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● If you want to have more ability to monitor and control 
Windows system activities in a lightweight manner, 
HyperPlatfrom is for you

● HyperPlatfrom is the hypervisor designed as a VM-exit 
filtering platform to utilize virtualization technology (VT) and 
write new types of tools on Windows quicker and easier

Takeaway
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● Satoshi Tanda (@standa_t)
– Reverse engineer interested in the Windows kernel

– Implemented HyperPlatform

– Threat Researcher at Sophos specializing in behaviour based 
detection on Windows  

● Igor Korkin (@Igorkorkin)
– An independent researcher focusing on cyber security science: 

memory forensics, rootkit detection & spy technologies

– Co-researcher, focused on application of HyperPlatform

About Us
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● Issue: Lack of tools for kernel mode code analysis on Windows
– Debugger and IDA are time consuming

– Existing tools were not efficient 

● Solution: Virtualization Technology (VT) 
– Plenty of analysis systems, and academic papers

– VT is more than just sandbox

Background
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● No suitable hypervisor to take advantage of VT only for 
system monitoring on Windows

● Existing lightweight hypervisors for Windows?
– lacked modern platform support

● More comprehensive hypervisors?
– Too large to understand and extend

– Not straightforward to compile and run

– Very slow (i.e., Bochs)

Challenges
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● Lack of tools to monitor kernel activities

● Commercial and proprietary

● Insufficient modern platform support

● Large to use VT just for system monitoring

● Not Windows researchers friendly

● Too slow

Challenges: Summary
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● Allows you to monitor system activities incl. kernel-mode

● Open source under the relaxed license (MIT License) 

● Supports Windows 7-10 on x86/x64

● Small (7KLOC)

● Can be compiled on Visual Studio w/o any 3rd party libraries, 
and debugged just like ordinary Windows drivers

● Fast (about 10% of overhead) 

Answer: HyperPlatform
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Processors

User Mode

Kernel Mode

How It Works: Overview

Applications

Kernel Drivers HyperPlatform.sys

Enables VMX operation mode
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Processors VMX enabled

User Mode

Kernel Mode

How It Works: Overview

Applications

Kernel Drivers HyperPlatform.sys

CPUID

MOV CR3, RAX Exception VMExitHandler()

VM-exit handler is executed upon 
occurrence of certain events (VM-exit)

VM-exit
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void VMExitHandler(  
  GuestRegisters* context, 
  int exit_reason) 
{
  switch (exit_reason) 
  {
    case VMEXIT_CPUID:
      CpuidHandler(context); break;
    case VMEXIT_EXCEPTION:
      ExceptionHandler(context); break;
    //...
  }
}

How It Works: Implementation

Context of the system and
VM-exit reason are given 

Invoked on VM-exit

Handle an event accordingly
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HyperPlatform

Processors VMX enabled

As a VM-exit Filtering Platform 

MOV CR3, RAX Exception

VM-exit

CPUID

Windows
MOV CR3, RAX

Your extended logic for
“move-to-cr3” event 

YourDriver.sys
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● You can do what you cannot do without VT

● VM-exit is a new class of events 
– access to system registers

– occurrence of exceptions and interruptions

– execution of certain instructions

– access to memory using extended page tables (EPT)

● VM-exit handler is flexible
– returning different register values and/or memory contents

● None of them is easy to achieve without VT 

Advantage
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● Kernel mode code analysis
– Detection of dodgy instruction execution (e.g., modification of 

CR0.WP)
● GuardMon – PatchGuard monitor

– Detection of pool memory execution
● MemoryMon – Memory execution monitor

– Invisible API hook
● DdiMon – kernel-mode API monitor

Application (part 1)

driver_x.sys

driver_y.sys

driver_z.sys

Kernel space

Execution OK

Execution
DodgyPool Memory
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● MemoryMon against Turla (Uroburos)
– getting unpacked code from memory

Demo (part 1)
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● Hypervisor based protection
– Instead of monitoring, terminate a process upon dodgy events

– Checking certain conditions on task switching
● EopMon – elevation of privilege exploit (token stealing) monitor 

Application (part 2)

Time

Running

Running

MOV CR3, RAX

Running

MOV CR3, RAX

EopMonCheck

Check

Process A

Process B

Process C

VM-exit

VM-exit
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● EopMon against Gozi (Ursnif)
– Detecting and killing elevated malware (stole a system token) 

Demo (part 2)



18

● Cannot run inside VirtualBox by design

● No AMD processors support (#2, won't fix)

● Cannot run with other hypervisors simultaneously (#14)

Limitations
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● Looking for more ideas on what we can do
– Kernel code coverage with Intel Processor Trace for effective fuzzing

– Memory access visualization and authorization

– Race condition (TOCTOU) bug discovery with memory access 
monitoring

Future
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● Virtualization technology (VT) is powerful but underutilized in 
reverse engineering

● HyperPlatfrom is the hypervisor designed as a VM-exit 
filtering platform to utilize VT and write new types of tools on 
Windows quickly and easily

● Check out GitHub pages, develop your own unique ideas and 
solutions
– github.com/tandasat/HyperPlatform

Conclusion



21

● Contacts:
– Satoshi Tanda (@standa_t)

● tanda.sat@gmail.com
– Igor Korkin (@Igorkorkin)

● igor.korkin@gmail.com

Thank You
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Appendix 1: Performance Metrics

PCMark8 Home
Novabench RAM Speed

Novabench CPU Tests
Novabench Graphics Tests

Novabench Drive Write Speed
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● VMRay

– https://www.vmray.com/features/

● McAfee Deep Defender

– http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/mcafee-deep-defender-deepsafe-rootkit-protection-paper.pdf

● SecVisor: A Tiny Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes

– https://www.cs.cmu.edu/~arvinds/pubs/secvisor.pdf

● SPIDER: Stealthy Binary Program Instrumentation and Debugging via Hardware Virtualization

– https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2013-5.pdf

● DRAKVUF 

– http://drakvuf.com/

References 1
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● HyperDbg 

– https://github.com/rmusser01/hyperdbg

● Virtdbg

– https://github.com/upring/virtdbg

● BluePill

– http://invisiblethingslab.com/resources/bh07/nbp-0.32-public.zip

● MoRE

– https://github.com/ainfosec/MoRE

References 2
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● Bochs

– https://github.com/svn2github/bochs

● Xen

– http://xenbits.xen.org/gitweb/?p=xen.git

● QEMU

– http://git.qemu.org/qemu.git

● VirtualBox

– https://www.virtualbox.org/

References 3
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