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Motivation 
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• Problem space: vulnerability analysis for embedded devices, esp. 

real-time/embedded operating systems 

 

• Goal: Expand previous work in call graph visualization for RE into 

automated call graph segmentation 

- “Bubble Struggle” by Marion Marschalek, RECON 2017 

- “Reverse Engineering with Hypervisors” by Danny Quist, RECON 2010 

 

 

 

 

 

 

Understanding software architecture is critical to effective and timely 

vulnerability analysis in the embedded environment 
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RTOS / Embedded OS From An RE Perspective 
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• Single (often large) fully linked program 

• One address space 

• No clear distinction between 

- Application threads 

- Libraries 

- Operating system 

• Usually distributed to licensees as source or object files 

• No symbols (usually) 

• Scattered debug prints (often) 

• There are a gazillion of them  
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Towards Automated RE 

• Objects / Libraries 

 

 

• Subroutines / Functions 

 

 

• Statements / Constructs 

 

 

• Assembly / Opcodes 

• Reverse engineers operate on 
at least 4 levels 

 

• Usually when a new project 
gets started we are spinning 
our wheels a bit at the bottom 
in order to label enough 
functions to start to make 
sense of the bigger picture 

 

• For ML/DL approaches – we 
are going to need methods to 
chunk up a large binary – and 
give a sense of context for 
each function 
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The CodeCut Problem 
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• Assumptions: 
- Embedded developers organize code into multiple source files 

- Source files are compiled into object files 

- Linker produces final binary that is a linear concatenation of object 

files 

- No intentional obfuscation  
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The CodeCut Problem 

17 June 2018 6 

• Problem Statement: Given only call graph information for a large 

binary, recover the boundaries of the original object files 

 

• Notes: 

- Essentially architecture independent (as long as a call graph can be generated 

through disassembly) 

- Inherent ambiguity: CodeCut algorithms might locate multiple functional clusters 

within an original source file - or combine two files because they are highly related 
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Local Function Affinity Concept 

#include <stdio.h> 

int helper_1() { 

 return helper_2()/100; 

} 

int helper_2() { 

 … 

} 

int more_complex() { 

 … 

 while (helper_1() < 100) { 

  foo = helper_2() % 20; 

 } 

 … 

}  

void main_functionality() { 

 more_complex(); 

 … 

 while (helper_2() > 1000) { 

  foo = helper_1(); 

  bar = more_complex(); 

 } 

} 

 

17 June 2018 7 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 



Local Function Affinity Concept 

#include <stdio.h> 

int helper_1() { 

 return helper_2() / 100;   

} 

int helper_2() { 

 … 

} 

int more_complex() { 

 … 

 while (helper_1() < 100) { 

  foo = helper_2() % 20; 

 } 

 … 

}  

void main_functionality() { 

 more_complex(); 

 … 

 while (helper_2() > 1000) { 

  foo = helper_1(); 

  bar = more_complex(); 

 } 

} 

• If we eliminate external calls… 
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Local Function Affinity Concept 

#include <stdio.h> 

int helper_1() { 

 return helper_2() / 100;   

} 

int helper_2() { 

 … 

} 

int more_complex() { 

 … 

 while (helper_1() < 100) { 

  foo = helper_2() % 20; 

 } 

 … 

}  

void main_functionality() { 

 more_complex(); 

 … 

 while (helper_2() > 1000) { 

  foo = helper_1(); 

  bar = more_complex(); 

 } 

} 

• If we eliminate external calls… 

 

• Directionality of calls at the 

beginning of the module is in 

the positive direction 

 

• Directionality of calls generally 

switch to the negative 

direction towards the end of 

the module 

 

• We can detect edges by 

finding the switch from 

negative back to positive 

17 June 2018 11 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 



Local Function Affinity Concept 

#include <stdio.h> 

int helper_1() { 

 return helper_2() / 100;   

} 

int helper_2() { 

 … 

} 

int more_complex() { 

 … 

 while (helper_1() < 100) { 

  foo = helper_2() % 20; 

 } 

 … 

}  

void main_functionality() { 

 more_complex(); 

 … 

 while (helper_2() > 1000) { 

  foo = helper_1(); 

  bar = more_complex(); 

 } 

} 

• If we eliminate external calls… 

 

• Directionality of calls at the 

beginning of the module is in 

the positive direction 

 

• Directionality of calls generally 

switch to the negative 

direction towards the end of 

the module 

 

• We can detect edges by 

finding the switch from 

negative back to positive 

17 June 2018 12 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 



Local Function Affinity Definition 

17 June 2018 13 

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑓 =  
 𝑠𝑖𝑔𝑛 𝑥 − 𝑓 ∗ 𝐿𝑜𝑔( 𝑥 − 𝑓 )𝑥 ∈𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑓 , 

|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑓 |
 

  

 Where references(f) is defined as the set of functions that call f 
 or are called by f for which the distance from f to the function is 
 below a chosen threshold.  Multiple references are counted. 

 

• Using fixed threshold of 4K* 

• Edge Detection*: 
- General negative trend 

- Change to positive value (Δ > 2) 

- Treat calls to / calls from as separate scores – for functions without one of the 
scores, interpolate from last score 

 

* room for improvement! 
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Call Directionality Metric 
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Module-to-Module Call Graph (Auto-Generated) 
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CodeCut Success Metric 
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LFA Results to Date 
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      Match / Gap / Underlap (%) 

 

• Gnuchess (x86)     76.1  3.2  20.7 

• PX4 Firmware/NuttX (ARM)   82.2  13.6  4.2 

• GoodFET 41 Firmware (msp430)  76.1  0  23.9 

• Tmote Sky Firmware/Contiki (msp430)  93.3  0  6.7 

• NXP Httpd Demo/FreeRTOS (ARM)  86.7  1.4  11.9 
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Future Work 
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• Combine LFA with graph algorithm solutions to CodeCut 

 

• Include global data references 

 

• LFA improvements: 

- Basic similarity score metric for functions with no score (eliminate “gaps”) 

- Dynamically adjust “external” threshold in LFA score (currently fixed) 

- Experiment with more advanced edge detection 

- Possibly combine threshold and edge detection experiment 
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