
1

Satoshi Tanda
Threat Researcher

Monitoring & Controlling
Kernel-mode Events by
HyperPlatform

2

3

● If you want to have more ability to monitor and control
Windows system activities in a lightweight manner,
HyperPlatfrom is for you

● HyperPlatfrom is the hypervisor designed as a VM-exit
filtering platform to utilize virtualization technology (VT) and
write new types of tools on Windows quicker and easier

Takeaway

4

● Satoshi Tanda (@standa_t)
– Reverse engineer interested in the Windows kernel

– Implemented HyperPlatform

– Threat Researcher at Sophos specializing in behaviour based
detection on Windows

● Igor Korkin (@Igorkorkin)
– An independent researcher focusing on cyber security science:

memory forensics, rootkit detection & spy technologies

– Co-researcher, focused on application of HyperPlatform

About Us

5

● Issue: Lack of tools for kernel mode code analysis on Windows
– Debugger and IDA are time consuming

– Existing tools were not efficient

● Solution: Virtualization Technology (VT)
– Plenty of analysis systems, and academic papers

– VT is more than just sandbox

Background

6

● No suitable hypervisor to take advantage of VT only for
system monitoring on Windows

● Existing lightweight hypervisors for Windows?
– lacked modern platform support

● More comprehensive hypervisors?
– Too large to understand and extend

– Not straightforward to compile and run

– Very slow (i.e., Bochs)

Challenges

7

● Lack of tools to monitor kernel activities

● Commercial and proprietary

● Insufficient modern platform support

● Large to use VT just for system monitoring

● Not Windows researchers friendly

● Too slow

Challenges: Summary

8

● Allows you to monitor system activities incl. kernel-mode

● Open source under the relaxed license (MIT License)

● Supports Windows 7-10 on x86/x64

● Small (7KLOC)

● Can be compiled on Visual Studio w/o any 3rd party libraries,
and debugged just like ordinary Windows drivers

● Fast (about 10% of overhead)

Answer: HyperPlatform

9

Processors

User Mode

Kernel Mode

How It Works: Overview

Applications

Kernel Drivers HyperPlatform.sys

Enables VMX operation mode

10

Processors VMX enabled

User Mode

Kernel Mode

How It Works: Overview

Applications

Kernel Drivers HyperPlatform.sys

CPUID

MOV CR3, RAX Exception VMExitHandler()

VM-exit handler is executed upon
occurrence of certain events (VM-exit)

VM-exit

11

void VMExitHandler(
 GuestRegisters* context,
 int exit_reason)
{
 switch (exit_reason)
 {
 case VMEXIT_CPUID:
 CpuidHandler(context); break;
 case VMEXIT_EXCEPTION:
 ExceptionHandler(context); break;
 //...
 }
}

How It Works: Implementation

Context of the system and
VM-exit reason are given

Invoked on VM-exit

Handle an event accordingly

12

HyperPlatform

Processors VMX enabled

As a VM-exit Filtering Platform

MOV CR3, RAX Exception

VM-exit

CPUID

Windows
MOV CR3, RAX

Your extended logic for
“move-to-cr3” event

YourDriver.sys

13

● You can do what you cannot do without VT

● VM-exit is a new class of events
– access to system registers

– occurrence of exceptions and interruptions

– execution of certain instructions

– access to memory using extended page tables (EPT)

● VM-exit handler is flexible
– returning different register values and/or memory contents

● None of them is easy to achieve without VT

Advantage

14

● Kernel mode code analysis
– Detection of dodgy instruction execution (e.g., modification of

CR0.WP)
● GuardMon – PatchGuard monitor

– Detection of pool memory execution
● MemoryMon – Memory execution monitor

– Invisible API hook
● DdiMon – kernel-mode API monitor

Application (part 1)

driver_x.sys

driver_y.sys

driver_z.sys

Kernel space

Execution OK

Execution
DodgyPool Memory

15

● MemoryMon against Turla (Uroburos)
– getting unpacked code from memory

Demo (part 1)

16

● Hypervisor based protection
– Instead of monitoring, terminate a process upon dodgy events

– Checking certain conditions on task switching
● EopMon – elevation of privilege exploit (token stealing) monitor

Application (part 2)

Time

Running

Running

MOV CR3, RAX

Running

MOV CR3, RAX

EopMonCheck

Check

Process A

Process B

Process C

VM-exit

VM-exit

17

● EopMon against Gozi (Ursnif)
– Detecting and killing elevated malware (stole a system token)

Demo (part 2)

18

● Cannot run inside VirtualBox by design

● No AMD processors support (#2, won't fix)

● Cannot run with other hypervisors simultaneously (#14)

Limitations

19

● Looking for more ideas on what we can do
– Kernel code coverage with Intel Processor Trace for effective fuzzing

– Memory access visualization and authorization

– Race condition (TOCTOU) bug discovery with memory access
monitoring

Future

20

● Virtualization technology (VT) is powerful but underutilized in
reverse engineering

● HyperPlatfrom is the hypervisor designed as a VM-exit
filtering platform to utilize VT and write new types of tools on
Windows quickly and easily

● Check out GitHub pages, develop your own unique ideas and
solutions
– github.com/tandasat/HyperPlatform

Conclusion

21

● Contacts:
– Satoshi Tanda (@standa_t)

● tanda.sat@gmail.com
– Igor Korkin (@Igorkorkin)

● igor.korkin@gmail.com

Thank You

22

Appendix 1: Performance Metrics

PCMark8 Home
Novabench RAM Speed

Novabench CPU Tests
Novabench Graphics Tests

Novabench Drive Write Speed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Performence Comparison Base

EopMon

MemoryMon

23

● VMRay

– https://www.vmray.com/features/

● McAfee Deep Defender

– http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/mcafee-deep-defender-deepsafe-rootkit-protection-paper.pdf

● SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes

– https://www.cs.cmu.edu/~arvinds/pubs/secvisor.pdf

● SPIDER: Stealthy Binary Program Instrumentation and Debugging via Hardware Virtualization

– https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2013-5.pdf

● DRAKVUF

– http://drakvuf.com/

References 1

24

● HyperDbg

– https://github.com/rmusser01/hyperdbg

● Virtdbg

– https://github.com/upring/virtdbg

● BluePill

– http://invisiblethingslab.com/resources/bh07/nbp-0.32-public.zip

● MoRE

– https://github.com/ainfosec/MoRE

References 2

25

● Bochs

– https://github.com/svn2github/bochs

● Xen

– http://xenbits.xen.org/gitweb/?p=xen.git

● QEMU

– http://git.qemu.org/qemu.git

● VirtualBox

– https://www.virtualbox.org/

References 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

