIO ports** necessary for debugging
- Lets reset them!

How? NexMon!

- NexMon is a binary patching framework
- We adapt NexMon for the Fitbit firmware
- Goal:
 - Modify firmware
 - Enable dynamic debugging (GDB)

nexmon.org

Re-Enabling GDB Access (2)

- **Connect after reset** works fine
- GPIOs needed for Debugging get reassigned during initialization
 → Where? No idea!
- Let patch the firmware to reenable the GPIOs necessary for debugging after initialization has finished
 → This might comes with side effects
 → Use Bluetooth commands to trigger the reprogramming

Wireless Fitbit Firmware Flashing

Update Process

Firmware & Dump Encryption

Newer trackers come with encryption **enabled by default** → We need to know how **encrypted firmware updates** work

Trackers use **XTEA/AES** in **EAX** mode:

- 2 byte nonce in beginning of each dump
- **128 bit encryption key**, extractable from EEPROM via memory readout attack
- 8 byte authentication MAC in the end of each dump before length field

→ Firmware is based on LibTomCrypt (C)

Demo * 🕕 💎 🖺 🛎 6:50 D () return steps * 100; 2,092,002,132 steps WHAT YOU MEAN I'M FAT? 434,300 0 \triangleleft I MADE IT THROUGH THE CAT DOOR

Accessing the Accelerometer

Locating Accelerometer Values

- Factory test functions include accelerometer printout
- Points to the correct register wich is updated by the accelerometer driver

нрр:08025B2C 7C 7A 02 08 c_help App:08025B2C App:08025B2C App:08025B2C App:08025B2C	<pre>; DHIH AREF: flash_groual_interrupt ; DATA XREF: help_command_stuff+581 ; help_command_stuff+6610 ; command: help</pre>
App:08025B30 C8 76 02 08	DCD aPrintsThisTabl ; desc: shows this table
App:08025B34 C9 23 02 08	DCD print_commands+1 ; call: print_commands
App:08025B38 42 1D 01 08	DCD loc_8011D42
App:08025B3C C8 76 02 08	DCD aPrintsThisTabl ; "Prints this table"
App:08025B40 C9 23 02 08	DCD print_commands+1
App:08025B44 84 7A 02 08	DCD aAccel ; command: accel
App:08025B48 F4 77 02 08	DCD aShowLastXYZ ; desc: show last x y z
App:08025B4C 15 33 02 08	DCD show_last_xyz+1 ; reference to accel
App:08025B50 8C 7A 02 08	DCD aBattery ; command: battery
App:08025B54 48 72 02 08	DCD aShowBatteryAnd ; "Show battery and charger state"
App:08025B58 EF 38 02 08	DCD battery_and_charger_state+1
App:08025B5C 94 7A 02 08	DCD aDevice ; command: device
App:08025B60 DC 76 02 08	DCD aShowDeviceRecord ; "Show device record"
App:08025B64 55 3A 02 08	DCD_show_device_record+1

Configuration Registers

Register Address	Purpose	Bit Mask	Description	Looks okay 😊
20	Data rate and power mode	57	All axes active, 100Hz	this with
21	Filter mode	57	Highpass filter enabled	>25Hz?
22	Interrupts	00	All interrupts disabled	
23	Endian data selection and self test	00	LSB at lower address and normal self test mode	
24	Boot mode	57	Normal boot mode and FIFO enabled	
25	Interrupts	00	All interrupts disabled	
2e	FIFO control register	8f	FIFO stream mode	
30	Interrupt event register	00	All interrupts disabled	
32	Interrupt threshold register	00	All interrupts disabled	

Accelerometer Live Mode

- Live mode normally only updates if activity data changes
- Modifications for accelerometer live mode:
 - Maximum update rate → ~66 Hz ☺
 - Copy x,y,z accelerometer data to live mode variables
 - Ensure backward compatibility by only enabling accelerometer live mode after a special command

Use Cases

- **Develop** accelerometer-based applications on any **Bluetooth** capable platform.
- Possibility to port these applications later on with C/Nexmon and wirelessly flash them onto your Fitbit, e.g. recognition of different types of movements and gestures with the same low battery usage.

Hackable Models & Versions

Encrypted wireless **firmware modifications** (requires memory readout):

Tracker	Firmware Version
One	5.60 (before October 2017)
Flex	7.81 (before October 2017)
Charge HR	18.102 (older)

If you buy new trackers online, they have a firmware < October 2017 \odot

Project Status

- Cooperation with the Fitbit Security team for Responsible Disclosure
 - Communication encrypted with PGP $\ensuremath{\textcircled{\odot}}$
 - Professional categorization of security issues we report.
 - They get early versions of our publications, we get early feedback.
- Open source tool to run server-independent actions on fitness trackers, such as live mode, memory extraction and firmware flashing & a framework to craft your own firmware:

https://github.com/seemoo-lab/fitness-app https://github.com/seemoo-lab/fitness-firmware

Summary

- 1. Go out and flash your neighbors' devices.
- 2. Keep control of your own data.
- 3. Run any code on your Fitbit.

