
A Code Pirate’s Cutlass:
Recovering Software Architecture from

Embedded Binaries

evm

@evm_sec

Motivation

17 June 2018 2

• Problem space: vulnerability analysis for embedded devices, esp.

real-time/embedded operating systems

• Goal: Expand previous work in call graph visualization for RE into

automated call graph segmentation

- “Bubble Struggle” by Marion Marschalek, RECON 2017

- “Reverse Engineering with Hypervisors” by Danny Quist, RECON 2010

Understanding software architecture is critical to effective and timely

vulnerability analysis in the embedded environment

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

RTOS / Embedded OS From An RE Perspective

17 June 2018 3

• Single (often large) fully linked program

• One address space

• No clear distinction between

- Application threads

- Libraries

- Operating system

• Usually distributed to licensees as source or object files

• No symbols (usually)

• Scattered debug prints (often)

• There are a gazillion of them

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Towards Automated RE

• Objects / Libraries

• Subroutines / Functions

• Statements / Constructs

• Assembly / Opcodes

• Reverse engineers operate on
at least 4 levels

• Usually when a new project
gets started we are spinning
our wheels a bit at the bottom
in order to label enough
functions to start to make
sense of the bigger picture

• For ML/DL approaches – we
are going to need methods to
chunk up a large binary – and
give a sense of context for
each function

17 June 2018 4 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

The CodeCut Problem

17 June 2018 5

• Assumptions:
- Embedded developers organize code into multiple source files

- Source files are compiled into object files

- Linker produces final binary that is a linear concatenation of object

files

- No intentional obfuscation

Binary

Program

main.o

unk_mod1.o

net_lib.o

unk_mod2.o

std_lib.o

main.c

math_lib.c

net_lib.c

crypt_lib.c

std_lib.c

main.o

math_lib.o

net_lib.o

crypt_lib.c

std_lib.c

C
o
m

p
ile

L
in

k

C
o
d
e
C

u
t

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

The CodeCut Problem

17 June 2018 6

• Problem Statement: Given only call graph information for a large

binary, recover the boundaries of the original object files

• Notes:

- Essentially architecture independent (as long as a call graph can be generated

through disassembly)

- Inherent ambiguity: CodeCut algorithms might locate multiple functional clusters

within an original source file - or combine two files because they are highly related

Binary

Program

main.o

unk_mod1.o

net_lib.o

unk_mod2.o

std_lib.o

main.c

math_lib.c

net_lib.c

crypt_lib.c

std_lib.c

main.o

math_lib.o

net_lib.o

crypt_lib.c

std_lib.c

C
o
m

p
ile

L
in

k

C
o
d
e
C

u
t

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2()/100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

17 June 2018 7 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

17 June 2018 8 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

• Directionality of calls at the

beginning of the module is in

the positive direction

17 June 2018 9 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

• Directionality of calls at the

beginning of the module is in

the positive direction

• Directionality of calls generally

switch to the negative

direction towards the end of

the module

17 June 2018 10 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

• Directionality of calls at the

beginning of the module is in

the positive direction

• Directionality of calls generally

switch to the negative

direction towards the end of

the module

• We can detect edges by

finding the switch from

negative back to positive

17 June 2018 11 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Concept

#include <stdio.h>

int helper_1() {

 return helper_2() / 100;

}

int helper_2() {

 …

}

int more_complex() {

 …

 while (helper_1() < 100) {

 foo = helper_2() % 20;

 }

 …

}

void main_functionality() {

 more_complex();

 …

 while (helper_2() > 1000) {

 foo = helper_1();

 bar = more_complex();

 }

}

• If we eliminate external calls…

• Directionality of calls at the

beginning of the module is in

the positive direction

• Directionality of calls generally

switch to the negative

direction towards the end of

the module

• We can detect edges by

finding the switch from

negative back to positive

17 June 2018 12 © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Local Function Affinity Definition

17 June 2018 13

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑓 =
 𝑠𝑖𝑔𝑛 𝑥 − 𝑓 ∗ 𝐿𝑜𝑔(𝑥 − 𝑓)𝑥 ∈𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑓 ,

|𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑓 |

 Where references(f) is defined as the set of functions that call f
 or are called by f for which the distance from f to the function is
 below a chosen threshold. Multiple references are counted.

• Using fixed threshold of 4K*

• Edge Detection*:
- General negative trend

- Change to positive value (Δ > 2)

- Treat calls to / calls from as separate scores – for functions without one of the
scores, interpolate from last score

* room for improvement!

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

17 June 2018 14

Call Directionality Metric

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

17 June 2018 15

Module-to-Module Call Graph (Auto-Generated)

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

CodeCut Success Metric

17 June 2018 16

 Good

 Gap

 “Underlap”

3b 7f 00

00 ff 11

01 00 d1

3c 01 00

a7 12 01

00 2d e9

f0 41 76

4b 14 46

76 4a 7b

44 9b 58

0e 46 19

68 a6 b0

25 91 05

46 98 46

08 b1 06

b1 bc b9

71 4a 72

4b 7a 44

7b 44 92

20 00 92

01 93 02

90 03 21

63 20 05

aa 80 23

cc f7 e8

ed 30 b1

6c 4b 63

20 03 21

05 aa 7b

44 cc f7

e6 ed 00

20 bc e0

00 f5 1c

42 92 f8

61 30 01

2b 40 f0

98 80 00

f5 1f 47

07 f1 78

00 ff f7

93 fe c8

b9 30 70

Code
.map file

(ground truth)

.map file

(alg output)
Score

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

LFA Results to Date

17 June 2018 17

 Match / Gap / Underlap (%)

• Gnuchess (x86) 76.1 3.2 20.7

• PX4 Firmware/NuttX (ARM) 82.2 13.6 4.2

• GoodFET 41 Firmware (msp430) 76.1 0 23.9

• Tmote Sky Firmware/Contiki (msp430) 93.3 0 6.7

• NXP Httpd Demo/FreeRTOS (ARM) 86.7 1.4 11.9

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Future Work

17 June 2018 18

• Combine LFA with graph algorithm solutions to CodeCut

• Include global data references

• LFA improvements:

- Basic similarity score metric for functions with no score (eliminate “gaps”)

- Dynamically adjust “external” threshold in LFA score (currently fixed)

- Experiment with more advanced edge detection

- Possibly combine threshold and edge detection experiment

© 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

A Code Pirate’s Cutlass:
Recovering Software Architecture from

Embedded Binaries

evm

@evm_sec

